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A Deterministic Algorithm to Compute the Cosine Measure of a

Finite Positive Spanning Set

Warren Hare · Gabriel Jarry-Bolduc
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Abstract Originally developed in 1954, positive bases and positive spanning sets have been found
to be a valuable concept in derivative-free optimization (DFO). The quality of a positive basis (or
positive spanning set) can be quantified via the cosine measure and convergence properties of certain
DFO algorithms are intimately linked to the value of this measure. However, it is unclear how to
compute the cosine measure for a positive basis from the definition. In this paper, a deterministic
algorithm to compute the cosine measure of any positive basis or finite positive spanning set is
provided. The algorithm is proven to return the exact value of the cosine measure in finite time.

Keywords Cosine measure · Positive basis · Positive spanning set

1 Introduction

Positive bases have been studied since the 1950s. The theory has been first developed by Davis in
[11] and McKinney in [17]. In the last few decades, their popularity has drastically increased due
to their value in DFO. The value of positive bases in derivative-free optimization was revealed in
1996 [16] when it was shown that if the gradient of a function at a point exist and is nonzero, then
there exists a vector d in any positive basis (or any positive spanning set) such that d is a descent
direction of the function at that point.

Since then, several derivative-free algorithms using positive bases have been developed. More
specifically, positive bases are employed in direct search methods such as pattern search [10,24,25],
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generalised pattern search [4], grid-based methods [8,9], generating set search [15], mesh adaptive
direct search [1,3,5,?] and implicit filtering [14].

A handful of papers have focused on the theory behind positive bases and their characterization
[11,17,21]. Davis established that the maximal size s of a positive basis is s = 2n [11]. A shorter
proof of this result was published in 2011 by Audet [2]. Also, it is straightforward to show that the
minimal size s of a positive basis is s = n+1 [11]. Minimal and maximal positive bases are now well-
understood and their structure can be rigorously characterized [21]. A few results on intermediate
positive bases (n+ 1 < s < 2n) can be found in [19,20,22,23].

With regards to DFO, the key instrument to measure the quality of a positive basis is called
cosine measure [15] (see also [24]). In general, having higher cosine measure is preferable and can
be thought as covering the space more uniformly with the vectors contained in the positive basis.
However, no methods have been proposed thus far to calculate the cosine measure for a given
positive basis (or a given positive spanning set).

This paper provides a deterministic algorithm to compute the cosine measure of any given
positive basis (or any finite positive spanning set). The algorithm is proven to return the exact
value of the cosine measure in finite time. Hence, this paper provides a procedure to compare
positive bases to each other.

This paper is organized as follows. In Section 2, fundamental material on positive spanning sets,
positive bases and background results are presented. In Section 3, the algorithm and a proof that
it returns the exact cosine measure for any finite positive spanning set are presented. Section 4
examines the complexity of the algorithm and demonstrates that the algorithm can be shortened
for minimal positive bases and maximal positive bases. Lastly, Section 5 summarizes the main
achievements of the paper and proposes some directions to explore in a near future.

2 Preliminaries

In this paper, it will be convenient to regard a set of vectors as a matrix whose columns are the
vectors in the set. The vector space R

n is assumed for the entire paper. The span of a set S in R
n

is denoted span(S).

Definition 1 (Positive span and positive spanning set of Rn) The positive span of a finite
set of vectors S =

[

d1 d2 · · · ds
]

in R
n, denoted pspan(S), is the set

{v ∈ R
n : v = α1d1 + · · ·+ αsds, αi ≥ 0, i = 1, 2, . . . , s}.

A finite positive spanning set of Rn of size s, denoted P
n
s , is a set of s nonzero vectors such that

pspan(Pn
s ) = R

n.

To define a positive basis of Rn requires the concept of positive independence.

Definition 2 (Positive independence) A set of vectors S =
[

d1 d2 · · · ds
]

in R
n is positively

independent if and only if di /∈ pspan(S \ di) for all i ∈ {1, 2, . . . s}.

