
An Accelerated Uzawa Method for Application

to Frictionless Contact Problem

Yoshihiro Kanno †

The Uzawa method is a method for solving constrained optimization prob-
lems, and is often used in computational contact mechanics. The simplicity
of this method is an advantage, but its convergence is slow. This paper
presents an accelerated variant of the Uzawa method. The proposed method
can be viewed as application of an accelerated projected gradient method
to the Lagrangian dual problem. Preliminary numerical experiments suggest
that the convergence of the proposed method is much faster than the original
Uzawa method.
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1 Introduction

It has been recognized well that contact mechanics has close relation with optimization
and variational inequalities [6, 27]. The static frictionless contact problem of a linear
elastic body, also called Signorini’s problem, is one of the most fundamental problems
in contact mechanics. This is a boundary value problem to find the equilibrium configu-
ration of an elastic body, where some portion of the boundary of the body can possibly
touch the surface of a rigid obstacle (or the surface of another elastic body). Positive dis-
tance between the elastic body and the obstacle surface (i.e., positive gap) implies zero
contact pressure (i.e., zero reaction), while nonzero reaction implies zero gap. This dis-
junction nature can be described by using complementarity conditions. Moreover, the
frictionless contact problem can be formulated as a continuous optimization problem
under inequality constraints [27].

The Uzawa method is known as a classical method for solving constrained optimization
problems [2, 5, 25]. Due to ease in implementation, the Uzawa method is often applied
to contact problems [10, 12, 18–22, 26]. Major drawback of the Uzawa method is that
its convergence is slow; it exhibits only linear convergence in general.

Recently, accelerated, or “optimal” [14, 15], first-order methods have received sub-
stantial attention, particularly for solving large-scale optimization problems; see, e.g.,
[3, 4, 13, 16]. Advantages of most of these methods include ease of implementation,
cheap computation per each iteration, and fast local convergence. Application of an
accelerated first-order method to computational mechanics can be found in [11]. In this
paper, we apply the acceleration scheme in [3] to the Uzawa method.
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The paper is organized as follows. Section 2 provides an overview of the necessary
background of the frictionless contact problem and the Uzawa method. Section 3 presents
an accelerated Uzawa method. Section 4 reports the results of preliminary numerical
experiments. Some conclusions are drawn in section 5.

In our notation, > denotes the transpose of a vector or a matrix. For two vectors
x = (xi) ∈ Rn and y = (yi) ∈ Rn, we define

min{x,y} = (min{x1, y1}, . . . ,min{xn, yn})>.

We use Rn
− to denote the nonpositive orthant, i.e., Rn

− = {x = (xi) ∈ Rn | xi ≤ 0 (i =
1, . . . , n)}. For y ∈ Rn, we use Π−(y) to denote the projection of y on Rn

−, i.e.,

Π−(y) = arg min{‖x− y‖ | x ∈ Rn
−} = min{y,0}.

We use diag(x) to denote a diagonal matrix, the vector of diagonal components of which
is x.

2 Fundamentals of frictionless contact and Uzawa method

We briefly introduce the frictionless contact problem of an elastic body; see, e.g., [27]
and [6] for fundamentals of contact mechanics.

Consider an elastic body subjected to a static load and a rigid obstacle fixed in space.
Since the body cannot penetrate the surface of the obstacle, the deformation of the
body is constrained from one side by the obstacle surface. We also assume the absence
of friction and adhesion between the body surface and the obstacle surface. The set of
these conditions is called the frictionless unilateral contact.

Suppose that the conventional finite element procedure is adopted for discretization
of the elastic body. Let u ∈ Rd denote the nodal displacement vector, where d is the
number of degrees of freedom of displacements. We use π(u) to denote the total potential
energy caused by u. At the (unknown) equilibrium state, the nodes on a portion of the
body surface can possibly make contact with the obstacle surface. Such nodes are called
the contact candidate nodes, and the number of them is denoted by m. We use gi(u)
(i = 1, . . . ,m) to denote the gap between the ith contact candidate node and the obstacle
surface. The non-penetration conditions are then formulated as

gi(u) ≥ 0, i = 1, . . . ,m. (1)

The displacement vector at the equilibrium state minimizes the total potential energy
under the constraints in (1). Namely, the frictionless contact problem is formulated as
follows:

Minimize π(u) (2a)

subject to gi(u) ≥ 0, i = 1, . . . ,m. (2b)

The Uzawa method solving problem (2) is listed in Algorithm 1 [1, 2, 5, 25]. It is
worth noting that step 2 of Algorithm 1 can be performed as the equilibrium analysis
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with a conventional finite element code. Also, step 3 is simple to implement. Due to
such ease in implementation, the Uzawa method is widely used in computational contact
mechanics.

