Skip to main content

Advertisement

Log in

A branch-and-bound embedded genetic algorithm for resource-constrained project scheduling problem with resource transfer time of aircraft moving assembly line

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Motivated by the resource transfer time between different stations in the aircraft moving assembly line, this study addresses the resource-constrained project scheduling problem with resource transfer time, which aims at minimizing the makespan of the project while respecting precedence relations and resource constraints. We assume that the resource transfer time is known and deterministic in advance. The resource transfer time and the precedence of activities are coupled with each other, which means that the transfer time of resource changes according to the precedence of activities, while the transfer time affects the decision of the precedence of activities at the same time. We present a linear mathematical model for the problem and propose a branch-and-bound embedded genetic algorithm with a new precedence-based coding method which adapts to the structure of the problem. A series of experimental tests reveal that the branch-and-bound embedded genetic algorithm outperforms the existing algorithm proposed in the literature in finding high quality solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Almeida, B.F., Correia, I., Saldanha-da-Gama, F.: Priority-based heuristics for the multi-skill resource constrained project scheduling problem. Expert Syst. Appl. 57, 91–103 (2016)

    Google Scholar 

  2. Behnamian, J., Zandieh, M., Ghomi, S.F.: Parallel-machine scheduling problems with sequence-dependent setup times using an ACO, SA and VNS hybrid algorithm. Expert Syst. Appl. 36(6), 9637–9644 (2009)

    Google Scholar 

  3. Bellenguez-Morineau, O., Néron, E.: A branch-and-bound method for solving multi-skill project scheduling problem. RAIRO-Oper. Res. 41(2), 155–170 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Blazewicz, J., Lenstra, J.K., Kan, A.R.: Scheduling subject to resource constraints: classification and complexity. Discrete Appl. Math. 5(1), 11–24 (1983)

    MathSciNet  MATH  Google Scholar 

  5. Brucker, P., Knust, S., Schoo, A., Thiele, O.: A branch and bound algorithm for the resource-constrained project scheduling problem. Eur. J. Oper. Res. 107(2), 272–288 (1998)

    MATH  Google Scholar 

  6. Buddhakulsomsiri, J., Kim, D.S.: Properties of multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting. Eur. J. Oper. Res. 175(1), 279–295 (2006)

    MATH  Google Scholar 

  7. Cai, Z., Li, X.: A hybrid genetic algorithm for resource-constrained multi-project scheduling problem with resource transfer time. In: 2012 IEEE International Conference on Automation Science and Engineering (CASE), pp. 569–574. IEEE (2012)

  8. Chang, P.C., Chen, S.H.: Integrating dominance properties with genetic algorithms for parallel machine scheduling problems with setup times. Appl. Soft Comput. 11(1), 1263–1274 (2011)

    Google Scholar 

  9. Demeulemeester, E., Herroelen, W.: A branch-and-bound procedure for the multiple resource-constrained project scheduling problem. Manag. Sci. 38(12), 1803–1818 (1992)

    MATH  Google Scholar 

  10. De Reyck, B., Herroelen, W.: A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations. Eur. J. Oper. Res. 111(1), 152–174 (1998)

    MATH  Google Scholar 

  11. Dorndorf, U., Pesch, E., Phan-Huy, T.: A branch-and-bound algorithm for the resource-constrained project scheduling problem. Math. Method Oper. Res. 52(3), 413–439 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Drexl, A., Nissen, R., Patterson, J.H., Salewski, F.: ProGen/πx—an instance generator for resource-constrained project scheduling problems with partially renewable resources and further extensions. Eur. J. Oper. Res. 125(1), 59–72 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Elloumi, S., Fortemps, P.: A hybrid rank-based evolutionary algorithm applied to multi-mode resource-constrained project scheduling problem. Eur. J. Oper. Res. 205(1), 31–41 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Hamdi, I., Loukil, T.: Upper and lower bounds for the permutation flowshop scheduling problem with minimal time lags. Optim. Lett. 9(3), 465–482 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Hartmann, S.: Project scheduling with multiple modes: a genetic algorithm. Ann. Oper. Res. 102(1–4), 111–135 (2001)

    MathSciNet  MATH  Google Scholar 

  16. He, Z., Xu, Y.: Multi-mode project payment scheduling problems with bonus–penalty structure. Eur. J. Oper. Res. 189(3), 1191–1207 (2008)

    MATH  Google Scholar 

  17. Józefowska, J., Mika, M., Różycki, R., Waligóra, G., Węglarz, J.: Simulated annealing for multi-mode resource-constrained project scheduling. Ann. Oper. Res. 102(1–4), 137–155 (2001)

    MathSciNet  MATH  Google Scholar 

  18. Kadri, R.L., Boctor, F.F.: An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: the single mode case. Eur. J. Oper. Res. 265(2), 454–462 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Kaplanoğlu, V.: Multi-agent based approach for single machine scheduling with sequence-dependent setup times and machine maintenance. Appl. Soft Comput. 23, 165–179 (2014)

    Google Scholar 

  20. Klein, R.: Bidirectional planning: improving priority rule-based heuristics for scheduling resource-constrained projects. Eur. J. Oper. Res. 127(3), 619–638 (2000)

    MATH  Google Scholar 

  21. Kolisch, R.: Serial and parallel resource-constrained project scheduling methods revisited: theory and computation. Eur. J. Oper. Res. 90(2), 320–333 (1996)

    MathSciNet  MATH  Google Scholar 

  22. Kolisch, R., Sprecher, A.: PSPLIB—a project scheduling problem library: OR software—ORSEP operations research software exchange program. Eur. J. Oper. Res. 96(1), 205–216 (1997)

