
Minimizing a Sum of Clipped Convex Functions

Shane Barratt Guillermo Angeris Stephen Boyd

October 31, 2019

Abstract

We consider the problem of minimizing a sum of clipped convex functions; ap-
plications include clipped empirical risk minimization and clipped control. While the
problem of minimizing the sum of clipped convex functions is NP-hard, we present some
heuristics for approximately solving instances of these problems. These heuristics can
be used to find good, if not global, solutions and appear to work well in practice.
We also describe an alternative formulation, based on the perspective transformation,
which makes the problem amenable to mixed-integer convex programming and yields
computationally tractable lower bounds. We illustrate one of our heuristic methods by
applying it to various examples and use the perspective transformation to certify that
the solutions are relatively close to the global optimum. This paper is accompanied by
an open-source implementation.

1 Introduction

Suppose f : Rn → R is a convex function, and α ∈ R. We refer to the function min{f(x), α}
as a clipped convex function. In this paper we consider the problem of minimizing a sum of
clipped convex functions,

minimize f0(x) +
∑m

i=1 min{fi(x), αi}, (1)

with variable x ∈ Rn, where f0 : Rn → R ∪ {+∞} and fi : Rn → R for i = 1, . . . ,m
are closed proper convex functions, and αi ∈ R for i = 1, . . . ,m. We use infinite values
of f0 to encode constraints on x, i.e., to constrain x ∈ X for a closed convex set X we let
f0(x) = +∞ for all x 6∈ X . When fi(x) > αi, the value of the ith term in the sum is clipped
to αi, which limits how large each term in the objective can be. Many practical problems
can be formulated as instances of (1); we describe a few in §2.

NP-hardness. In general, problem (1) is nonconvex and as a result can be very difficult
to solve. Indeed, (1) is NP-hard. We show this by giving a reduction of the subset sum
problem to an instance of (1).

1

ar
X

iv
:1

91
0.

12
34

2v
2

 [
m

at
h.

O
C

]
 2

9
O

ct
 2

01
9

The subset sum problem involves determining whether or not there exists a subset of a
given set of integers a1, . . . , an that sum to zero. The optimal value of the problem

minimize (aTx)2 − n/4 +
∑n

i=1 min{x2
i , 1/4}+ min{(xi − 1)2, 1/4}

subject to 1Tx ≥ 1,

which has the form (1), is zero if and only if xi ∈ {0, 1}, at least one of xi = 1, and aTx = 0;
in other words, the set {ai | xi = 1} sums to zero. Since the subset sum problem can be
reduced to an instance of (1), we conclude that in general our problem is at least as hard as
difficult problems like the subset sum problem.

Global solution. There is a simple (exhaustive) method to solve (1) globally: for each
subset Ω of {1, . . . ,m}, we solve the convex problem

minimize f0(x) +
∑

i∈Ω fi(x) +
∑

i 6∈Ω αi

subject to fi(x) ≤ αi, i ∈ Ω,
(2)

with variable x ∈ Rn. The solution to (2) with the lowest optimal value is the solution
to (1). This general method is not practical unless m is quite small, since it requires the
solution of 2m convex optimization problems.

In some specific instances of problem (1), we can cut down the search space if we know
that a specific choice of Ω ⊆ {1, . . . ,m} implies

{x | fi(x) ≤ αi, i ∈ Ω} = ∅,

which means that the optimal value of (2) is +∞. In this case, we do not have to solve
problem (2) for this choice of Ω, as we know it will be infeasible. One simple example where
this happens is when the αi-sublevel sets of fi are pairwise disjoint, which implies that we
only have to solve m convex problems (as opposed to 2m) to find the global solution. This
idea is used in [11] to guide their proposed search algorithm.

Related work. The general problem of minimizing a sum of clipped convex functions was
recently considered in [11]. In their paper, they also show that the problem is NP-hard via
a reduction to 3-SAT and give a global solution method in a few special cases whenever n is
small. They also provide a heuristic method based on cyclic coordinate descent, leveraging
the fact that one-dimensional problems are easy to solve.

