Skip to main content

Advertisement

Log in

Existence and uniqueness of solutions of the generalized polynomial variational inequality

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we consider the generalized polynomial variational inequality, which is a subclass of generalized variational inequalities; and it covers several classes of variational inequalities with polynomial functions studied recently in the literature. A well-known existence and uniqueness theorem for the generalized variational inequality was established by Pang and Yao (SIAM J Control Optim 33:168–184, 1995). It is not difficult to show that the conditions of this theorem do not hold for generalized variational inequalities with general polynomial functions. In this paper, in terms of properties of the involved polynomial and by making use of the theory related to exceptional family of elements, we establish an existence and uniqueness theorem for the generalized polynomial variational inequality. A specific example is given to confirm our theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, X.L., Huang, Z.H., Wang, Y.: Global uniqueness and solvability for tensor complementarity problems. J. Optim. Theory Appl. 170(1), 72–84 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balaji, R., Palpandi, K.: Positive definite and Gram tensor complementarity problems. Optim. Lett. 12, 639–648 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Che, M., Qi, L., Wei, Y.: Positive-definite tensors to nonlinear complementarity problems. J. Optim. Theory Appl. 168(2), 475–487 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  5. Facchinei, F., Pang, J.S.: Finite Dimensionl Variatioal Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  6. Gowda, M.S.: Polynomial complementarity problems. Pac. J. Optim. 13(2), 227–241 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Han, J., Xiu, N., Qi, H.D.: Nonlinear Complementarity Theory and Algorithms. Shanghai Science and Technology Press, Shanghai (2006)

    Google Scholar 

  8. Han, J., Huang, Z.H., Fang, S.C.: Solvability of variational inequality problems. J. Optim. Theory Appl. 122(3), 501–520 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Harker, P.T., Pang, J.S.: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program. 48(1), 161–220 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hieu, Vu T.: Solution maps of polynomial variational inequalities. arXiv:1807.00321 (2018)

  11. Huang, Z.H., Qi, L.: Formulating an \(n\)-person noncooperative game as a tensor complementarity problem. Comput. Optim. Appl. 66(3), 557–576 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Huang, Z.H., Qi, L.: Tensor complementarity problems—part I: basic theory. J. Optim. Theory Appl. 183(1), 1–23 (2019). https://doi.org/10.1007/s10957-019-01566-z

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, Z.H., Qi, L.: Tensor complementarity problems – part III: applications. J. Optim. Theory Appl. 183(3) (2019). https://doi.org/10.1007/s10957-019-01573-0

  14. Huang, Z.H., Suo, Y.Y., Wang, J.: On \(Q\)-tensors. arXiv:1509.03088. To appear in Pac. J. Optim. (2016)

  15. Ling, L., He, H., Ling, C.: On error bounds of polynomial complementarity problems with structured tensors. Optimization 67(2), 341–358 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ling, L., He, H., Ling, C.: Properties of the solution set of generalized polynomial complementarity problems. arXiv:1905.00670v1. To appear in Pac. J. Optim. (2019)

  17. Liu, D.D., Li, W., Vong, S.W.: Tensor complementarity problems: the GUS-property and an algorithm. Linear Multilinear Algebra 66(9), 1726–1749 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lloyd, N.G.: Degree Theory. Cambridge University Press, London (1978)

    MATH  Google Scholar 

  19. Luo, Z., Qi, L., Xiu, N.: The sparsest solutions to \(Z\)-tensor complementarity problems. Optim. Lett. 11(3), 471–482 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Noor, M.A.: Quasi variational inequalities. Appl. Math. Lett. 1(4), 367–370 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pang, J.S., Yao, J.C.: On a generalization of a normal map and equation. SIAM J. Control Optim. 33, 168–184 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Qi, L., Huang, Z.H.: Tensor complementarity problems—part II: solution methods. J. Optim. Theory Appl. 183(2) (2019). https://doi.org/10.1007/s10957-019-01568-x

  23. Song, Y., Qi, L.: Tensor complementarity problem and semi-positive tensors. J. Optim. Theory Appl. 169(3), 1069–1078 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Song, Y., Yu, G.: Properties of solution set of tensor complementarity problem. J. Optim. Theory Appl. 170(1), 85–96 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, Y., Huang, Z.H., Bai, X.L.: Exceptionally regular tensors and tensor complementarity problems. Optim. Method Softw. 31(4), 815–828 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, Y., Huang, Z.H., Qi, L.: Global uniqueness and solvability of tensor variational inequalities. J. Optim. Theory Appl. 177(1), 137–152 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhao, Y.B.: Existence of a solution to nonlinear variational inequality under generalized positive homogeneity. Oper. Res. Lett. 25(5), 231–239 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhao, Y.B., Han, J., Qi, H.D.: Exceptional families and existence theorems for variational inequality problems. J. Optim. Theory Appl. 101(2), 475–495 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Hai Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This author’s work was supported by the National Natural Science Foundation of China (Grant Nos. 11431002 and 11871051).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Huang, ZH. & Xu, Y. Existence and uniqueness of solutions of the generalized polynomial variational inequality. Optim Lett 14, 1571–1582 (2020). https://doi.org/10.1007/s11590-019-01461-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-019-01461-6

Keywords

Navigation