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Abstract: We study the recovery conditions of weighted ℓ1 minimization for real-valued signal recon-
struction from phaseless compressive sensing measurements when partial support information is available.
A strong restricted isometry property condition is provided to ensure the stable recovery. Moreover, we
present the weighted null space property as the sufficient and necessary condition for the success of k-sparse
phaseless recovery via weighted ℓ1 minimization. Numerical experiments are conducted to illustrate our
results.
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1 Introduction

Compressive sensing aims to recover an unknown signal from the underdetermined linear measurements
(see [8, 9] for a comprehensive view). It is known as phase retrieval or phaseless compressive sensing
when there is no phase information. The phaseless compressive sensing problem has recently attracted
considerable research interests and many algorithms have been proposed to solve this problem. Existing
literature include [2–4,7,12,14,16], to name a few. Specifically, the goal of phaseless compressive sensing is to
recover x ∈ R

N up to a unimodular scaling constant from noisy magnitude measurements y = |Ax|+e ∈ R
m

with the measurement matrix A = (a1, · · · , am)T ∈ R
m×N , |Ax| = (|〈a1, x〉|, · · · , |〈am, x〉|)T and the noise

term e ∈ R
m. When x is sparse or compressible, the stable recovery can be guaranteed by solving the

following ℓ1 minimization problem

min
z∈RN

‖z‖1 subject to ‖|Az| − y‖2 ≤ ε, (1)

provided that the measurement matrix A satisfies the strong restricted isometry property (SRIP) [11,17].
In the noiseless case, the first sufficient and necessary condition was presented in [18] by proposing a new
version of null space property for the phase retrieval problem.

In this paper, we generalize the existing theoretical framework for phaseless compressive sensing to
incorporate partial support information, where we consider the case that an estimate of the support of
the signal is available. We follow the similar notations and arguments in [10, 20]. For an arbitrary signal
x ∈ R

N , let xk be its best k-term approximation, so that xk minimizes ‖x − f‖1 over all k-sparse vectors
f . Let T0 be the support of xk, where T0 ⊂ {1, · · · , N} and |T0| ≤ k. Let T̃ , the support estimate, be a
subset of {1, 2 · · · , N} with cardinality |T̃ | = ρk, where ρ ≥ 0 and |T̃ ∩T0| = αρk with 0 ≤ α ≤ 1. Here the
parameter ρ determines the ratio of the size of the estimated support to the size of the actual support of xk
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(or the support of x if x is k-sparse), while the parameter α determines the ratio of the number of indices

in the support of xk that are accurately estimated in T̃ to the size of T̃ , i.e., α = |T̃∩T0|
|T̃ | . To incorporate

prior support information T̃ , we adopt the weighted ℓ1 minimization

min
z∈RN

N
∑

i=1

wi|zi|, subject to ‖|Az| − y‖2 ≤ ε, where wi =

{

ω ∈ [0, 1] i ∈ T̃ ,

1 i ∈ T̃ c.
(2)

We present the SRIP condition and weighted null space property condition to guarantee the success of the
recovery via the weighted ℓ1 minimization problem above.

The paper is organized as follows. In Section 2, we introduce the definition of SRIP and present the sta-
ble recovery condition with this tool. In Section 3, the sufficient and necessary weighted null space property
condition for the real sparse noise free phase retrieval is given. In Section 4, some numerical experiments
are presented to illustrate our theoretical results. Finally, Section 5 is devoted to the conclusion.

Throughout the paper, for any vector x ∈ R
N , we denote the ℓp norm by ‖x‖p = (

∑p
i=1 |xi|p)1/p for

p > 0 and the weighted ℓ1 norm as ‖x‖1,w =
∑N

i=1wi|xi|. For any matrix X, ‖X‖1 denotes the entry-wise
ℓ1 norm. For any set T , we denote its cardinality as |T |. The vector x ∈ R

N is called k-sparse if at most k
of its entries are nonzero, i.e., if ‖x‖0 = |supp(x)| ≤ k, where supp(x) denotes the index set of the nonzero
entries. We denote the index set [N ] := {1, 2, · · · , N}. For a matrix A = (a1, · · · , am)T ∈ R

m×N and
an index set I ⊂ [m], we denote AI the sub-matrix of A where only rows with indices in I are kept, i.e.,
AI = (aj , j ∈ I)T .

