Skip to main content
Log in

New vectorial versions of Takahashi’s nonconvex minimization problem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this article, some new vectorial versions of Takahashi’s nonconvex minimization theorem, which involve algebraic notions instead of topological notions, are established. A nonlinear separation theorem, which extends the result derived by Gerth and Weidner (JAMA 67:297–320, 1990) to general linear spaces (not necessarily endowed with a topology), is proved. Some examples, in order to illustrate and compare the results of this article with the corresponding known results from the literature, are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ekeland, I.: Sur les problèmes variationnels. C. R. Math. Acad. Sci. Paris 275, 1057–1059 (1972)

    MATH  Google Scholar 

  2. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  Google Scholar 

  3. Ekeland, I.: Nonconvex minimization problems. Bull. Am. Math. Soc. 1, 443–474 (1979)

    Article  MathSciNet  Google Scholar 

  4. Zabreiko, P.P., Krasnosel’skii, M.A.: Solvability of nonlinear operator equations. Funct. Anal. Appl. 5, 206–208 (1971)

    Article  MathSciNet  Google Scholar 

  5. Kirk, W.A., Caristi, J.: Mapping theorems in metric and banach spaces. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. 23, 891–894 (1975)

    MathSciNet  MATH  Google Scholar 

  6. Brezis, H., Browder, F.E.: A general principle on ordered sets in nonlinear functional analysis. Adv. Math. 21, 355–364 (1976)

    Article  MathSciNet  Google Scholar 

  7. Bishop, E., Phelps, R.R.: A proof that every Banach space is subreflexive. Bull. Am. Math. Soc. 67, 97–98 (1961)

    Article  MathSciNet  Google Scholar 

  8. Bishop, E., Phelps, R.R.: The support functionals of a convex set. Proc. Symp. Pure Math. 7, 27–35 (1963)

    Article  MathSciNet  Google Scholar 

  9. Daneš, J.: A geometric theorem useful in nonlinear functional analysis. Boll. Unione Mat. Ital. 6, 369–375 (1972)

    MathSciNet  MATH  Google Scholar 

  10. Amini-Harandi, A., Ansari, Q.H., Farajzadeh, A.P.: Existence of equilibria in complete metric spaces. Taiwan. J. Math. 16, 777–785 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Farajzadeh, A., Plubtieng, S., Hoseinpour, A.: A generalization of Ekelands variational principle by using the \(\tau \)-distance with its applications. J. Inequal. Appl. (2017). https://doi.org/10.1186/S13660-017-1435-7

    Article  MathSciNet  MATH  Google Scholar 

  12. Hamel, A.: Remarks to an equivalent formulation of Ekeland’s variational principle. Optimization 31, 233–238 (1994)

    Article  MathSciNet  Google Scholar 

  13. Kada, O., Suzuki, T., Takahashi, W.: Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Japonica 44, 381–391 (1996)

    MathSciNet  MATH  Google Scholar 

  14. Suzuki, T., Takahashi, W.: Fixed point theorems and characterizations of metric completeness. Topol. Methods Nonlinear Anal. 8, 371–382 (1996)

    Article  MathSciNet  Google Scholar 

  15. Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  16. Takahashi, W.: Existence theorems generalizing fixed point theorems for multivalued mappings. In: Théra, M.A., Baillon, J.B. (eds.) Fixed Point Theory and Applications, pp. 397–406. Pitman Publishers, London (1991)

    MATH  Google Scholar 

  17. Wu, Z.: Equivalent formulations of Ekeland’s variational principle. Nonlinear Anal. 55, 609–615 (2003)

    Article  MathSciNet  Google Scholar 

  18. Georgiev, P.G.: The strong Ekeland variational principle, the strong drop theorem and applications. J. Math. Anal. Appl. 131, 1–21 (1988)

    Article  MathSciNet  Google Scholar 

  19. Oettli, W., Théra, M.: Equivalents of Ekeland’s principle. Bull. Aust. Math. Soc. 48, 385–392 (1993)

    Article  MathSciNet  Google Scholar 

  20. Penot, J.P.: The drop theorem, the petal theorem and Ekeland’s variational principle. Nonlinear Anal. 10, 813–822 (1986)

    Article  MathSciNet  Google Scholar 

  21. Lin, L.J., Du, W.S.: Some equivalent formulations of the generalized Ekeland’s variational principle and their applications. Nonlinear Anal. 67, 187–199 (2007)

    Article  MathSciNet  Google Scholar 

  22. Tammer, C.: A variational principle and a fixed point theorem. In: Henry, J., Yvon, J.P. (eds.) System Modelling and Optimization, pp. 248–257. Springer, London (1994)

    Chapter  Google Scholar 

  23. Araya, Y.: On generalizing Takahashi’s nonconvex minimization theorem. Appl. Math. Lett. 22, 501–504 (2009)

    Article  MathSciNet  Google Scholar 

  24. Gerstewitz, C., Iwanow, E.: Dualität für nichtkonvexe Vektoroptimierungsprobleme. Wiss. Z. Tech. Hochsch. Ilmenau 31, 61–81 (1985)

    MathSciNet  MATH  Google Scholar 

  25. Weidner, P.: Gerstewitz functionals on linear spaces and functionals with uniform sublevel sets. J. Optim. Theory Appl. 173, 812–827 (2017)

    Article  MathSciNet  Google Scholar 

  26. Göpfert, A., Riahi, H., Tammer, C., Zălinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  27. Zălinescu, C.: On a class of convex sets. Comment. Math. Univ. Carol. 27, 543–549 (1986)

    MathSciNet  MATH  Google Scholar 

  28. Gerth, C., Weidner, P.: Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory Appl. 67, 297–320 (1990)

    Article  MathSciNet  Google Scholar 

  29. Jahn, J.: Vector Optimization, Theory, Applications, and Extensions. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  30. Adán, M., Novo, V.: Weak efficiency in vector optimization using a closure of algebraic type under cone-convexlikeness. Eur. J. Oper. Res. 149, 641–653 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank anonymous reviewer for valuable suggestions and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Farajzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khazayel, B., Farajzadeh, A. New vectorial versions of Takahashi’s nonconvex minimization problem. Optim Lett 15, 847–858 (2021). https://doi.org/10.1007/s11590-019-01521-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-019-01521-x

Keywords

Navigation