The idea of using clipped convex functions has appeared in multiple application areas,
the most prominent being statistics. For example, the sum of clipped absolute values (often
referred to as the capped `1-norm) has been used as a sparsity-inducing regularizer [25, 26, 13].
In particular, [25, 13] make use of the fact that problem (1) can be written as a difference-of-
convex (DC) problem and can be approximately minimized via the convex-concave procedure
[10] (see Appendix A). The clipped square function (also known as the skipped-mean loss) was

2

also used in [21] to estimate view relations, and in [14] to perform robust image restoration.
Similar approaches have been taken for clipped loss functions, where they have been used for
robust feature selection [9], regression [23, 17], classification [19, 16, 22], and robust principal
component analysis [18].

Summary. We begin by presenting some applications of minimizing a sum of clipped
convex functions in §2 to empirical risk minimization and control. We then provide some
simple heuristics for approximately solving (1) in §3, which we have found to work well in
practice. In §4, we describe a method for converting (1) into a mixed-integer convex program,
which is amenable to solvers for mixed-integer convex programs. Finally, we describe an
open-source Python implementation of the ideas described in this paper in §5 and apply our
implementation to a few illustrative examples in §6.

2 Applications

In this section we describe some possible applications of minimizing a sum of clipped convex
functions.

2.1 Clipped empirical risk minimization

Suppose we have data
x1, . . . , xN ∈ Rn, y1, . . . , yN ∈ Y .

Here xi is the ith feature vector, yi is its corresponding output (or label), and Y is the output
space.

We find parameters θ ∈ Rn of a linear model given the data by solving the empirical risk
minimization (ERM) problem

minimize 1
N

∑N
i=1 l(x

T
i θ, yi) + r(θ), (3)

with variable θ, where l : R×Y → R is the loss function, and r : Rn → R is the regularization
function. Here the objective is composed of two parts: the loss function, which measures the
accuracy of the predictions, and the regularization function, which measures the complexity
of θ. We assume that l is convex in its first argument and that r is convex, so the problem (3)
is a convex optimization problem.

For a given x ∈ Rn, our prediction of y is

ŷ = argmin
y∈Y

l(xT θ?, y),

where θ? is optimal for (3). For example, in linear regression, Y = R, l(z, w) = (z−w)2, and
ŷ = xT θ?; in logistic regression, Y = {−1, 1}, l(z, w) = log(1 + e−wz), and ŷ = sign(xT θ?),
where sign(z) is equal to 1 if z ≥ 0 and −1 otherwise.

3

While ERM often works well in practice, it can perform poorly when there are outliers
in the data. One way of fixing this is to clip the loss for each data point to a value α ∈ R,
leading to the clipped ERM problem,

minimize 1
N

∑N
i=1 min{l(xTi θ, yi), α}+ r(θ). (4)

After solving (or approximately solving) the clipped problem, we can label data points (xi, yi)
where l(xTi θ

?, yi) ≥ α as outliers. The clipped ERM problem is an instance of what is referred
to in statistics as a redescending M-estimator [8, §4.8], since the derivative of the clipped
loss goes to 0 as the magnitude of its input goes to infinity. In this terminology, the clip
value α is referred to as the minimum rejection point.

In §6.1, we show an example where the normal empirical risk minimization problem fails,
while its clipped variant has good performance.

2.2 Clipped control

Suppose we have a linear system with dynamics given by

xt+1 = Axt +But, t = 0, . . . , T − 1,

where xt ∈ Rn is the state of the system and ut ∈ Rp denotes the input to the system, at
time period t. The dynamics matrix A ∈ Rn×n and the input matrix B ∈ Rn×m are given.

We are given stage cost functions gt : Rn×Rp → R, and an initial state xinit ∈ Rn. The
standard optimal control problem is

minimize
∑T

t=0 gt(xt, ut)

subject to xt+1 = Atxt +Btut, t = 0, . . . , T − 1,

xt ∈ Xt, ut ∈ Ut, t = 0, . . . , T,

x0 = xinit,

where, at time t, Xt ⊆ Rn is the convex set of allowable states and Ut ⊆ Rm is the convex
set of allowable inputs. The variables in this problem are the states and inputs, xt and ut. If
the stage cost function gt are convex, the optimal control problem is a convex optimization
problem.