2 SRIP

To recover sparse signals via ℓ1 minimization in the classical compressive sensing setting, [5] introduced
the notion of restricted isometry property (RIP) and established a sufficient condition. We say a matrix A
satisfies the RIP of order k if there exists a constant δk ∈ [0, 1) such that for all k-sparse vectors x we have

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22. (3)

Cai and Zhang [1] proved that the RIP of order tk with δtk <
√

t−1
t where t > 1 can guarantee the exact

recovery in the noiseless case and stable recovery in the noisy case via ℓ1 minimization. This condition is
sharp when t ≥ 4

3 , see [1] for details. Very recently, Chen and Li [6] generalized this sharp RIP condition
to the weighted ℓ1 minimization problem when partial support information was incorporated. We first
present the following useful lemma, which is an extension of the result in [6].

Lemma 1 Let x ∈ R
N , y = Ax+ e ∈ R

m with ‖e‖2 ≤ ζ, and η ≥ 0. Suppose that A satisfies RIP of order

tk with δtk <
√

t−d
t−d+γ2 for some t > d, where γ = ω + (1− ω)

√
1 + ρ− 2αρ and

d =

{

1, ω = 1

1− αρ+ a, 0 ≤ ω < 1
(4)

with a = max{α, 1 − α}ρ. Then for any

x̂ ∈ {z ∈ R
N : ‖z‖1,w ≤ ‖x‖1,w + η, ‖Az − y‖2 ≤ ε},

we have

‖x̂− x‖2 ≤ C1(ζ + ε) +C2

2(ω‖xT c

0
‖1 + (1− ω)‖xT̃ c∩T c

0

‖1)√
k

+ C2
η√
k
, (5)
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where

C1 =

√

2(t− d)(t− d+ γ2)(1 + δtk)

(t− d+ γ2)(
√

t−d
t−d+γ2 − δtk)

,

C2 =

√
2δtkγ +

√

(t− d+ γ2)(
√

t−d
t−d+γ2 − δtk)δtk

(t− d+ γ2)(
√

t−d
t−d+γ2 − δtk)

+
1√
d
.

Remark 1 Note that if xℓ2 is the solution of the weighted ℓ1 minimization problem:

min
z∈RN

‖z‖1,w, subject to ‖Az − y‖2 ≤ ε,

then xℓ2 ∈ {z ∈ R
N : ‖z‖1,w ≤ ‖x‖1,w + η, ‖Az − y‖2 ≤ ε} with η = 0. Therefore, this lemma is an

extension of Theorem 3.1 in [6] by letting ζ = ε and η = 0. The proof follows from almost the same

procedure for the proof of Theorem 3.1 in Section 4 of [6] via replacing the P =
2(ω‖xTc

0
‖1+(1−ω)‖x

T̃ c∩Tc
0
‖1)

√
kγ

with P ′ =
2(ω‖xTc

0
‖1+(1−ω)‖x

T̃ c∩T
c
0
‖1)+η

√
kγ

, and letting ζ = ε. In order not to repeat, we leave out all the

details. In addition, this result also generalizes the Lemma 2.1 in [11], which is the special case with the
noise term e = 0, ζ = 0 and ω = 1. This lemma will play a crucial role in establishing the stable phaseless
recovery result via weighted ℓ1 minimization later on.

To address the phaseless compressive sensing problem (2), a stronger version of RIP is needed. Its
definition is provided as follows.

Definition 1 (SRIP [11, 17]) We say a matrix A = (a1, · · · , am)T ∈ R
m×N has the Strong Restricted

Isometry Property (SRIP) of order k with bounds θ−, θ+ ∈ (0, 2) if

θ−‖x‖22 ≤ min
I⊆[m],|I|≥m/2

‖AIx‖22 ≤ max
I⊆[m],|I|≥m/2

‖AIx‖22 ≤ θ+‖x‖22 (6)

holds for all k-sparse vectors x ∈ R
N , where [m] = {1, · · · ,m}. We say A has the Strong Lower Re-

stricted Isometry Property of order k with bound θ− if the lower bound in (6) holds. Similarly, we say A
has the Strong Upper Restricted Isometry Property of order k with bound θ+ if the upper bound in (6) holds.

Next, we present the conditions for the stable recovery via weighted ℓ1 minimization by using SRIP.

