Skip to main content
Log in

Optimized ellipse packings in regular polygons

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We present model development and numerical solution approaches to the problem of packing a general set of ellipses without overlaps into an optimized polygon. Specifically, for a given set of ellipses, and a chosen integer m ≥ 3, we minimize the apothem of the regular m-polygon container. Our modeling and solution strategy is based on the concept of embedded Lagrange multipliers. To solve models with up to n ≤ 10 ellipses, we use the LGO solver suite for global–local nonlinear optimization. In order to reduce increasing runtimes, for model instances with 10 ≤ n ≤ 20 ellipses, we apply local search launching the Ipopt solver from selected random starting points. The numerical results demonstrate the applicability of our modeling and optimization approach to a broad class of highly non-convex ellipse packing problems, by consistently returning good quality feasible solutions in all (231) illustrative model instances considered here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Alder, B.J., Wainwright, T.E.: Phase transition for a hard sphere system. J. Chem. Phys. 27, 1208–1209 (1957)

    Article  Google Scholar 

  2. Bernal, J.D.: Geometrical approach to the structure of liquids. Nature 183, 141–147 (1959)

    Article  Google Scholar 

  3. Birgin, E.G., Lobato, R.D., Martínez, J.M.: Packing ellipsoids by nonlinear optimization. J. Glob. Optim. (2015). https://doi.org/10.1007/s10898-015-0395-z

    Article  MATH  Google Scholar 

  4. Birgin, E.G., Lobato, R.D., Martínez, J.M.: A nonlinear programming model with implicit variables for packing ellipsoids. J. Glob. Optim. (2016). https://doi.org/10.1007/s10898-016-0483-8

    Article  MATH  Google Scholar 

  5. Black, K., Chakrapani, C., Castillo, I.: Business Statistics for Contemporary Decision Making, 2nd edn. Wiley & Sons Canada, Toronto (2014)

    Google Scholar 

  6. Çaĝlayan, M.O., Pintér, J.D.: Development and calibration of a currency trading strategy using global optimization. J. Glob. Optim. 56, 353–371 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Castillo, I., Kampas, F.J., Pintér, J.D.: Solving circle packing problems by global optimization: numerical results and industrial applications. Eur. J. Oper. Res. 191, 786–802 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Castillo, I., Sim, T.: A spring-embedding approach for the facility layout problem. J. Oper. Res. Soc. 55, 73–81 (2004)

    Article  MATH  Google Scholar 

  9. Chaikin, P.M.: Thermodynamics and hydrodynamics of hard spheres: the role of gravity. In: Cates, M.E., Evans, M.R. (eds.) Soft and Fragile Matter: Nonequilibrium Dynamics, Metastability and Flow, vol. 53, pp. 315–348. Institute of Physics Publishing, Bristol (2000)

    Chapter  Google Scholar 

  10. Cheng, Z.D., Russell, W.B., Chaikin, P.M.: Controlled growth of hard-sphere colloidal crystals. Nature 401, 893–895 (1999)

    Article  Google Scholar 

  11. Deschaine, L.M., Lillys, T.P., Pintér, J.D.: Groundwater remediation design using physics-based flow, transport, and optimization technologies. Environ. Syst. Res. 2, 6 (2013)

    Article  Google Scholar 

  12. Edwards, S.F.: The role of entropy in the specification of a powder. In: Mehta, A. (ed.) Granular Matter: An Interdisciplinary Approach, pp. 121–140. Springer, New York (1994)

    Chapter  Google Scholar 

  13. Galiev, S.I., Lisafina, M.S.: Numerical optimization methods for packing equal orthogonally oriented ellipses in a rectangular domain. Comput. Math. Math. Phys. 53, 1748–1762 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gensane, T., Honvault, P.: Optimal packings of two ellipses in a square. Forum Geometricorum 14, 371–380 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Giachetti, R.E., Sanchez, J.C.: A model to design recreational boat mooring fields. Naval Res. Logist. 56, 158–174 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hifi, M., M’Hallah, R.: A literature review on circle and sphere packing problems: models and methodologies. Adv. Oper. Res. (2009). https://doi.org/10.1155/2009/150624

