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Abstract

We prove convergence of a single time-scale stochastic subgradient method with subgradient aver-
aging for constrained problems with a nonsmooth and nonconvex objective function having the property
of generalized differentiability. As a tool of our analysis, we also prove a chain rule on a path for such
functions.
Keywords: Stochastic Subgradient Method, Nonsmooth Optimization, Generalized Differentiable Func-
tions, Chain Rule

1 Introduction

We consider the problem
min
x∈X

f (x) (1)

where X ⊂ Rn is convex and closed, and f : Rn → R is a Lipschitz continuous function, which may be
neither convex nor smooth. The subgradients of f (·) are not available; instead, we postulate access to their
random estimates.

Research on stochastic subgradient methods for nonsmooth and nonconvex functions started in late
1970’s. Early contributions are due to Nurminski, who considered weakly convex functions and established
a general methodology for studying convergence of non-monotonic methods [20], Gupal and his co-authors,
who considered convolution smoothing (mollification) of Lipschitz functions and resulting finite-difference
methods [11], and Norkin, who considered unconstrained problems with “generalized differentiable” func-
tions [17, Ch. 3 and 7]. Recently, by an approach via differential inclusions, Duchi and Ruan [10] studied
proximal methods for sum-composite problems with weakly convex functions, Davis et al. [8] proved con-
vergence of the subgradient method for locally Lipschitz Whitney stratifiable functions with constraints, and
Majewski et al. [15] studied several methods for subdifferentially regular Lipschitz functions.

Our objective is to show that a single time-scale stochastic subgradient method with direction averaging
[21, 22], is convergent for a broad class of functions enjoying the property of “generalized differentiability,”
which contains all classes of functions mentioned above, as well as their compositions.

∗This publication was supported by the NSF Award DMS-1312016.
†Rutgers University, Department of Management Science and Information Systems, Piscataway, NJ 08854, USA; email:

rusz@rutgers.edu

1

ar
X

iv
:1

91
2.

07
58

0v
1 

 [
m

at
h.

O
C

] 
 1

6 
D

ec
 2

01
9



Our analysis follows the approach of relating a stochastic approximation algorithm to a continuous-time
dynamical system, pioneered in [14, 13] and developed in many works (see, e.g., [12] and the references
therein). Extension to multifunctions was proposed in [1] and further developed, among others, in [3, 10, 8,
15].

For the purpose of our analysis, we also prove a chain rule on a path under generalized differentiability,
which may be of independent interest.

We illustrate the use of the method for training a ReLu neural network.

2 The chain formula on a path

Norkin [19] introduced the following class of functions.

Definition 2.1. A function f :Rn→R is differentiable in a generalized sense at a point x ∈Rn, if an open
set U ⊂Rn containing x, and a nonempty, convex, compact valued, and upper semicontinuous multifunction
G f : U ⇒Rn exist, such that for all y ∈U and all g ∈ G f (y) the following equation is true:

f (y) = f (x)+ 〈g(y),y− x〉+o(x,y,g),

with

lim
y→x

sup
g∈G(y)

o(x,y,g)
‖y− x‖

= 0.

The set G f (y) is the generalized subdifferential of f at y. If a function is differentiable in a generalized sense
at every x ∈Rn with the same generalized subdifferential mapping G f :Rn⇒Rn, we call it differentiable
in a generalized sense.

A function f : Rn → R
m is differentiable in a generalized sense, if each of its component functions,

fi :Rn→R, i = 1, . . . ,m, has this property.

The class of such functions is contained in the set of locally Lipschitz functions [17, Thm. 1.1], and
contains all subdifferentially regular functions [5], Whitney stratifiable Lipschitz functions [9], semismooth
functions [16], and their compositions. In fact, if a function is differentiable in generalized sense and has
directional derivatives at x in every direction, then it is semismooth at x. The Clarke subdifferential ∂ f (x) is
an inclusion-minimal generalized subdifferential, but the generalized subdifferential mapping G f (·) is not
uniquely defined in Definition 2.1, which plays a role in our considerations. For stochastic optimization,
essential is the closure of the class of such functions with respect to expectation, which allows for easy
generation of stochastic subgradients. In the Appendix we recall basic properties of functions differentiable
in a generalized sense. For thorough exposition, see [17, Ch. 1 and 6].