We define a clipped optimal control problem as an optimal control problem in which the
stage costs can be expressed as sums of clipped convex functions, i.e.,

gt(x, u) = g0
t (x, u) +

K∑
i=1

min{git(x, u), αit},

where, for all t and i = 1, . . . , K, the functions git : Rn ×Rm → R are convex and αit ∈ R.
This gives another instance of our general problem (1).

A simple but practical example of a clipped control problem is described in §6.3. The
problem is to design a lane change trajectory for a vehicle; the stage cost is small when the
vehicle is centered in either lane, which we express as a sum of two clipped convex functions.

4

3 Heuristic methods

There are many methods for approximately solving (1). In this section we describe a few
heuristic methods that we have observed to work well in practice.

Bi-convex formulation. Throughout this section, we will make use of a simple reformu-
lation of (1) as the bi-convex problem

minimize L(x, λ) = f0(x) +
∑m

i=1 λifi(x) + (1− λi)αi
subject to 0 ≤ λ ≤ 1,

(5)

with variables λ ∈ Rm and x ∈ Rn. (We note that this reformulation was also pointed out
in [23, §3].) The equivalence follows immediately from the fact that

min{a, b} = min
0≤λ≤1

(λa+ (1− λ)b) .

Nonlinear programming. When fi are all smooth functions and dom f0 is representable
as the sublevel set of a smooth function, it is possible to use general nonlinear solvers to
(approximately) solve (5).

Alternating minimization. Another possibility is to perform alternating minimization
on (5), since each respective minimization is a convex optimization problem. In alternating
minimization, at iteration k, we solve (5) while fixing λ = λk−1, resulting in xk. We then
solve (5) while fixing x = xk, resulting in λk. It can be shown that

(λk)i =

{
1 fi(x

k) ≤ αi

0 otherwise,
(6)

is a solution for minimization over λ with fixed x = xk.

Inexact alternating minimization. Although alternating minimization often works well,
we have found that inexact minimization over λ works better in practice. Instead of fully
minimizing over λ, we instead compute the gradient of the objective with respect to λ,

gi = (∇λL(xk, λ))i = fi(x
k)− αi.

We then perform a signed projected gradient step on λ with a fixed step size β > 0 (we have
found β = 0.1 works well in practice, though a range of values all appear to work equally as
well). This results in the update

λk = Π[0,1]m(λk − βsign(g)),

5

where sign is applied elementwise to g, and Π[0,1]m denotes the projection onto the unit box,
given by

(Π[0,1]m(z))i =


1 zi ≥ 1,

zi 0 < zi < 1,

0 otherwise.

The final algorithm is described below.

Algorithm 3.1 Inexact alternating minimization.

given initial λ0 = (1/2)1, step size β = 0.1, and tolerance ε > 0.
for k = 1, . . . , niter

1. Minimize over x. Set xk to the solution of the problem

minimize f0(x) +
∑m

i=1 λ
k−1
i fi(x) + (1− λk−1

i)αi.

2. Compute the gradient. Set gi = fi(x
k)− αi.

2. Update λ. Set λk = Π[0,1]m(λk−1 − βsign(g)).

3. Check stopping criterion. Terminate if ‖λk − λk−1‖1 ≤ ε.
end for

Algorithm 3.1 is a descent algorithm in the sense that the objective function of (5) decreases
after every iteration. It is also guaranteed to terminate in a finite amount of time, since
there is a finite number of possible values of λ. We also note that alternating minimization
can be thought of as a special case of algorithm 3.1 where β ≥ 1. In practice, we have found
that algorithm 3.1 often finds the global optimum in simple problems and appears to work
well on more complicated cases. We use algorithm 3.1 in our generic cvxpy implementation
(see §5).