Theorem 1 Let x ∈ R
N , y = |Ax|+ e ∈ R

m with ‖e‖2 ≤ ζ. Adopt the notations in Lemma 1 and assume
that A ∈ R

m×N satisfies the SRIP of order tk with bounds θ−, θ+ ∈ (0, 2) such that

t ≥ max

{

d+
γ2(1− θ−)2

2θ− − θ2−
, d+

γ2(1− θ+)
2

2θ+ − θ2+

}

. (7)

Then any solution x♯ of (2) satisfies

min{‖x♯ − x‖2, ‖x♯ + x‖2} ≤ C1(ζ + ε) + C2

2(ω‖xT c

0
‖1 + (1− ω)‖xT̃ c∩T c

0

‖1)√
k

. (8)

where C1 and C2 are constants defined in Lemma 1.
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Remark 2 As it has been proved in [17] that Gaussian matrices with m = O(tk log(N/k)) satisfy SRIP
of order tk with high probability, thus the stable recovery result (8) can be achieved by using Gaussian
measurement matrix with appropriate number of measurements m.

Remark 3 Note that when the weight ω = 1, we have γ = d = 1. Then, by assuming ζ = ε = 0 and
x is exactly k-sparse, our theorem reduces to Theorem 2.2 in [17]. That is, if A satisfies the SRIP of
order tk with bounds θ−, θ+ and t ≥ max{ 1

2θ−−θ2
−

, 1
2θ+−θ2

+

}, then for any k-sparse signal x ∈ R
N we have

argminz∈RN {‖z‖1 : |Az| = |Ax|} = {±x}. Similarly, if we let the noise term e = 0, ζ = 0 and ω = 1, this
theorem goes to Theorem 3.1 in [11].

Remark 4 If α = 1
2 , we have γ = d = 1. The sufficient condition (7) of Theorem 1 is identical to that

of Theorem 2.2 in [17] and that of Theorem 3.1 in [11]. And the constants C1 = c1 =

√
2(1+δtk)

1−
√

t/(t−1)δtk
, C2 =

c2 =

√
2δtk+

√

(
√

t(t−1)−δtkt)δtk√
t(t−1)−δtkt

(see Theorem 3.1 in [11]). In addition, if 0 ≤ ω < 1 and α > 1
2 , then d = 1

and γ < 1. The sufficient condition (7) in Theorem 1 is weaker than that of Theorem 2.2 in [17] and that
of Theorem 3.1 in [11]. In this case, the constants C1 < c1, C2 < c2.

Set tω = max
{

d+ γ2(1−θ−)2

2θ−−θ2
−

, d+ γ2(1−θ+)2

2θ+−θ2+

}

. We illustrate how the constants tω, C1 and C2 change

with ω for different values of α in Figure 1. In all the plots, we set ρ = 1. In the plot of tω, we set θ− = 1
2

and θ+ = 3
2 , then tω = d+ γ2

3 . In the plots of C1 and C2, we fix t = 4 and δtk = 0.3. Note that if ω = 1 or
α = 0.5, then tω ≡ 1 + 1

3 = 4
3 , C1 ≡ c1 and C1 ≡ c2. And it shows that tω decreases as α increases, which

means that the sufficient condition (7) becomes weaker as α increases. For each α > 0.5, the sufficient
condition becomes stronger (tω increases) as ω increases. For instance, if 90% of the support estimate is
accurate (α = 0.9) and ω = 0.6, we have tω = 1.2022, while tω = 1.3333 for standard ℓ1 minimization
(ω = 1). The opposite conclusion holds for the case α < 0.5. In addition, as α increases, the constant C1

decreases with t = 4 and δtk = 0.3. Meanwhile, the constant C2 with α 6= 0.5 is smaller than that with
α = 0.5.

Proof of Theorem 1. For any solution x♯ of (2), we have

‖x♯‖1,w ≤ ‖x‖1,w

and
‖|Ax♯| − |Ax| − e‖2 ≤ ε.