    Article  MATH  Google Scholar 

  17. Honvault, P.: Maximal inflation of two ellipses. Technical Report. LMPA, Université du Littoral Cȏte d’Opale, Calais Cedex, France (2011)

  18. Honvault, P.: Density of optimal packings of three ellipses in a square. J. Geom. Graph. 19, 201–209 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Jaeger, H.M., Nagel, S.R.: Physics of the granular state. Science 255, 1523–1531 (1992)

    Article  Google Scholar 

  20. Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996)

    Article  Google Scholar 

  21. Kallrath, J.: Packing ellipsoids into volume-minimizing rectangular boxes. J. Glob. Optim. 67, 151–185 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kallrath, J., Rebennack, S.: Cutting ellipses from area-minimizing rectangles. J. Glob. Optim. 59, 405–437 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kampas, F.J., Pintér, J.D.: Configuration analysis and design by using optimization tools in Mathematica. Math. J. 10, 128–154 (2006)

    Google Scholar 

  24. Kampas, F.J., Pintér, J.D., Castillo, I.: Optimal packing of general ellipses in a circle. In: Terlaky, T., Takac, M. (eds.) Proceedings of the Modeling and Optimization: Theory and Applications Conference, Bethlehem, Pennsylvania (2016)

  25. Kampas, F.J., Pintér, J.D., Castillo, I.: Optimal packing of general ellipses in a circle. In: Takáč, M., Terlaky, T. (eds.) Modeling and Optimization: Theory and Applications (MOPTA 2016 Proceedings), pp. 23–38. Springer International Publishing AG, Cham (2017)

    Google Scholar 

  26. Litvinchev, I., Infante, L., Ozuna, L.: Packing circular-like objects in a rectangular container. J. Comput. Syst. Sci. Int. 54, 259–267 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pintér, J.D.: Global Optimization in Action. Kluwer Academic Publishers, Dordrecht (1996)

    Book  MATH  Google Scholar 

  28. Pintér, J.D.: LGO—a program system for continuous and Lipschitz global optimization. In: Bomze, I., Csendes, T., Horst, R., Pardalos, P.M. (eds.) Developments in Global Optimization, pp. 183–197. Kluwer Academic Publishers, Dordrecht (1997)

    Chapter  MATH  Google Scholar 

  29. Pintér, J.D.: Globally optimized spherical point arrangements: model variants and illustrative results. Ann. Oper. Res. 104, 213–230 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pintér, J.D.: Global optimization: software, test problems, and applications. In: Pardalos, P.M., Romeijn, H.E. (eds.) Handbook of Global Optimization, vol. 2, pp. 515–569. Kluwer Academic Publishers, Dordrecht (2002)

    Chapter  MATH  Google Scholar 

  31. Pintér, J.D.: Nonlinear optimization in modeling environments: software implementations for compilers, spreadsheets, modeling languages, and integrated computing systems. In: Jeyakumar, V., Rubinov, A.M. (eds.) Continuous Optimization: Current Trends and Applications, pp. 147–173. Springer, New York (2005)

    Chapter  Google Scholar 

  32. Pintér, J.D.: Nonlinear optimization with GAMS/LGO. J. Glob. Optim. 38, 79–101 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pintér, J.D.: Software development for global optimization. In: Pardalos, P.M., Coleman, T.F. (eds.) Global Optimization: Methods and Applications. Fields Institute Communications Volume 55., pp. 183–204. American Mathematical Society, Providence (2009)

    Google Scholar 

  34. Pintér, J.D.: LGO—A Model Development and Solver System for Global-Local Nonlinear Optimization, User’s Guide. PCS Inc., Canada (2016)

    Google Scholar 

  35. Pintér, J.D.: How difficult is nonlinear optimization? A practical solver tuning approach, with illustrative results. Ann. Oper. Res. (2017). https://doi.org/10.1007/s10479-017-2518-z