Our interest is in a formula for calculating the increment of a function f : Rn → R along a path p :
[0,∞)→Rn, which is at the core of the analysis of nonsmooth and stochastic optimization algorithms (see
[9, 7] and the references therein). For an absolutely continuous function p : [0,∞)→Rn we denote by •p(·)
its weak derivative, that is, a measurable function such that

p(t) = p(0)+
∫ t

0

•p(s) ds, ∀ t ≥ 0.

Theorem 2.2. If f :Rn→R and p : [0,∞)→Rn are differentiable in a generalized sense, then for every
T > 0, any generalized subdifferential G f (·), and every selection g(p(t)) ∈ G f (p(t)), we have

f (p(T ))− f (p(0)) =
∫ T

0

〈
g(p(t)), •p(t)

〉
dt. (2)
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Proof. Consider the function

ϕ(ε) =
∫ T

0
f (p(t + ε)) dt, ε ≥ 0.

Its right derivative at 0 can be calculated in two ways:

ϕ
′
+(0) = lim

ε↓0

1
ε

[
ϕ(ε)−ϕ(0)

]
= lim

ε↓0

1
ε

[∫ T

0
f (p(t + ε)) dt−

∫ T

0
f (p(t)) dt

]
= lim

ε↓0

1
ε

[∫ T+ε

ε

f (p(τ)) dτ−
∫ T

0
f (p(t)) dt

]
= lim

ε↓0

1
ε

[∫ T+ε

T
f (p(t)) dt−

∫
ε

0
f (p(t)) dt

]
= f (p(T ))− f (p(0)).

(3)

On the other hand,

ϕ
′
+(0) = lim

ε↓0

∫ T

0

1
ε

[
f (p(t + ε))− f (p(t))

]
dt. (4)

By the generalized differentiability of f (·), the differential quotient under the integral can be expanded as
follows:

1
ε

[
f (p(t + ε)) dt− f (p(t))

]
=

1
ε

〈
g(p(t + ε)), p(t + ε)− p(t)

〉
+

1
ε

o
(

p(t), p(t + ε),g(p(t + ε))
)
, (5)

with lim
ε↓0

1
ε

o
(

p(t), p(t + ε),g(p(t + ε))
)
= 0.

Since p(·) is differetiable in a generalized sense, it is locally Lipschitz continuous [17, Thm. 1.1], hence ab-
solutely continuous. Thus, for almost all t, we have 1

ε

[
p(t+ε)− p(t)

]
=

•p(t)+r(t,ε), with limε↓0 r(t,ε) =
0. Combining it with (5), and using the local boundedness of generalized gradients, we obtain

1
ε

[
f (p(t + ε))− f (p(t))

]
=
〈
g(p(t + ε)),

•p(t)
〉
+O(t,ε), (6)

with limε↓0 O(t,ε) = 0. By [17, Thm. 1.6] (Theorem A.1), the function ψ(t) = f (p(t)) is differentiable in
a generalized sense as well and

Gψ(t) =
{
〈g,h〉 : g ∈ G f (p(t)), h ∈ Gp(t)

}
is its generalized subdifferential. By virtue of [17, Cor. 1.5] (Theorem A.3), any generalized subdifferential
mapping Gψ(·) is single-valued except for a countable number of points in [0,1]. Since it is upper semi-
continuous, it is continuous almost everywhere. By [17, Thm. 1.12] (Theorem A.2), almost everywhere
Gp(t) = {

•p(t)}. Then for any h(t + ε) ∈ Gp(t + ε) and for almost all t,

lim
ε↓0

〈
g(p(t + ε)),h(t + ε)

〉
=
〈
g(p(t)), •p(t)

〉
.