If we divide the index set {1, 2, · · · ,m} into two subsets

T = {j : sign(〈aj , x♯〉) = sign(〈aj , x〉)} and T c = {j : sign(〈aj , x♯〉) = −sign(〈aj , x〉)},

then it implies that

‖ATx
♯ −ATx− e‖2 + ‖AT cx♯ +AT cx− e‖2 ≤ ε. (9)

Here either |T | ≥ m/2 or |T c| ≥ m/2. If |T | ≥ m/2, we use the fact that

‖ATx
♯ −ATx− e‖2 ≤ ε. (10)

Then, we obtain
x♯ ∈ {z ∈ R

N : ‖z‖1,w ≤ ‖x‖1,w, ‖AT z −ATx− e‖2 ≤ ε}.
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Since A satisfies SRIP of order tk with bounds θ−, θ+ and

t ≥ max

{

d+
γ2(1− θ−)2

2θ− − θ2−
, d+

γ2(1− θ+)
2

2θ+ − θ2+

}

> d,

therefore, the definition of SRIP implies that AT satisfies the RIP of order tk with

δtk ≤ max{1− θ−, θ+ − 1} ≤
√

t− d

t− d+ γ2
. (11)

Thus, by using Lemma 1 with η = 0, we have

‖x♯ − x‖2 ≤ C1(ζ + ε) + C2

2(ω‖xT c

0
‖1 + (1− ω)‖xT̃ c∩T c

0

‖1)√
k

.

Similarly, if |T c| ≥ m/2, we obtain the other corresponding result

‖x♯ + x‖2 ≤ C1(ζ + ε) + C2

2(ω‖xT c

0
‖1 + (1− ω)‖xT̃ c∩T c

0

‖1)√
k

.

The proof of Theorem 1 is now completed.

3 Weighted Null Space Property

In this section, we consider the noiseless weighted ℓ1 minimization problem, i.e.,

min
z∈RN

‖z‖1,w, subject to |Az| = |Ax|, where wi =

{

ω ∈ [0, 1], i ∈ T̃

1, i ∈ T̃ c
. (12)
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We denote the kernel space of A by N (A) := {h ∈ R
N : Ah = 0} and denote the k-sparse vector space

ΣN
k := {x ∈ R

N : ‖x‖0 ≤ k}.

Definition 2 The matrix A satisfies the w-weighted null space property of order k if for any nonzero
h ∈ N (A) and any T ⊂ [N ] with |T | ≤ k it holds that

‖hT ‖1,w < ‖hT c‖1,w, (13)

where T c is the complementary index set of T and hT is the restriction of h to T .

Remark 5 Obviously, when the weight ω = 1, the weighted null space property reduces to the classical
null space property. And according to the specific setting of wi, the expression (13) is equivalent to

ω‖hT∩T̃ ‖1 + ‖hT∩T̃ c‖1 < ω‖hT c∩T̃ ‖1 + ‖hT c∩T̃ c‖1 ⇔ ω‖hT ‖1 + (1− ω)‖hG‖1 < ‖hT c‖1,

where G = (T ∩ T̃ c) ∪ (T c ∩ T̃ ) (see [13] for more arguments).

It is known that a signal x ∈ ΣN
k can be recovered via the weighted ℓ1 minimization problem if and only if

the measurement matrix A has the weighted null space property of order k. We state it as follows (see [19]):

Lemma 2 Given A ∈ R
m×N , for every k-sparse vector x ∈ R

N it holds that

argmin
z∈RN

{‖z‖1,w : Az = Ax} = x

if and only if A satisfies the w-weighted null space property of order k.

Next, we extend Lemma 2 to the following theorem on phaseless compressive sensing for the real-valued
signal reconstruction.

Theorem 2 The following statements are equivalent:
(a) For any k-sparse x ∈ R

N , we have

argmin
z∈RN

{‖z‖1,w : |Az| = |Ax|} = {±x}. (14)

(b) For every S ⊆ [m], it holds

‖u+ v‖1,w < ‖u− v‖1,w (15)

for all nonzero u ∈ N (AS) and v ∈ N (ASc) satisfying ‖u+ v‖0 ≤ k.

Remark 6 If ω = 1, then Theorem 2 reduces to Theorem 3.2 in [18]. Since wi = ω when i ∈ T̃ , and
wi = 1 otherwise, the expression (15) is equivalent to

ω‖u+ v‖1 + (1− ω)‖(u+ v)T̃ c‖1 < ω‖u− v‖1 + (1− ω)‖(u− v)T̃ c‖1.