4 Perspective formulation

In this section we describe the perspective formulation of (1). The perspective formulation
is a mixed-integer convex program (MICP), for which specialized solvers with reasonable
practical performance exist. The perspective formulation can also be used to compute a
lower bound on the original objective by relaxing the integral constraints, as in [12], as well
to obtain good initializations for any of the procedures described in §3.

Perspective. Following [15, §8], we define the perspective (or recession) of the closed
convex function f with 0 ∈ dom f as1

fp(x, t) =


tf(x/t) t > 0,

limγ↓0 γf0(x/γ) t = 0,

+∞ otherwise,

(7)

1If 0 6∈ dom f , replace γf0(x/γ) with γf0(y + x/γ) for any y ∈ dom f . See [15, Thm. 8.3] for more
details.

6

for (x, t) ∈ Rn×R+. We will use the fact that the resulting function fp is convex [3, §3.2.6].

Superlinearity assumption. If f is superlinear, i.e., if for all x ∈ Rn \ {0}, we have

lim
t→∞

f(tx)

t
= +∞, (8)

then

fp(x, t) =


tf(x/t) t > 0

0 t = 0, x = 0,

+∞ otherwise,

(9)

since the limit in (7) is equal to the limit in (8) unless x = 0.
There are many convex functions that satisfy this superlinearity property. Some examples

are the sum of squares function and the indicator function of a compact convex set. Since
we will make heavy use of property (9) in this section, we will assume that f0 is superlinear
for the remainder of this section. If f0 is not superlinear, then it can be made superlinear
by adding, e.g., a small positive multiple of the sum of squares function.

Conic representation of the perspective. We note that representing the epigraph of
the perspective of a function is often simple if the function has a conic representation [6].
More specifically, if f has a conic representation

f(x) ≤ v ⇐⇒ Ax+ bv + c ∈ K,

for some closed convex cone K, then the perspective of f has a conic representation given by

fp(x, t) ≤ v ⇐⇒ Ax+ bv + tc ∈ K.

This fact allows us to use a conic representation of the perspective and avoid issues of
non-differentiability and division-by-zero that we might encounter with direct numerical
implementations of the perspective [12, §2].

Perspective formulation. We define the perspective formulation of (1) as the following
MICP:

minimize
∑m

i=1 f
p
i (zi, ti) + (1− ti)αi + 1

m
(fp

0 (zi, ti) + fp
0 (x− zi, 1− ti))

subject to t ∈ {0, 1}m,
(10)

with variables x, zi ∈ Rn for i = 1, . . . ,m and t ∈ Rm. Any MICP solver that can handle
the functions fp

i for i = 0, . . . ,m can be used to solve (10).

7

Proof of equivalence. To show that (10) is equivalent to the original problem (1), first
take (x, t, zi) that are feasible for (10). Since t is Boolean, for each i we have ti = 0 or ti = 1.
Since fp

0 (zi, ti) must be finite (as this point is feasible), then ti = 0 implies that zi = 0 (due
to (9)). Similarly, when ti = 1 we must have zi = x. Therefore the ith term in the sum
becomes

tifi(x) + (1− ti)αi +
1

m
f0(x).

Summing over the index i yields that problem (10) is equivalent to

minimize f0(x) +
∑m

i=1 tifi(x) + (1− ti)αi
subject to t ∈ {0, 1}m.

(11)

Partially minimizing (11) over t, we find that x is a feasible point for (1) with the same
objective value.

Now take x feasible for (1). Let

ti =

{
1 fi(x) ≤ αi

0 otherwise,
i = 1, . . . ,m,

and zi = tix. Then (x, t, zi) is feasible for (10) and has the same objective value, and the
problems are equivalent.

Lower bound via relaxation. Since the perspective formulation is equivalent to the
original problem, relaxing the Boolean constraint in (10) and solving the resulting convex
optimization problem

minimize
∑m

i=1 f
p
i (zi, ti) + (1− ti)αi + 1

m
(fp

0 (zi, ti) + fp
0 (x− zi, 1− ti))

subject to 0 ≤ t ≤ 1,
(12)

with variables zi, t, and x, yields a lower bound on the objective value of (1). That is, given
any approximate solution of (1) with objective value p, the optimal value q? of (12) yields
a certificate guaranteeing that the approximate solution is suboptimal by at most p − q?.
Additionally, a solution of the relaxed problem can be used as an initial point for any of the
heuristic methods described in §3.