    Article  MATH  Google Scholar 

  36. Pintér, J.D., Horváth, Z.: Integrated experimental design and nonlinear optimization to handle computationally expensive models under resource constraints. J. Glob. Optim. 57, 191–215 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pintér, J.D., Kampas, F.J.: Nonlinear optimization in Mathematica with MathOptimizer Professional. Math. Educ. Res. 10(1), 1–18 (2005)

    Google Scholar 

  38. Pintér, J.D., Kampas, F.J.: MathOptimizer Professional: key features and illustrative applications. In: Liberti, L., Maculan, N. (eds.) Global Optimization: From Theory to Implementation, pp. 263–280. Springer, New York (2006)

    Chapter  Google Scholar 

  39. Pintér, J.D., Kampas, F.J.: Benchmarking nonlinear optimization software in technical computing environments. I. Global optimization in Mathematica with MathOptimizer Professional. TOP 21, 133–162 (2013)

    Article  MATH  Google Scholar 

  40. Pintér, J.D., Kampas, F.J.: Getting Started with MathOptimizer Professional. PCS Inc., Canada (2015)

    Google Scholar 

  41. Pintér, J.D., Kampas, F.J., Castillo, I.: Globally optimized packings of non-uniform size spheres in Rd: a computational study. Optim. Lett. (2017). https://doi.org/10.1007/s11590-017-1194-x

    Article  MATH  Google Scholar 

  42. Pintér, J.D., Linder, D., Chin, P.: Global Optimization Toolbox for Maple: an introduction with illustrative applications. Optim. Methods Softw. 21, 565–582 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Pusey, P.N.: Colloidal suspensions. In: Hansen, J.P., Levesque, D., Zinnjustin, J. (eds.) Liquids, Freezing and Glass Transition, Vol. 51 of Les Houches Summer School Session, pp. 763–942. Elsevier Science Publishers, Amsterdam (1991)

    Google Scholar 

  44. Rintoul, M.D., Torquato, S.: Metastability and crystallization in hard-sphere systems. Phys. Rev. Lett. 77, 4198–4201 (1996)

    Article  Google Scholar 

  45. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Glob. Optim. 56, 1247–1293 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Riskin, M.D., Bessette, K.C., Castillo, I.: A logarithmic barrier approach to solving the dashboard planning problem. INFOR 41, 245–257 (2003)

    Google Scholar 

  47. Specht, E. (2018) http://www.packomania.com/. Last update shown at website: June 29, 2018 as of December 12, 2018

  48. Stortelder, W.J.H., de Swart, J.J.B., Pintér, J.D.: Finding elliptic Fekete point sets: two numerical solution approaches. J. Comput. Appl. Math. 130, 205–216 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  49. Stoyan, Y., Pankratov, A., Romanova, T.: Quasi-phi-functions and optimal packing of ellipses. J. Glob. Optim. 65, 283–307 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Stoyan, Y., Romanova, T., Pankratov, A., Chugay, A.: Optimized object packings using quasi-phi functions. In: Fasano, G., Pintér, J.D. (eds.) Optimized Packing with Applications, pp. 265–293. Springer, New York (2015)

    Chapter  MATH  Google Scholar 

  51. Szabó, P.G., Markót, M.Cs, Csendes, T., Specht, E., Casado, L.G., García, I.: New Approaches to Circle Packing in a Square: With Program Codes. Springer, New York (2007)

    MATH  Google Scholar 

  52. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  53. The GNU Compiler Collection. (2016). https://gcc.gnu.org/. Accessed 7 Jan 2018

  54. Uhler, C., Wright, S.J.: Packing ellipsoids with overlap. SIAM Rev. 55, 671–706 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wolfram Research: Mathematica (Release 11). Wolfram Research Inc, Champaign (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Castillo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kampas, F.J., Castillo, I. & Pintér, J.D. Optimized ellipse packings in regular polygons. Optim Lett 13, 1583–1613 (2019). https://doi.org/10.1007/s11590-019-01423-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-019-01423-y

Keywords

Navigation