6



Proof of Theorem 2. The proof follows from the proof of Theorem 3.2 in [18] with minor modifications.
First we show (a) ⇒ (b). Assume (b) is false, that is, there exist nonzero u ∈ N (AS) and v ∈ N (ASc) such
that

‖u+ v‖1,w ≥ ‖u− v‖1,w
and u+ v ∈ ΣN

k . Now set x = u+ v ∈ ΣN
k , obviously for i = 1, · · · ,m, we have

|〈ai, x〉| = |〈ai, u+ v〉| = |〈ai, u− v〉|,

since either 〈ai, u〉 = 0 or 〈ai, v〉 = 0. In other words |Ax| = |A(u−v)|. Note that u−v 6= −x, for otherwise
we would have u = 0, which is a contradiction. Then, it follows from (a) that we obtain

‖x‖1,w = ‖u+ v‖1,w < ‖u− v‖1,w,

This is a contradiction. Thus, (b) holds.

Next we prove (b) ⇒ (a). Let b = (b1, · · · , bm)T = |Ax| where x ∈ ΣN
k . For a fixed σ = (σ1, · · · , σm)T ∈

{−1, 1}m, we set bσ = (σ1b1, · · · , σmbm)T . We now consider the following weighted ℓ1 minimization prob-
lem:

min
z∈RN

‖z‖1,w subject to Az = bσ. (16)

Its solution is denoted as xσ. Then, we claim that for any σ ∈ {1,−1}m, if xσ exists (it may not exist), we
have

‖xσ‖1,w ≥ ‖x‖1,w
and the equality holds if and only if xσ = ±x.

To prove the claim, we assume σ⋆ ∈ {1,−1}m such that bσ
⋆

= Ax. First note that the statement
(b) implies the classical weighted null space property of order k. To see this, for any nonzero h ∈ N (A)
and T ⊆ [N ] with |T | ≤ k, we set u = h, v = hT − hT c and S = [m]. Then, we have u ∈ N (AS) and
v ∈ N (ASc). Therefore, the statement (b) now implies

2‖hT ‖1,w = ‖u+ v‖1,w < ‖u− v‖1,w = 2‖hT c‖1,w.

As a consequence, we have xσ
⋆

= x by Lemma 2. And, similarly we have x−σ⋆

= −x. Next, for any
σ ∈ {−1, 1}m 6= ±σ⋆, if xσ doesn’t exist then we have nothing to prove. Assume it does exist, set
S⋆ = {i : σi = σ⋆

i }. Then

〈ai, xσ〉 =
{

〈ai, x〉 i ∈ S⋆,

−〈ai, x〉 i ∈ Sc
⋆.

Set u = x− xσ and v = x+ xσ. Obviously, u ∈ N (AS⋆
) and v ∈ N (ASc

⋆
). Furthermore, u+ v = 2x ∈ ΣN

k .
Then, by the statement (b), we have

2‖x‖1,w = ‖u+ v‖1,w < ‖u− v‖1,w = 2‖xσ‖1,w.

This proves (a) and the proof is completed.
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4 Simulations

In this section, we present some simple numerical experiments to illustrate the benefits of using weighted
ℓ1 minimization to recover sparse and compressible signals when partial prior support information is avail-
able in the phaseless compressive sensing case. In order to facilitate the computation, we follow a non-
standard noise model:

b = |Ax|2 + e = {aTi xxTai}1≤i≤m + e, (17)

where e ∈ R
m is a noise term with ‖e‖2 ≤ ε. Then the weighted ℓ1 minimization goes to

min
z∈RN

N
∑

i=1

wi|zi|, subject to ‖|Az|2 − b‖2 ≤ ε, where wi =

{

ω ∈ [0, 1] i ∈ T̃ ,

1 i ∈ T̃ c.
(18)

Here we adopt the compressive phase retrieval via lifting (CPRL) algorithm developed in [15] to solve
this phaseless recovery problem. By using a lifting technique, this problem can be rewritten as a semidefinite
program (SDP). More specifically, given the ground truth signal x ∈ R

N , let X = xxT ∈ R
N×N be an

induced rank-1 semidefinite matrix. We further denote Φi = aia
T
i , a linear operator B of Z = zzT ∈ R

N×N

as

B : Z 7→ {Tr(ΦiZ)}1≤i≤m ∈ R
m

and the weight matrix W = diag{wi, 1 ≤ i ≤ N} ∈ R
N×N . Then the phaseless vector recovery problem

(18) can be cast as the following rank-1 matrix recovery problem:

min
Z∈RN×N

‖WZW T‖1,

subject to ‖B(Z)− b‖2 ≤ ε,

rank(WZW T ) = 1, Z � 0.