Definition 3 (Positive basis of Rn) A positive basis of Rn of size s, denoted D
n
s , is a positively

independent set of s vectors whose positive span is Rn.

Equivalently, a positive basis of Rn can be defined as a set of nonzero vectors of Rn whose
positive span is Rn, but for which no proper subset exhibits the same property.

The following theorem describes the structure of maximal positive bases.
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Theorem 4 [21, Theorem 6.3] Suppose B =
[

d1 d2 · · · dn
]

is a basis of Rn. Then for any choice

of δ1, . . . , δn > 0, the set Dn
2n =

[

d1 · · · dn −δ1d1 · · · −δndn
]

is a positive basis of Rn. Conversely,

every maximal positive basis of Rn has the form (D′)n2n =
[

d1 · · · dn −δ1d1 · · · −δndn
]

up to re-

ordering of the vectors, where B
′ =

[

d1 · · · dn
]

is a basis of Rn and δ1, . . . , δn > 0.

Proposition 5 [21, Theorem 2.3] If S =
[

d1 d2 · · · ds
]

positively spans R
n, then S \ {di} linearly

spans R
n for any i ∈ {1, . . . , s}.

The cosine measure of a set, the cosine vector set and the active set is defined next.

Definition 6 (Cosine Measure) The cosine measure of a positive spanning set Pn
s is defined by

cm(Pn
s ) = min

‖u‖=1

u∈R
n

max
d∈ Pn

s

u⊤d

‖d‖ .

Definition 7 (The cosine vector set) Let Pn
s be a positive spanning set of Rn. The cosine vector

set of Pn
s , denoted cV(Pn

s ), is defined as

cV(Pn
s ) = argmin

‖u‖=1

u∈R
n

max
d∈ Pn

s

u⊤d

‖d‖ .

Definition 8 (The active set of vectors) Let P
n
s be a positive spanning set of R

n and let
u∗ ∈ cV(Pn

s ). The active set of u∗ in P
n
s , denoted A(u∗,P

n
s ), is defined as

A(u∗,P
n
s ) =

{

d⊤

‖d‖ ∈ P
n
s :

d⊤u∗

‖d‖ = cm(Pn
s )

}

.

Note that given any finite positive spanning set Pn
s where n ≥ 2, the cosine measure is bounded

by 0 < cm(Pn
s ) < 1. To prove these bounds, next recall a theorem that helps to prove the lower

bound.

Theorem 9 [7, Theorem 2.3] Let S =
[

d1 d2 · · · ds
]

be a set of nonzero vectors in R
n. Then S is

a positive spanning set of Rn if and only if the following holds:

i. For every nonzero vector v in R
n, there exists an index i ∈ {1, 2, . . . , s} such that v⊤di < 0.

ii. For every nonzero vector w in R
n, there exists an index j ∈ {1, 2, . . . , s} such that w⊤dj > 0.

Proposition 10 Let P
n
s =

[

d1 d2 · · · ds
]

be a finite positive spanning set of Rn (where n ≥ 2).
Then the cosine measure of Pn

s is bounded by

0 < cm(Pn
s ) < 1.

Proof Without loss of generality, assume that di are unit vectors for all i ∈ {1, 2, . . . , s}. Since P
n
s

is a positive spanning set of Rn, the cosine measure of Pn
s must be positive by Theorem 9.

Consider the upper bound. Since P
n
s is a finite set of vectors, there exist a nonzero unit vector

u such that u 6= di for all i ∈ {1, 2, . . . , s}. Since the dot product of unit vectors is equal to 1
if and only if the two vectors are equal, it follows that u⊤di < 1 for all i ∈ {1, 2, . . . , s} and so
maxd∈ Pn

s

u⊤d < 1. Therefore the cosine measure cm(Pn
s ) < 1. ⊓⊔
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Note the fact that Pn
s is a positive spanning set is not used for the upper bound, only the fact

that Pn
s is a finite set. Lastly, the definition of Gram matrices and two lemmas that are helpful in

Section 3 are introduced.