Therefore, for almost all t,

lim
ε↓0

〈
g(p(t + ε)),

•p(t)
〉
=
〈
g(p(t)), •p(t)

〉
+ lim

ε↓0

〈
g(p(t + ε)),

•p(t)−h(t + ε)
〉
=
〈
g(p(t)), •p(t)

〉
,
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where the last equation follows from the local boundedness of G f (·) and the continuity of Gp(·) at the points
of differentability. Thus, for almost all t, we can pass to the limit in (6):

lim
ε↓0

1
ε

[
f (p(t + ε)) dt− f (p(t))

]
=
〈
g(p(t)), •p(t)

〉
.

We can now use the Lebesgue theorem and pass to the limit under the integral in (4):

ϕ
′
+(0) =

∫ T

0
lim
ε↓0

1
ε

[
f (p(t + ε)) dt− f (p(t))

]
dt =

∫ T

0

〈
g(p(t)), •p(t)

〉
dt.

Comparison with (3) yields (2).

3 The single time-scale method with subgradient averaging

We briefly recall from [21, 22] a stochastic approximation algorithm for solving problem (1) where only
random estimates of subgradients of f are available.

The method generates two random sequences: approximate solutions {xk} and path-averaged stochastic
subgradients {zk}, defined on a certain probability space (Ω,F ,P). We let Fk to be the σ -algebra generated
by {x0, . . . ,xk,z0, . . . ,zk}. We assume that for each k, we can observe an Fk-measurable random vector
gk ∈Rn, such that, for some Fk-measurable vector rk, we have gk− rk ∈ G f (xk). Further assumptions on
the errors rk will be specified in section 4.

The method proceeds for k = 0,1,2 . . . as follows (a > 0 and β > 0 are fixed parameters). We compute

yk = argmin
y∈X

{
〈zk,y− xk〉+ β

2
‖y− xk‖2

}
, (7)

and, with an Fk-measurable stepsize τk ∈
(
0,min(1,1/a)

]
, we set

xk+1 = xk + τk(yk− xk). (8)

Then we observe gk+1 at xk+1, and update the averaged stochastic subgradient as

zk+1 = (1−aτk)zk +aτkgk+1. (9)

Convergence of the method was proved in [22] for weakly convex functions f (·). Unfortunately, this class
does not contain functions with downward cusps, which are common in modern machine learning models
(see section 5).

4 Convergence analysis

We call a point x∗ ∈Rn Clarke stationary of problem (1), if

0 ∈ ∂ f (x∗)+NX(x∗), (10)

where NX(x∗) denotes the normal cone to X at x∗. The set of Clarke stationary points of problem (1) is
denoted by X∗.
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We start from a useful property of the gap function η : X×Rn→ (−∞,0],

η(x,z) = min
y∈X

{
〈z,y− x〉+ β

2
‖y− x‖2

}
. (11)

We denote the minimizer in (11) by ȳ(x,z). Since it is a projection of x− z/β on X , we observe that

〈z, ȳ(x,z)− x〉+β‖ȳ(x,z)− x‖2 ≤ 0. (12)

Moreover, a point x∗ ∈ X∗ if and only if g∗ ∈ ∂ f (x∗) exists such that η(x∗,g∗) = 0.
We analyze convergence of the algorithm (7)–(9) under the following conditions, the first three of which

are assumed to hold with probability 1:

(A1) All iterates xk belong to a compact set;

(A2) τk ∈
(
0,min(1,1/a)

]
for all k, limk→∞ τk = 0, ∑

∞
k=0 τk = ∞;

(A3) For all k, rk = ek +δ k, with ∑
∞
k=0 τkek convergent, and limk→∞ δk = 0;

(A4) The set { f (x) : x ∈ X∗} does not contain an interval of nonzero length.