Efficiently solving the relaxed problem. We note that (12) has m+ 1 times as many
variables as the original problem, so it is worth considering faster solution methods. To do
so, we can convert the problem to consensus form [2, §7.1]; i.e., we introduce additional
variables yi ∈ Rn for i = 1, . . . ,m, and constrain yi = x, resulting in the equivalent problem

minimize
∑m

i=1 f
p
i (zi, ti) + (1− ti)αi + 1

m
(fp

0 (zi, ti) + fp
0 (yi − zi, 1− ti))

subject to yi = x, i = 1, . . . ,m,

0 ≤ t ≤ 1.

(13)

8

Since the objective is separable in (yi, zi, ti) over i, there exist many efficient distributed
algorithms for solving this problem, e.g., the alternating direction method of multipliers
(ADMM) [2, 5, 4].

5 Implementation

Our Python package sccf approximately solves generic problems of the form (1) provided
all fi can be represented as valid cvxpy expressions and constraints. It is available at:

https://www.github.com/cvxgrp/sccf.

We provide a method sccf.minimum, which can be applied to a cvxpy Expression and a
scalar to create a sccf.MinExpression. The user then forms an objective as a sum of
sccf.MinExpressions, passes this objective and (possibly) constraints to a sccf.Problem

object, and then calls the solve method, which implements algorithm 3.1. We take advan-
tage of the fact that the only parameter changing between problems is λ by caching the
canonicalization procedure [1]. Here is an example of using sccf to solve a clipped least
squares problem:

import cvxpy as cp

import sccf

A, b = get_data(m, n)

x = cp.Variable(n)

objective = 0.0

for i in range(m):

objective += sccf.minimum(cp.square(A[i]@x-b[i]), 1.0)

objective += 0.01 * cp.sum_squares(x)

prob = sccf.Problem(objective)

prob.solve()

6 Examples

All experiments were conducted on a single core of an Intel i7-8700K CPU clocked at 3.7
GHz.

6.1 Clipped regression

In this example we compare clipped regression (§2.1) with standard linear regression and
Huber regression [7] (a well known technique for robust regression) on a one-dimensional

9

−3 −2 −1 0 1 2 3

x

−3

−2

−1

0

1

2

3

y

clipped

lstsq

huber

outlier

inlier

Figure 1: Clipped regression, linear regression, and Huber regression on a one-dimensional
dataset with outliers. The outliers affect the linear regression and Huber regression models,
while the clipped regression model appears to be minimally affected.

dataset with outliers. We generated data by sampling 20 data points (xi, yi) according to

xi ∼ N (0, 1), yi = xi + (0.1)zi, zi ∼ N (0, 1), i = 1, . . . , 20.

We introduced outliers in our data by flipping the sign of yi for 5 random data points.
The problems all have the form

minimize L(θ) =
∑20

i=1 φ(xiθ − yi) + (0.2)θ2, (14)

where φ : R→ R is a penalty function. In clipped regression, φ(z) = min{z2, 0.5}. In linear
regression, φ(z) = z2. In Huber regression,

φ(z) =

{
z2 |z| ≤ 0.5

0.5(2|z| − 0.5) otherwise.

Let θclip be the clipped regression model; we deem points where (xiθ
clip − yi)2 ≥ 0.5 as

outliers and the remaining points as inliers. In figure 1 we visualize the data points and the
resulting models along with the outliers/inliers identified by the clipped regression model. In
this figure, the clipped regression model clearly outperforms the linear and Huber regression
models since it is able to fully ignore the outliers. Algorithm 3.1 terminated in 0.13 seconds
and took 8 iterations on this instance.