Definition 11 (Gram matrix) Let S =
[

d1 d2 · · · ds
]

be vectors in R
n with dot product d⊤i dj .

The Gram matrix of the vectors d1, d2, . . . , ds with respect to the dot product, denoted G(S), is an
s× s real matrix where the entry G(S)i,j is defined as G(S)i,j = d⊤i dj , i, j ∈ {1, 2, . . . , s}.

Lemma 12 [18, Lemma 1] Let B =
[

d1 d2 · · · dn
]

be a basis of unit vectors in R
n. Let 1 ∈ R

n

be the vector having all its entries equal to one. Then there exists a unit vector uB ∈ R
n such that

u⊤
B
di = γB > 0 for all i ∈ {1, 2, . . . , n} where

γB =
1

√

1⊤G(B)−11
.

Note that the unit vector uB such that u⊤
B
di = γB for all i’s is unique since {d1, . . . , dn} is a set

of n linearly independent vectors. Also, note that γB < 1 whenever n ≥ 2.
In fact, the positive value of the n equal dot products is unique whenever u is a unit vector and

{d1, . . . , dn} is a set of linearly independent vectors.

Lemma 13 Let B =
[

d1 d2 · · · dn
]

be a basis of unit vectors in R
n. Suppose u is a unit vector such

that u⊤d1 = · · · = u⊤dn = α > 0. Then α = γB, where γB is defined in Lemma 12.

Proof It suffices to show α > 0 is unique, so that Lemma 12 implies it must be the value γB.
Suppose there exists two distinct unit vectors, say u and u′ such that

u⊤d1 = · · · = u⊤dn = α > 0 and u′⊤d1 = · · · = u′⊤dn = α′ > 0.

Since B is a basis, it follows that α 6= α′ and there exists ρ1, . . . , ρn ∈ R such that
∑n

i=1
ρidi = u.

Multiplying both sides by by u′⊤, shows that
∑n

i=1
ρiα

′ = u′⊤u. Alternately, multiplying both sides
by u⊤ yields

∑n

i=1
ρiα = 1. Letting ρ̄ =

∑n

i=1
ρi, provides

ρ̄α′ = u⊤u′ and ρ̄α = 1.

Similarly, since B is a basis, there exist β1, . . . , βn ∈ R such that
∑n

i=1
βidi = u′. Letting β̄ =

∑n

i=1
βi and multiplying this by u⊤ and u′⊤, yields

β̄α = u⊤u′ and β̄α′ = 1.

Applying ρ̄ = 1/α and β̄ = 1/α′ into the second equality yields α′

α
= α

α′
. Since α > 0 and α′ > 0,

this yields α = α′. ⊓⊔

3 Main results

In this section, an algorithm that calculates the cosine measure for any finite positive spanning set
P
n
s of Rn (or any positive basis Dn

s of Rn) is provided. After introducing the algorithm, it is shown
that the algorithm returns the exact value of the cosine measure.
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Algorithm 1: The cosine measure of a finite positive spanning set of Rn

Given P
n
s , a finite positive spanning set of Rn:

1. For all bases B ⊂ P
n
s , compute

(1.1) γB =
1

√

1⊤G(B)−11
(The positive value of the n equal dot products),

(1.2) uB = B
−⊤γB1 (The unit vector associated to γB),

(1.3) pB =
[

p1
B
· · · ps

B

]

= u⊤
B
P
n
s (The dot product vector),

(1.4) p̊B = max
1≤i≤s

pi
B

(The maximum value in pB).

2. Return

(2.1) cm(Pn
s ) = min

B⊂ Pn

s

p̊B (The cosine measure of Pn
s )

(2.2) cV(Pn
s ) = {uB : p̊B = cm(Pn

s )} (The cosine vector set of Pn
s ).

The algorithm investigates all the bases contained in P
n
s . Note that any finite positive spanning

set of Rn contains at least one basis of Rn (by Proposition 5). An obvious upper bound for the
maximal number of bases contained in a finite positive spanning set P

n
s is

(

s

n

)

. The precision of
these bounds may be improved, but it is beyond the scope of this paper. However, the supremum
of the number of bases contained in minimal positive bases (s = n+1) and maximal positive bases
(s = 2n) are easily derived.