Condition (A3) can be satisfied for a martingale ∑
∞
k=0 τkek, but can also hold for broad classes of dependent

“noise” sequences {ek} [12]. Condition (A4) is true for Whitney stratifiable functions [2, Cor. 5], but we
need to assume it here.

We have the following elementary property of the sequence {zk}.

Lemma 4.1. Suppose the sequence {xk} is included in a set A ⊂ Rn and conditions (A2) and (A3) are
satisfied. Then

lim
k→∞

dist(zk,B) = 0, where B = conv
(⋃

x∈A

∂ f (x)
)
.

Proof. Using (A2), we define the quantities z̃k = zk +a∑
∞
j=k τ je j and establish the recursive relation

z̃k+1 = (1−aτk)z̃k +aτkgk + τk∆k, k = 0,1,2, . . . ,

where gk ∈ B and ∆k = aδ k +a∑
∞
j=k τ je j→ 0 a.s.. The convexity of the distance function and (A2) yield the

result.

Theorem 4.2. If assumptions (A1)–(A4) are satisfied, then, with probability 1, every accumulation point x̂
of the sequence {xk} is Clarke stationary, and the sequence { f (xk)} is convergent.

Proof. Due to (A1), by virtue of Lemma 4.1, the sequence {zk} is bounded. We divide the proof into three
standard steps.

Step 1: The Limiting Dynamical System. We define pk = (xk,zk), accumulated stepsizes tk = ∑
k−1
j=0 τ j,

k = 0,1,2 . . . , and we construct the interpolated trajectory

P0(t) = pk +
t− tk

τk
(pk+1− pk), tk ≤ t ≤ tk+1, k = 0,1,2, . . . .

For an increasing sequence of positive numbers {sk} diverging to ∞, we define shifted trajectories Pk(t) =
P0(t + sk). Recall that Pk(t) =

(
Xk(t),Zk(t)

)
.
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By [15, Thm. 3.2], for any increasing sequence {nk} of positive integers, there exist a subsequence {ñk}
and absolutely continuous functions X∞ : [0,+∞)→ X and Z∞ : [0,+∞)→Rn such that for any T > 0

lim
k→∞

sup
t∈[0,T ]

(∥∥Xñk(t)−X∞(t)
∥∥+∥∥Zñk(t)−Z∞(t)

∥∥)= 0,

and (X∞(·),Z∞(·)) is a solution of the system of differential equations and inclusions:

•x(t) = ȳ
(
x(t),z(t)

)
− x(t), (13)

•z(t) ∈ a
(
∂ f (x(t))− z(t)

)
. (14)

Moreover, for any t ≥ 0, the pair (X∞(t),Z∞(t)) is an accumulation point of the sequence {(xk,zk)}.
Step 2: Descent Along a Path. We use the Lyapunov function

W (x,z) = a f (x)−η(x,z).

For any solution (X(t),Z(t)) of the system (13)–(14), and for any T > 0, we estimate the difference
W (X(T ),Z(T ))−W (X(0),Z(0)). We split W (X(·),Z(·)) into a generalized differentiable composition
f (X(·)) and the “classical” part η(X(·),Z(·)).

Since the path X(·) satisfies (13) and ȳ(·, ·) is continuous, X(·) is continuously differentiable. Thus, we
can use Theorem 2.2 to conclude that for any g(X(·)) ∈ ∂ f (X(·))

f (X(T ))− f (X(0)) =
∫ T

0

〈
g(X(t)),

•
X(t)

〉
dt =

∫ T

0

〈
g(X(t)), ȳ(X(t),Z(t))−X(t)

〉
dt. (15)

On the other hand, since ȳ(x,z) is unique, the function η(·, ·) is continuously differentiable. Therefore, the
chain formula holds for it as well:

η(X(T ),Z(T ))−η(X(0),Z(0)) =
∫ T

0

〈
∇xη(X(t),Z(t)),

•
X(t)

〉
dt +

∫ T

0

〈
∇zη(X(t),Z(t)),

•
Z(t)

〉
dt.