Lower bound. The relaxed version of the perspective formulation (12) can be used to
efficiently find a lower bound on the objective value for the clipped version of (14). The
objective value of (14) for clipped regression was 1.147, while the lower bound we calculated
was 0.533, meaning our approximate solution is suboptimal by at most 0.614.

10

−4 −2 0 2 4

θ

0

1

2

3

4

5

6

7 L(θ)

perspective

lower bound

θclip

Figure 2: The clipped regression loss and its perspective relaxation.

In figure 2 we plot the clipped objective (14) for various values of θ; note that the function
is highly nonconvex and that θclip is the (global) solution. We also plot the objective of the
perspective relaxation as a function of θ, found by partially minimizing (12) over zi and t;
note that the function is convex and a surprisingly good approximation of the true convex
envelope. We note that the minimum of the perspective relaxation and the true minimum
are surprisingly close, leading us to believe that the solution to the perspective relaxation
could be a good initialization for heuristic methods.

6.2 Clipped logistic regression

In this example we apply clipped logistic regression (§2.1) to a dataset with outliers. We
generated data by sampling 1000 data points (xi, yi) from a mixture of two Gaussian distri-
butions in R5. We randomly partitioned the data into 100 training data points and 900 test
data points and introduced outliers by flipping the sign of yi for 20 random training data
points.

We (approximately) solved the clipped logistic regression problem

minimize 1
1000

∑1000
i=1 min{log(1 + e−yi(x

T
i θ+b)), α}+ (0.1)‖θ‖2

2,

with variables θ and b, for various values of α ∈ [10−1, 101]. We also solved the problem
for α = +∞, i.e., the standard logistic regression problem. Over the α values we tried, on
average, algorithm 3.1 took 6.37 seconds and terminated in 9.64 iterations.

11

10−1 100 101

α

0.50

0.52

0.54

0.56

0.58

0.60

te
st

ac
cu

ra
cy

standard

clipped

outliers

0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

ti
on

of
ou

tl
ie

rs

Figure 3: Test accuracy of clipped logistic regression (solid), test accuracy of standard logistic
regression (gray), and fraction of outliers (dotted dashed) for varying clip values α. Note
that the fraction of detected outliers goes down as α goes up. Between roughly α = 10−.5

and α = 100.05, the test accuracy of clipped logistic regression is higher than standard logistic
regression. Clipped logistic regression converges to standard logistic regression as α→∞.

0 2 4 6 8 10 12

k

0.0

0.2

0.4

0.6

0.8

1.0

λ
i

Figure 4: A plot of λ throughout the course of algorithm 3.1 for the clipped logistic regression
example. Note that at some of the iterations (e.g., k = 1, 2, or 3), the gradient of the loss
with respect to a certain λi changes sign, causing λi to be updated in the opposite direction.

12

−6 −4 −2 0

log logistic loss

0

5

10

15

20

25

co
u

n
t

−6 −4 −2 0

log logistic loss

0

1

2

3

4

5

6

co
u

n
t

Figure 5: Left: histogram of log logistic loss for each data point in standard logistic regres-
sion; right: histogram of log logistic loss for each data point in clipped logistic regression.
Note that standard logistic regression attempts to make the loss small for all data points,
while its clipped counterpart allows the loss to be high for some of the data points.

Figure 3 displays the test loss and fraction of outliers over the range of values of α we
approximately minimized. Figure 4 shows the trajectory of the entries of λ during each step
of the execution of algorithm 3.1 for the α with the highest test accuracy, while figure 4 plots
the histogram of the logistic loss for each of the available data points for this same α.

6.3 Lane changing

In this example, we consider a control problem where a vehicle traveling down a road at a
fixed speed must avoid obstacles, stay in one of two lanes, and provide a comfortable ride.
We let xt ∈ R denote the lateral position of the vehicle at time t = 0, . . . , T (T is the time
horizon).

The obstacle avoidance constraints are given as vectors xmin, xmax ∈ RT that represent
lower and upper bounds on xt at time t.

We can split the objective into the sum of two functions described below.