    MATH  Google Scholar 

  23. Krüger, D., Scholl, A.: A heuristic solution framework for the resource constrained (multi-) project scheduling problem with sequence-dependent transfer times. Eur. J. Oper. Res. 197(2), 492–508 (2009)

    MATH  Google Scholar 

  24. Krüger, D., Scholl, A.: Managing and modelling general resource transfers in (multi-) project scheduling. OR Spectr. 32(2), 369–394 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Lee, W.C.: Single-machine scheduling with past-sequence-dependent setup times and general effects of deterioration and learning. Optim. Lett. 8(1), 135–144 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Li, H., Zhang, H.: Ant colony optimization-based multi-mode scheduling under renewable and nonrenewable resource constraints. Autom. Constr. 35, 431–438 (2013)

    Google Scholar 

  27. Liou, C.D., Hsieh, Y.C.: A hybrid algorithm for the multi-stage flow shop group scheduling with sequence-dependent setup and transportation times. Int. J. Prod. Econ. 170, 258–267 (2015)

    Google Scholar 

  28. Lova, A., Tormos, P., Cervantes, M., Barber, F.: An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes. Int. J. Prod. Econ. 117(2), 302–316 (2009)

    Google Scholar 

  29. Lu, S., Liu, X., Pei, J., Pardalos, P.M.: Permutation flowshop manufacturing cell scheduling problems with deteriorating jobs and sequence dependent setup times under dominant machines. Optim. Lett. (2018). https://doi.org/10.1007/s11590-018-1322-2

    Article  Google Scholar 

  30. Lu, Z.Q., Ren, Y.F., Wang, L., Zhu, H.W.: A resource investment problem based on project splitting with time windows for aircraft moving assembly line. Comput. Ind. Eng. 135, 568–581 (2019)

    Google Scholar 

  31. Mingozzi, A., Maniezzo, V., Ricciardelli, S., Bianco, L.: An exact algorithm for the resource-constrained project scheduling problem based on a new mathematical formulation. Manag. Sci. 44(5), 714–729 (1998)

    MATH  Google Scholar 

  32. Mika, M., Waligora, G., Węglarz, J.: Tabu search for multi-mode resource-constrained project scheduling with schedule-dependent setup times. Eur. J. Oper. Res. 187(3), 1238–1250 (2008)

    MATH  Google Scholar 

  33. Montoya, C., Bellenguez-Morineau, O., Pinson, E., Rivreau, D.: Branch-and-price approach for the multi-skill project scheduling problem. Optim. Lett. 8(5), 1721–1734 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Neumann, K., Schwindt, C., Zimmermann, J.: Project Scheduling with Time Windows and Scarce Resources: Temporal and Resource-Constrained Project Scheduling with Regular and Nonregular Objective Functions. Springer, Berlin (2012)

    MATH  Google Scholar 

  35. Nonobe, K., Ibaraki, T.: Formulation and tabu search algorithm for the resource constrained project scheduling problem. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys in Metaheuristics, pp. 557–588. Springer, Boston (2002)

    MATH  Google Scholar 

  36. Poppenborg, J., Knust, S.: A flow-based tabu search algorithm for the RCPSP with transfer times. OR Spectr. 38(2), 305–334 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Ren, Y.F., Lu, Z.Q.: A flexible resource investment problem based on project splitting for aircraft moving assembly line. Assem. Autom. 39(4), 532–547 (2019)

    Google Scholar 

  38. Schwindt, C.: Resource Allocation in Project Management. Springer, Berlin (2006)

    Google Scholar 

  39. Stafford Jr., E.F., Tseng, F.T.: Two models for a family of flowshop sequencing problems. Eur. J. Oper. Res. 142(2), 282–293 (2002)

    MathSciNet  MATH  Google Scholar 

  40. Stecco, G., Cordeau, J.F., Moretti, E.: A branch-and-cut algorithm for a production scheduling problem with sequence-dependent and time-dependent setup times. Comput. Oper. Res. 35(8), 2635–2655 (2008)

    MathSciNet  MATH  Google Scholar 

  41. Suresh, M., Dutta, P., Jain, K.: Resource constrained multi-project scheduling problem with resource transfer times. Asia Pac. J. Oper. Res. 32(06), 1550048 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Valls, V., Ballestin, F., Quintanilla, S.: A hybrid genetic algorithm for the resource-constrained project scheduling problem. Eur. J. Oper. Res. 185(2), 495–508 (2008)

    MATH  Google Scholar 

  43. Van Peteghem, V., Vanhoucke, M.: A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem. Eur. J. Oper. Res. 201(2), 409–418 (2010)

    MathSciNet  MATH  Google Scholar 

  44. Wang, L., Fang, C.: An effective shuffled frog-leaping algorithm for multi-mode resource-constrained project scheduling problem. Inf. Sci. 181(20), 4804–4822 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Wang, L., Zheng, X.: A knowledge-guided multi-objective fruit fly optimization algorithm for the multi-skill resource constrained project scheduling problem. Swarm Evol. Comput. 38, 54–63 (2018)

    Google Scholar 

  46. Zhu, G., Bard, J.F., Yu, G.: A branch-and-cut procedure for the multimode resource-constrained project-scheduling problem. Inf. J. Comput. 18(3), 377–390 (2006)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 61473211, 71171130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Lu, Z. & Liu, X. A branch-and-bound embedded genetic algorithm for resource-constrained project scheduling problem with resource transfer time of aircraft moving assembly line. Optim Lett 14, 2161–2195 (2020). https://doi.org/10.1007/s11590-020-01542-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-020-01542-x

Keywords

Navigation