Substituting ∇xη(x,z) =−z+β (x− ȳ(x,z)), ∇zη(x,z) = ȳ(x,z)−x and
•
Z(t) = a

(
ĝ(X(t))−Z(t)

)
with some

ĝ(X(·)) ∈ ∂ f (X(·)), and using (12) we obtain

η(X(T ),Z(T ))−η(X(0),Z(0))

=
∫ T

0

〈
−Z(t)+β (X(t)− ȳ(X(t),Z(t))) , ȳ(X(t),Z(t))−X(t)

〉
dt

+a
∫ T

0

〈
ȳ(X(t),Z(t))−X(t) , ĝ(X(t))−Z(t)

〉
dt

≥ a
∫ T

0

〈
ȳ(X(t),Z(t))−X(t) , ĝ(X(t))−Z(t)

〉
dt

≥ a
∫ T

0

〈
ȳ(X(t),Z(t))−X(t) , ĝ(X(t))

〉
dt +aβ

∫ T

0

∥∥ȳ(X(t),Z(t))−X(t)
∥∥2 dt.

We substitute the subgradient selector g(X(t)) = ĝ(X(t)) into (15) and combine it with the last inequality,
concluding that

W (X(T ),Z(T ))−W (X(0),Z(0))≤−aβ

∫ T

0

∥∥ȳ(X(t),Z(t))−X(t)
∥∥2 dt =−aβ

∫ T

0

∥∥ •
X(t)

∥∥2 dt. (16)
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Step 3: Analysis of Limit Points. Define the set S =
{
(x,z) ∈ X∗×Rn : η(x,z) = 0

}
. Suppose (x̄, z̄) is an

accumulation point of the sequence {(xk,zk)}. If η(x̄, z̄)< 0, then every solution (X(t),Z(t)) of the system
(13)–(14), starting from (X(0),Z(0)) = (x̄, z̄) has

•
X(0) 6= 0. Using (16) and arguing as in [10, Thm. 3.20]

or [15, Thm. 3.5], we obtain a contradiction. Therefore, we must have η(x̄, z̄) = 0. Suppose x̄ 6∈ X∗. Then

dist
(
0,∂ f (x̄)+NX(x̄)

)
> 0. (17)

Suppose X(t) = x̄ for all t ≥ 0. The inclusion (14) simplifies: •z(t) ∈ a
(
∂ f (x̄)− z(t)

)
. By using the convex

Lyapunov function V (z) = dist
(
z,∂ f (x̄)

)
and applying the classical chain formula on the path Z(·) [4], we

deduce that
lim
t→∞

dist
(
Z(t),∂ f (x̄)

)
= 0. (18)

It follows from (17)–(18) that T > 0 exists, such that−Z(T ) 6∈NX(x̄), which yields
•

X(T ) 6= 0. Consequently,
the path X(t) starting from x̄ cannot be constant. But then again T > 0 exists, such that

•
X(T ) 6= 0. By Step

1, the pair (X(T ),Z(T )) would have to be an accumulation point of of the sequence {(xk,zk)}, a case
already excluded. We conclude that every accumulation point (x̄, z̄) of the sequence {(xk,zk)} is in S . The
convergence of the sequence

{
W (xk,zk)

}
then follows in the same way as [10, Thm. 3.20] or [15, Thm.

3.5]. As η(xk,zk)→ 0, the convergence of { f (xk)} follows as well.

Directly from Lemma 4.1 we obtain convergence of averaged stochastic subgradients.

Corollary 4.3. If the sequence {xk} is convergent to a single point x̄, then every accumulation point of {zk}
is an element of ∂ f (x̄).