• Lane cost. Suppose the two lanes are centered at x = −1 and x = 1. The lane cost is

13

0 20 40 60 80 100
−2

−1

0

1

2

Figure 6: Trajectory of a vehicle looking to avoid obstacles (represented by boxes) while
optimizing for comfort and lane position.

given by

glane(x) =
T∑
t=0

min{(xt − 1)2, 1}+ min{(xt + 1)2, 1}.

The lane cost incentivizes the vehicle to be in the center of one of the two lanes. The
lane cost is evidently a sum of clipped convex functions.

• Comfort cost. The comfort cost is given by

gcomfort(x) = ρ1‖Dx‖2
2 + ρ2‖D2x‖2

2 + ρ3‖D3x‖2
2,

where D is the difference operator and ρ1, ρ2, ρ3 > 0 are weights to be chosen. The
comfort cost is a weighted sum of the squared lateral velocity, acceleration, and jerk.

To find the optimal lateral trajectory we solve the problem

minimize glane(x) + gcomfort(x)

subject to x0 = xstart, xT = xend,

xmin ≤ x ≤ xmax,

(15)

where xstart, xend ∈ R are given starting and ending points of the trajectory.

Numerical example. We use T = 100, ρ1 = 10, ρ2 = 1, ρ3 = .1, xstart = 1, and xend = −1.
In figure 6 we show the trajectory resulting from an approximate solution to (15) with three
obstacles. For this example, algorithm 3.1 terminated in 1.2 seconds and took 4 iterations.
We are able to find a comfortable trajectory that avoid the obstacles and spends as little
time as possible in between the lanes.

14

Lower bound. Using the relaxed version of the perspective formulation (12), we can
compute a lower bound on the objective value of the clipped control problem (15). We
found a lower bound value of around 103.55, while the approximate solution we found had
an objective value of 119.07, indicating that our approximate solution is no more than 15%
suboptimal.

Acknowledgments

S. Barratt is supported by the National Science Foundation Graduate Research Fellowship
under Grant No. DGE-1656518.

References

[1] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter. Differentiable
convex optimization layers. In Advances in Neural Information Processing Systems,
2019.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and
Trends R© in Machine Learning, 3(1):1–122, 2011.

[3] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004.

[4] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational
problems via finite element approximation. Computers & Mathematics with Applica-
tions, 2(1):17–40, 1976.

[5] R. Glowinski and A. Marroco. Sur l’approximation, par éléments finis d’ordre un, et la
résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique
et Analyse Numérique, 9(R2):41–76, 1975.

[6] M. Grant and S. Boyd. Graph implementations for nonsmooth convex programs. In
Recent Advances in Learning and Control, pages 95–110. Springer, 2008.

[7] P. Huber. Robust regression: asymptotics, conjectures and monte carlo. The Annals of
Statistics, 1(5):799–821, 1973.

[8] P. Huber and E. Ronchetti. Robust Statistics. John Wiley & Sons, 2009.

[9] G. Lan, C. Hou, and D. Yi. Robust feature selection via simultaneous capped 2-norm
and 2, 1-norm minimization. In IEEE Intl. Conf. on Big Data Analysis (ICBDA), pages
1–5. IEEE, 2016.

15

[10] T. Lipp and S. Boyd. Variations and extension of the convex–concave procedure. Op-
timization and Engineering, 17(2):263–287, 2016.

[11] T. Liu and H. Jiang. Minimizing sum of truncated convex functions and its applications.
Journal of Computational and Graphical Statistics, 28(1):1–10, 2019.

[12] N. Moehle and S. Boyd. A perspective–based convex relaxation for switched-affine
optimal control. Systems & Control Letters, 86:34–40, 2015.

[13] C. Ong and L. An. Learning sparse classifiers with difference of convex functions algo-
rithms. Optimization Methods and Software, 28(4):830–854, 2013.

[14] J. Portilla, A. Tristan-Vega, and I. Selesnick. Efficient and robust image restoration
using multiple-feature l2-relaxed sparse analysis priors. IEEE Transactions on Image
Processing, 24(12):5046–5059, 2015.