This is of course still a non-convex problem due to the rank constraint. The lifting approach addresses this
issue by replacing rank(WZW T ) with Tr(WZW T ). This leads to an SDP:

min
Z∈RN×N

Tr(WZW T ) + λ‖WZW T‖1,

subject to ‖B(Z)− b‖2 ≤ ε,

Z � 0, (19)

where λ > 0 is a design parameter. Then the estimate of x can be finally be found by computing the
rank-1 decomposition of the recovered matrix via singular value decomposition.

The recovery performance is assessed by the average reconstruction signal to noise ratio (SNR) over 10
experiments. The SNR is measured in dB and it is given by

SNR(x, x♯) = 20 log10

( ‖x‖2
min{‖x♯ − x‖2, ‖x♯ + x‖2}

)

, (20)

where x is the true signal and x♯ is the recovered signal. For all the experiments, we fix the parameter

λ = 1. In the experiments where the measurements are noisy, we set the noise {ei, 1 ≤ i ≤ m} i.i.d∼ N(0, σ2)
with σ = 0.1 and ε = ‖e‖2.
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4.1 Sparse Case

We first consider the case that x is exactly sparse with an ambient dimension N = 32 and fixed sparsity
k = 4. The sparse signals are generated by choosing k nonzero positions uniformly at random, and then
choosing the nonzero values from the standard normal distribution for these k nonzero positions. The
recovery is done via (19) using a support estimate of size |T̃ | = 4 (i.e., ρ = 1).

Figure 2 shows the recovery performances for different α and ω with an increasing number of measure-
ments m, both in the noise free and noisy cases. It can be observed that when α = 0.75 > 0.5, the best
recovery is achieved for very small ω whereas a ω = 1 results in the lowest SNR for both cases. On the
other hand, when α = 0.25 < 0.5, the performance of the recovery algorithms is better for large ω than
that for small ω. The case ω = 0 results in the lowest SNR. When α = 0.5, the performance gaps for
different ω are not particularly large and it seems that a medium ω (ω = 0.5) achieves the best recovery.
In the noise free case, a perfect recovery can be achieved as long as the number of measurements m is large
enough. As is also expected that in all settings, comparing to the noise free case, we have a lower SNR in
the noisy case. These findings are largely consistent with the theoretical results provided in Section 2.
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Figure 2: Performance of weighted ℓ1 recovery in terms of SNR averaged over 10 experiments for sparse
signals x with N = 32, k = 4, while varying the number of measurements m. From left to right, α = 0.75,
α = 0.5 and α = 0.25. (a) Noise Free. (b) σ = 0.1.

4.2 Compressible Case

Here we generate a signal x whose coefficients decay like j−θ where j ∈ {1, · · · , N} and θ = 4.5. This
kind of signal itself is not sparse, but can be well approximated by an exactly sparse signal. For this
experiment, we set k = 4, i.e., we use the best 4-term approximation. We fix ρ = 1 as in the sparse case.
The phaseless recovery results are presented in Figure 3. It shows that on average a mediate value of ω
(ω = 0.5) results in the best recovery. In general, when α > 0.5, smaller ω favours better reconstruction
results. The opposite conclusion holds for the case that α < 0.5. Therefore, as is expected that the
behaviors that occur in the exactly sparse case also occur in the compressible case.
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Figure 3: Performance of weighted ℓ1 recovery in terms of SNR averaged over 10 experiments for com-
pressible signals x with N = 32, θ = 4.5, while varying the number of measurements m. From left to right,
α = 0.75, α = 0.5 and α = 0.25. (a) Noise Free. (b) σ = 0.1.

5 Conclusion

In this paper, we established the sufficient SRIP condition and the sufficient and necessary weighted null
space property condition for phaseless compressive sensing using partial support information via weighted
ℓ1 minimization, and we conducted some numerical experiments to illustrate the theoretical results.

Some further problems are left for future work. As we only consider the real-valued signal reconstruction
case, it will be challenging to generalize the present results to the complex-valued signal case. Besides it
will be very interesting to construct the measurement matrix A ∈ R

m×N satisfying the weighted null space
property given in (15) directly.
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