5 Example

A Rectified Linear Unit (ReLU) neural network [18] predicts a random outcome Y ∈ Rm from random
features X ∈Rn by a nonconvex nonsmooth function y(X ,W ), defined recursively as follows:

s1 = X , s`+1 = (W`s`)+, `= 1,2, . . . ,L−1, y(X ,W ) =WLsL,

where (v)+ = max(0,v), componentwise. The decision variables are W1, . . . ,WL−1 ∈Rn×n and WL ∈Rm×n.
The simplest training problem is:

min
W∈W

f (W )
M
=

1
2
E
[
‖y(X ,W )−Y‖2], (19)

where W is a box about 0. The function f (W ) is not subdifferentially regular. It is not Whitney stratifiable,
in general, because this property is not preserved under the expected value operator. However, we can use
Theorems A.1 and A.4 to verify that it is differentiable in a generalized sense, and to calculate its stochastic
subgradients. For a random data point (Xk,Y k) we subdifferentiate the function under the expected value
in (19) by recursive application of Theorem A.1. In particular, for L = 2 and m = 1 we have y(X ,W ) =
W2(W1X)+, and gk =

(
y(Xk,W k)−Y k

)[
Dk(W k

2 )
T (Xk)T (W k

1 Xk)T
+

]
. Here, Dk is a diagonal matrix with

1 on position (i, i), if (W k
1 Xk)i > 0, and 0 otherwise. A typical run of the stochastic subgradient method

and the method with direction averaging is shown in Fig. 1, on an example of predicting wine quality
[6], with identical random starting points, sequences of observations, and schedules of stepsizes: τk =
0.03/(1 + 5k/N), where N = 500,000. The coefficient a = 0.1. For comparison, the loss of a simple
regression model is 666.
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Figure 1: Comparison of methods with (lower graph) and without averaging (upper graph).
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Appendix A Generalized differentiability of functions

Compositions of generalized diifferentiable functions are crucial in our analysis.

Theorem A.1. [17, Thm. 1.6] If h :Rm→R and fi :Rn→R, i = 1, . . . ,m, are differentiable in a general-
ized sense, then the composition ψ(x) = h

(
f1(x), . . . , fm(x)

)
is differentiable in a generalized sense, and at

any point x ∈Rn we can define the generalized subdifferential of ψ as follows:

Gψ(x) = conv
{

g ∈Rn : g =
[
g1 · · · gm

]
g0,

with g0 ∈ Gh
(

f1(x), . . . , fm(x)
)

and g j ∈ G f j(x), j = 1, . . . ,m
}
. (20)

Even if we take Gh(·) = ∂h(·) and G f j(·) = ∂ f j(·), j = 1, . . . ,m, we may obtain Gψ(·) 6= ∂ψ(·), but Gψ

defined above satisfies Definition 2.1.

Theorem A.2. [17, Thm. 1.12] If f :Rn→R is differentiable in a generalized sense, then for almost all
x ∈Rn we have G f (x) = {∇ f (x)}.

Functions of one variable have the following remarkable property.

Theorem A.3. [17, Cor. 1.5] If f :R→R is differentiable in a generalized sense, then the set of points x
at which a generalized subdifferential G f (x) is not a singleton is at most countable.

For stochastic optimization, essential is the closure of the class functions differentiable in a generalized
sense with respect to expectation.

Theorem A.4. [17, Thm. 23.1] Suppose (Ω ,F ,P) is a probability space and a function f :Rn×Ω →R
is differentiable in a generalized sense with respect to x for all ω ∈ Ω , and integrable with respect to ω

for all x ∈ Rn. Let G f : Rn×Ω ⇒ Rn be a multifunction, which is measurable with respect to ω for all
x ∈Rn, and which is a generalized subdifferential mapping of f (·,ω) for all ω ∈ Ω . If for every compact
set K ⊂Rn an integrable function LK : Ω →R exists, such that supx∈K supg∈G f (x,ω) ‖g‖ ≤ LK(ω), ω ∈ Ω ,
then the function

F(x) =
∫

Ω

f (x,ω) P(dω), x ∈Rn,

is differentiable in a generalized sense, and the multifunction

GF(x) =
∫

Ω

G f (x,ω) P(dω), x ∈Rn,

is its generalized subdifferential mapping.
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