Algorithm 1 Uzawa method

Require: α > 0, r(0) ∈ Rm
−

1: for k = 0, 1, . . . do

2: u(k) solves ∇π(u) +

m∑
i=1

r
(k)
i ∇gi(u) = 0

3: r
(k+1)
i := min{0, r(k)

i + αgi(u
(k))} (i = 1, . . . ,m)

4: end for

As shown in Ciarlet [5, section 9.4], the Uzawa method can be viewed as a projected
gradient method solving the Lagrange dual problem. Essentials of this observation are
repeated here. The Lagrangian L : Rd × Rm → R ∪ {−∞} associated with problem (2)
is given by

L(u, r) =

π(u) +

m∑
i=1

rigi(u) if r ≤ 0,

−∞ otherwise.

(3)

Here, the Lagrange multipliers, r1, . . . , rm, correspond to the reactions. The inequality
constraints imposed on the reactions in (3) correspond to the non-adhesion conditions.
Define ψ : Rm → R ∪ {−∞} by

ψ(r) = inf{L(u, r) | u ∈ Rd}, (4)

which is the Lagrange dual function. The Lagrange dual problem of (2) is then formu-
lated as follows:

Maximize ψ(r) (5a)

subject to r ≤ 0. (5b)

Since ψ is the pointwise infimum of a family of affine functions of r, it is concave (even
if problem (2) is not convex). Therefore, the dual problem (5) is convex.

Let α > 0 be an arbitrary constant. A point r ∈ Rm is optimal for problem (5) if and
only if it satisfies

r = Π−(r + α∇ψ(r)). (6)

This fixed point relation yields the iteration of the projected gradient method as follows
(see, e.g., [17]):

r(k+1) := Π−(r(k) + α∇ψ(r(k))). (7)
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Here, α plays a role of the step size. For given r̄ ∈ Rm
− , define ur̄ by

ur̄ = arg min{L(u, r̄) | u ∈ Rd}. (8)

It can be shown that the relations

∂

∂ri
ψ(r̄) = gi(ur̄), i = 1, . . . ,m (9)

holds, when π is convex and g1, . . . , gm are concave [5, Theorem 9.3-3]. Substitution of
(9) into (7) results in step 3 of Algorithm 1. Thus, the Uzawa method for problem (2)
is viewed as the projected gradient method applied to the Lagrange dual problem (5).
It is worth noting that a reasonable stopping criterion,

‖r(k) − r(k+1)‖ ≤ ε

with threshold ε, is derived from the optimality condition in (6).
If we assume the small deformation, the total potential energy is given by

π(u) =
1

2
u>Ku− p>u.

Here, K ∈ Rd×d is the stiffness matrix, which is a constant positive definite symmetric
matrix, and p ∈ Rd is the external nodal force vector. Moreover, gi is linearized as

gi(u) = hi − n>i u, i = 1, . . . ,m. (10)

For notational simplicity, we rewrite (10) as

g(u) = h−Nu,

where h ∈ Rm is a constant vector, and N ∈ Rm×d is a constant matrix. The upshot is
that, in the small deformation theory, the frictionless contact problem is reduced to the
following convex quadratic programming (QP) problem:

Minimize
1

2
u>Ku− p>u (11a)

subject to h−Nu ≥ 0. (11b)

The step size, α, of the Uzawa method for solving problem (11) is chosen as follows.
Let λ1(K) and σd(N) denote the minimum eigenvalue of K and the maximum singular
value of σd(N). If α is chosen so that