[15] T. Rockafellar. Convex analysis. Princeton University Press, 1970.

[16] A. Safari. An e–E–insensitive support vector regression machine. Computational Statis-
tics, 29(6):1447–1468, 2014.

[17] Y. She and A. Owen. Outlier detection using nonconvex penalized regression. Journal
of the American Statistical Association, 106(494):626–639, 2011.

[18] Q. Sun, S. Xiang, and J. Ye. Robust principal component analysis via capped norms.
In Proc. Intl. Conf. on Knowledge Discovery and Data Mining, pages 311–319. ACM,
2013.

[19] S. Suzumura, K. Ogawa, M. Sugiyama, and I. Takeuchi. Outlier path: A homotopy
algorithm for robust SVM. In Intl. Conf. on Machine Learning, pages 1098–1106, 2014.

[20] P. Tao and L. An. Convex analysis approach to DC programming: Theory, algorithms
and applications. Acta Mathematica Vietnamica, 22(1):289–355, 1997.

[21] P. Torr and A. Zisserman. Robust computation and parametrization of multiple view
relations. In Intl. Conf. on Computer Vision, pages 727–732. IEEE, 1998.

[22] G. Xu, B.-G. Hu, and J. Principe. Robust C-loss kernel classifiers. IEEE Transactions
on Neural Networks and Learning Systems, 29(3):510–522, 2016.

[23] Y.-l. Yu, M. Yang, L. Xu, M. White, and D. Schuurmans. Relaxed clipping: A global
training method for robust regression and classification. In Advances in Neural Infor-
mation Processing Systems, pages 2532–2540, 2010.

[24] A. Yuille and A. Rangarajan. The concave–convex procedure. Neural Computation,
15(4):915–936, 2003.

16

[25] T. Zhang. Multi-stage convex relaxation for learning with sparse regularization. In
Advances in Neural Information Processing Systems, pages 1929–1936, 2009.

[26] T. Zhang. Analysis of multi-stage convex relaxation for sparse regularization. Journal
of Machine Learning Research, 11(Mar):1081–1107, 2010.

A Difference of convex formulation

In this section we make the observation that (1) can be expressed as a difference of convex
(DC) programming problem.

Let hi(x) = max(fi(x) − αi, 0). This (convex) function measures how far fi(x) is above
αi. We can express the ith term in the sum as

min{fi(x), αi} = fi(x)− hi(x),

since when fi(x) ≤ αi, we have hi(x) = 0, and when fi(x) > α, we have hi(x) = fi(x)− αi.
Since fi and hi are convex, (1) can be expressed as the DC programming problem

minimize f0(x) +
∑m

i=1 fi(x)−∑m
i=1 hi(x), (16)

with variable x. We can apply then well-known algorithms like the convex-concave proce-
dure [20, 24] to (approximately) solve (16).

B Minimal convex extension

If we replace each fi with any function f̃i such that f̃i(x) = fi(x) when fi(x) ≤ αi, we get
an equivalent problem. One such f̃i is the minimal convex extension of fi, which is given by

f̃i(x) := sup{fi(z) + gT (x− z) | g ∈ ∂fi(z), fi(z) ≤ αi, z ∈ Rn}.

In general, the minimal convex extension of a function is often hard to compute, but it can be
represented analytically in some (important) special cases. For example, if fi(x) = (aTx−b)2,
the minimal convex extension is the Huber penalty function, or

f̃i(x) =

{
(aTx− b)2 |aTx− b| ≤ αi

αi(2|aTx− b| − αi) otherwise.

Using the minimal convex extension leads to an equivalent problem, but, depending on the
algorithm, replacing fi with f̃i can lead to better numerical performance.

17

	1 Introduction
	2 Applications
	2.1 Clipped empirical risk minimization
	2.2 Clipped control

	3 Heuristic methods
	4 Perspective formulation
	5 Implementation
	6 Examples
	6.1 Clipped regression
	6.2 Clipped logistic regression
	6.3 Lane changing

	A Difference of convex formulation
	B Minimal convex extension