Proposition 14 Let Dn
n+1 be a minimal positive basis of Rn. Then D

n
n+1 contains n+ 1 bases of

R
n.

Proof From Proposition 5, any set of n vectors is a basis of Rn. Therefore, Dn
n+1 contains

(

n+1

n

)

=
n+ 1 bases. ⊓⊔

Proposition 15 Let Dn
2n be a maximal positive basis. Then D

n
2n contains 2n bases.

Proof Without loss of generality, by Theorem 4, let D
n
2n =

[

d1 d2 · · · dn −d1 −d2 −dn
]

, where
di is a unit vector for all i ∈ {1, 2, . . . , n}. Note that any basis contained in D

n
2n has the form

B =
[

±d1 ±d2 · · · ±dn
]

. Therefore, Dn
2n contains 2n bases. ⊓⊔

Note that 2n is smaller than
(

2n

n

)

whenever n ∈ {2, 3, . . .}. Finding the supremum for the number
of bases contained in a positive basis of intermediate size (n+ 1 < s < 2n) is more challenging and
is left for future exploration. Nevertheless, the number of bases in any positive basis D

n
s (or any

finite positive spanning set Pn
s ) is a finite number greater than one and hence, the algorithm always

find an exact solution in finite time.

To prove that the Algorithm 1 returns the exact cosine measure of a positive spanning set for
any size s ∈ {2, 3, . . . } requires the following lemma.

Lemma 16 Let ǫ 6= 0 and let u and v be unit vectors in R
n. Then

i. ‖u+ ǫv‖ = 1 if and only if ǫ = −2u⊤v, and
ii. ‖u+ ǫv‖ < 1 implies ‖u− ǫv‖ > 1.
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Proof Since
‖u+ ǫv‖ = 1 + (2ǫu⊤v + ǫ2) and ‖u− ǫv‖ = 1 + (2ǫu⊤v − ǫ2),

it follows that ‖u+ ǫv‖ = 1 if and only if 2ǫu⊤v + ǫ2 = 0. Since ǫ 6= 0, the first result follows.
Considering ‖u+ ǫv‖ < 1, notice that

‖u+ ǫv‖ < 1 ⇐⇒ 1 + (2ǫu⊤v + ǫ2) < 1 ⇐⇒ 2ǫu⊤v + ǫ2 < 0 ⇐⇒ 2ǫu⊤v − ǫ2 < −2ǫ2 < 0,

which implies the second result. ⊓⊔

The previous lemma is used in the following proposition.

Proposition 17 Let Pn
s be a positive spanning set of Rn and let u∗ ∈ cV(Pn

s ). Then

span(A(u∗,P
n
s )) = R

n.

Proof Without loss of generality, assume that all vectors d in P
n
s are unit vectors. Suppose that

span(A(u∗,P
n
s )) 6= R

n, i.e., the rank of A(u∗,P
n
s ) is strictly less than n. This implies that the

kernel of A(u∗,P
n
s ) is nonempty. Let v be a unit vector in the kernel of A(u∗,P

n
s ). This means that

d⊤v = 0 for all d in A(u∗,P
n
s ).

Notice that, if d ∈ P
n
s \A(u∗,P

n
s ), then

d⊤u∗ < cm(Pn
s ).

Consider the vector u∗ + ǫv. Then there exists an ǫ such that 0 < ǫ < | − 2u⊤
∗ v| and

d⊤(u∗ ± ǫv)

‖u∗ ± ǫv‖ < cm(Pn
s )

for all d ∈ P
n
s \A(u∗,P

n
s ). Moreover, since d⊤v = 0, it follows that

d⊤(u∗ ± ǫv)

‖u∗ ± ǫv‖ =
d⊤u∗

‖u∗ ± ǫv‖ ± 0 =
cm(Pn

s )

‖u∗ ± ǫv‖

for all d ∈ A(u∗,P
n
s ). By Lemma 16(i), ǫ 6= −2u⊤

∗ v implies that ‖u∗ + ǫv‖ 6= 1. By Lemma 16(ii),
if ‖u∗ + ǫv‖ < 1, then ‖u∗ − ǫv‖ > 1. Select w in {u∗ + ǫv, u∗ − ǫv} such that ‖w‖ > 1. Then

d⊤w

‖w‖ < cm(Pn
s )

for all d ∈ P
n
s . This contradicts the definition of cosine measure.