α ∈]0, 2λ1(K)/σd(N)[,

then it is shown that the Uzawa method converges [5, section 9.4].
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3 Accelerated Uzawa method

In this section, we present an accelerated version of the Uzawa method.
The Uzawa method in Algorithm 1 is essentially viewed as the projected gradient

method (7). This method is considered a special case of the proximal gradient method,
because the proximal operator of the indicator function of a nonempty closed convex
set is reduced to the projection onto the set [17]. Therefore, it is natural to apply
the acceleration scheme for the proximal gradient method [3] to the projected gradient
update (7). This results in the update

r(k+1) := Π−(ρ(k) + α∇ψ(ρ(k))), (12)

ρ(k+1) := r(k) + ωk+1(r(k+1) − r(k)). (13)

Here, ωk ∈ [0, 1) is an extrapolation parameter which is to be determined so that the
convergence acceleration is achieved. In [3], ωk is chosen as

τk+1 :=
1

2

(
1 +

√
1 + τ2

k

)
,

ωk+1 :=
τk − 1

τk+1

with τ0 := 1. The sequence of the dual objective values, {ψ(r(k))}, converges to the
optimal value with rate O(1/k2) [3].

The accelerated method in (12) and (13) is not guaranteed to be monotone in the dual
objective value. Therefore, we follow O’Donoghue and Candès [16] in incorporating an
adaptive restart technique of the acceleration scheme. Namely, we perform the restart
procedure whenever the momentum term, r(k+1)−r(k), and the gradient of the objective
function, ∇ψ(r(k)), make an obtuse angle, i.e.,

∇ψ(r(k))>(r(k+1) − r(k)) < 0.

As the upshot, the accelerated Uzawa method with adaptive restart is listed in Algo-
rithm 2. One reasonable stopping criterion is

‖ρ(k) − r(k+1)‖ ≤ ε (14)

at step 4.
In the case of the small deformation theory, steps 2 and 3 of Algorithm 2 are simplified

as follows.

• Step 2: Let u(k) be the solution to the system of linear equations

Ku = p+N>ρ(k). (15)

Here, the coefficient matrix K is common to all the iterations. Hence, we carry out
the Cholesky factorization only at the first iteration; at the following iterations,
we can solve (15) only with the back-substitutions.

• Step 3: γ(k) := h−Nu(k).
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Algorithm 2 accelerated Uzawa method with restart

Require: α > 0, r(0) ∈ Rm
− , ρ(0) := r(0), τ0 := 1

1: for k = 0, 1, . . . do

2: u(k) solves ∇π(u) +
m∑
i=1

ρ
(k)
i ∇gi(u) = 0

3: γ(k) := g(u(k))
4: r(k+1) := min{0,ρ(k) + αγ(k)}
5: τk+1 :=

1

2

(
1 +

√
1 + 4τ2

k

)
6: if (γ(k))>(r(k+1) − r(k)) ≥ 0 then

7: ρ(k+1) := r(k+1) +
τk − 1

τk+1
(r(k+1) − r(k))

8: else
9: ρ(k+1) := r(k+1)

10: τk+1 := 1
11: end if
12: end for

Figure 1: An elastic body on the obstacle.

4 Preliminary numerical experiments

Consider an elastic body shown in Figure 1. The body is in the plane-stress state, with
thickness 5 mm, width 60 mm, and height 20 mm. It consists of an isotropic homogeneous
material with Young’s modulus 200 GPa and Poisson’s ratio 0.3. The bottom edge of
the body is on the rigid obstacle, and the left edge is fixed by supports. The uniform
downward traction of 50 kPa is applied to the top edge, and the uniform upward traction
of 500 kPa is applied to the right edge. The body is discretized into NX ×NY four-node
quadrilateral (Q4) finite elements, where NX (= 3NY ) is varied to generate problem
instances with different sizes. The number of degrees of freedom of displacements is
d = 2NX(NY + 1) and the number of contact candidate nodes is m = NX . At the
equilibrium state, about 73.3% of contact candidate nodes are in contact with nonzero
reactions. We assume the small deformation, and solve QP problem (11). Computation
was carried out on a 2.2 GHz Intel Core i5 processor with 8 GB RAM.