Therefore, span(Pn
s ) ⊆ span(A(u∗,P

n
s )). Since span(Pn

s ) = R
n, the result follows. ⊓⊔

Note that the positive spanning set property of Pn
s in the previous proposition is sufficient to

prove the result. The positive independence property of positive bases is not necessary to obtain
the result. This provide sufficient background to complete the proof that Algorithm 1 returns the
exact cosine measure of any finite positive spanning set of Rn.

Corollary 18 Let Pn
s be a finite positive spanning set of Rn and let u∗ ∈ cV(Pn

s ). Then A(u∗,P
n
s )

contains a basis of Rn.

This is a classical result in linear algebra. See [6, Theorem 2.11] for example.
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Theorem 19 Let Pn
s be a finite positive spanning set of Rn. Then Algorithm 1 returns the exact

value of the cosine measure cm(Pn
s ).

Proof Without loss of generality, let P
n
s =

[

d1 d2 · · · ds
]

be a finite positive spanning set of unit
vectors in R

n and let u∗ ∈ cV(Pn
s ). By Corollary 18, A(u∗,P

n
s ) contains a basis of Rn. Without loss

of generality, let this basis be B∗ =
[

d1 d2 · · · dn
]

. So that

cm(Pn
s ) = d⊤1 u∗ = · · · = d⊤n u∗ > 0,

where u∗ is a unit vector. By Lemma 13, it follows that

cm(Pn
s ) = γB∗

=
1

√

1⊤G(B∗)−11
.

Note that γB∗
= max1≤i≤s d

⊤
i u∗ = p̊B∗

since γB∗
= cm(Pn

s ). Therefore, by definition of the cosine
measure,

min
B⊂ Pn

s

p̊B = cm(Pn
s ),

where B is a basis of Rn contained in P
n
s . ⊓⊔

4 Complexity

The complexity of an algorithm is a count of the number of floating point operations (flops) required
to complete the algorithm. As noted above, the maximum number of iterations required by the
algorithm for a finite positive spanning set Pn

s is
(

s
n

)

; unless a maximal positive basis is imputed,
in which case the required number of iterations is 2n (Proposition 15). The complexity in big-oh
notation per iteration is next.

Proposition 20 Let Pn
s be a finite positive spanning set of Rn. Then Algorithm 1 has a complexity

of O(s2n) +O(s3) +O(n3) flops per iteration (assuming basic matrix inversion techniques).

Proof Computing the Gram matrix G(B) requires O(s2n) flops. Using basic methods, the matrix
inversion of the Gram matrix uses O(s3) flops. The matrix multiplication in step (1.1) is O(2n2)
and the square roots and division are negligible. The matrix B is n × n, so inversion is O(n3).
Matrix multiplication in step (1.3) is O(n2) and the maximum in step (1.4) is negligible. All of the
operations in step 2. are negligible. So, the major effort is the construction of the Gram matrices
and the matrix inversions, resulting in O(s2n) +O(s3) +O(n3) flops per iteration.

Note, the complexity above could be improved slightly if more advanced matrix inversion meth-
ods are used [13]. However, the complexity of constructing the Gram matrix will remain O(s2n),
so little is gained by doing this.

Algorithm 1 can be shortened for minimal positive bases (s = n+1) and maximal positive bases
(s = 2n).