The proposed algorithm was implemented with MATLAB ver. 9.0.0. The threshold
for the stopping criteria in (14) is set to ε = 10−6. Comparison was performed with
QUADPROG [23], SDPT3 ver. 4.0 [24] with CVX ver. 2.1 [9], and PATH ver. 4.7.03 [8] via
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Figure 2: Convergence history for (NX , NY ) = (30, 10). (a) The dual objective value;
and (b) the total residual. “Solid line” the accelerated Uzawa method with
restart; “dotted line” the accelerated Uzawa method without restart; and
“dashed line” the Uzawa method.

the MATLAB Interface [7]. QUADPROG is a MATLAB built-in function for QP. We use
an implementation of an interior-point method with setting the termination threshold,
the parameter TolFun, to 10−8. SDPT3 implements a primal-dual interior-point method
for solving conic programming problems. A QP problem is converted to the standard
form of conic programming by CVX, where the parameter cvx precision for controlling
the solver precision is set to high. PATH is a nonsmooth Newton method to solve mixed
complementarity problems, and hence can solve the KKT condition for QP.

Figure 2 reports the convergence history of the proposed algorithm (Algorithm 2).
It also shows the result of the accelerated Uzawa method without restart scheme, and
that of Algorithm 1 (i.e., the Uzawa method without acceleration). Figure 2(a) shows
the convergence history of the dual objective function. It is observed that the acceler-
ation and restart schemes drastically speed up the convergence. Particularly, with the
proposed algorithm, the dual objective value seems to converge quadratically and mono-
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Figure 3: Comparison of (a) the computational time; and (b) the total residual. “◦” The
accelerated Uzawa method with restart; “4” the Uzawa method; “×” SDPT3;
“+” QUADPROG; and “�” PATH.

tonically. The residual in Figure 2(b) is defined by using the KKT condition. Namely,
we define vectors ej (j = 1, 2, 3, 4) by

e1 = Ku(k) − f −N>r(k),

e2 = min{g(u(k)),0},
e3 = max{r(k),0},
e4 = −diag(g(uk))r(k),

and the value of ‖(e1, e2, e3, e4)‖ is reported in Figure 2(b).
Figure 3 compares the computational results of the five methods. It is observed

in Figure 3(a) that QUADPROG is fastest for almost all the problem instances. The
computational time required by PATH is very small for small instances, but drastically
increases as the instance size increases. On the other hand, it is observed in Figure 3(b)
that PATH converges to the highest accuracy. For large instances, the proposed method
is the second-fastest method among the five methods. The computational time of SDPT3
is larger than that of the proposed method. Also, SDPT3 converges to the lowest accu-
racy. The residuals of the solutions obtained by the proposed method, the unaccelerated
Uzawa method, and QUADPROG are similar. The computational time required by the
unaccelerated Uzawa method is very large.

The upshot is that, within the small deformation theory, the proposed method is
quite efficient, but the interior-point method for QP (QUADPROG) is more efficient. If
we consider large deformation, problem (2) is not convex, and hence QUADPROG and
SDPT3 cannot be adopted. Efficiency of the proposed method, that solves the convex
dual problem, remains to be studied.
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5 Concluding remarks

This paper has presented an accelerated Uzawa method. The method can be recognized
as an accelerated projected gradient method solving the Lagrangian dual problem of a
constrained optimization problem. It has been shown in the numerical experiments that
the acceleration and restart schemes drastically speed up the convergence of the Uzawa
method. Besides, the proposed method is easy to implement.

Many possibilities of extensions could be considered. To update the primal variables,
the Uzawa method solves a system of linear equations. For large-scale problems, this
process might be replaced by a fast first-order minimization method of a convex quadratic
function, e.g., [13]. Also, an extension to large deformation problems remains to be
explored.
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[22] İ. Temizer, P. Wriggers, T. J. R. Hughes: Three-dimensional mortar-based frictional
contact treatment in isogeometric analysis with NURBS. Computer Methods in
Applied Mechanics and Engineering, 209–212, 115–128 (2012).

[23] The MathWorks, Inc.: MATLAB Documentation. http://www.mathworks.com/

(Accessed November 2016).

10

http://www.mathworks.com/
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