Theorem 21 Let Dn
n+1 =

[

d1 d2 · · · dn+1

]

be a minimal positive basis of Rn. Then

γB = p̊B

for all bases B ⊂ D
n
n+1 where γB and p̊B are defined as in Algorithm 1. Moreover,

cm(Dn
n+1) = min

B⊂D
n

n+1

γB.
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Proof Let B be a basis of Rn contained in D
n
n+1. Since γB > 0, if follows that d⊤uB < 0 (by Theorem

9) where d is the only vector in D
n
n+1 \ B. Therefore, p̊B = γB for all bases B ⊂ D

n
n+1 and it follows

that

cm(Dn
n+1) = min

B⊂D
n

n+1

γB.

Theorem 22 Let Dn
2n =

[

d1 d2 · · · d2n
]

be a maximal positive basis of Rn. Then

γB = p̊B

for all bases B ⊂ D
n
2n where γB and p̊B are defined as in Algorithm 1. Moreover,

cm(Dn
2n) = min

B⊂D
n

2n

γB.

Proof Without loss of generality, by Theorem 4, let D
n
2n =

[

d1 · · · dn −d1 · · · −dn
]

be a positive

basis of unit vectors for Rn. Note that every basis contained in D
n
2n has the form

[

±d1 ±d2 . . . ±dn
]

.

Hence, without loss of generality relabelling if necessary, let B =
[

d1 · · · dn
]

. So

u⊤
B
d1 = · · · = u⊤

B
dn = γB > 0.

It follows that u⊤
B
(−di) < 0 for all i ∈ {1, . . . , n}. Therefore, γB = p̊B for all bases B contained in

D
n
2n and it follows that

cm(Dn
2n) = min

B⊂D
n

2n

γB.

⊓⊔

A consequence of the previous two theorems is that it is not necessary to compute pB, and p̊B
in Algorithm 1. This means that step (1.3) and step (1.4) can be deleted from Algorithm 1. The
cosine measure (step (2.1)) and the cosine vector set (step (2.2)) can be found by simply setting

cm(Dn
s ) = min

B⊂Dn

s

γB

and

cV(Dn
s ) = {uB : γB = cm(Dn

s )}
whenever s = n+1 or s = 2n. Unfortunately, this does not impact the complexity per iteration, as
constructing the Graham matrices and the matrix inversions are still required.

The next example shows that the previous abridged algorithm does not guarantee to return the
value of the cosine measure for positive bases of intermediate size (n+ 1 < s < 2n).

Example 23 (Alg. 1 cannot be shortened for all positive bases of intermediate size)
Let

D
3
5 =





1 0 0 −0.8 0
0 1 0 0 −0.9

0 0 1 −0.6 −
√
0.18



 .

Then D
3
5 is an intermediate positive basis of R3. Computation shows that

min
B⊂D

3
5

γB ≈ 0.2038.
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and the unit vector associated to the minimal γB is uB ≈
[

0.4115 0.2038 −0.8883
]⊤

where

B =





0 −0.8 0
1 0 −0.9

0 −0.6 −
√
0.19



 .

Computing pB and p̊B, yields pB ≈
[

0.4115 0.2038 −0.8883 0.2038 0.2038
]

and so

p̊B ≈ 0.4115 6= γB.

Note that the cosine measure of D3
5 is found when considering

B∗ =





1 0 −0.8
0 1 0
0 0 −0.6



 .

Thus, γB∗
≈ 0.3015 and uB∗

≈
[

0.3015 0.3015 −0.9045
]⊤

. The dot product vector is pB∗
≈

[

0.3015 0.3015 −0.9045 0.3015 0.1229
]

and so

cm(D3
5) = p̊B∗

6= min
B⊂D

3
5

γB.

5 Conclusion and open directions

This paper has presented a deterministic algorithm to compute the cosine measure of any positive
basis in R

n. In fact, the algorithm can be applied to any finite positive spanning set of Rn. One
weakness of the algorithm, and a topic to explore, is that the algorithm needs to investigate

(

s

n

)

sets
of vectors and decide if the set is a basis. Indeed, as s increases, this number becomes extremely large.
Hence, creating a computationally inexpensive technique, by exploiting the structure of positive
bases, to decide if the set of n vectors is a basis, could speed up the algorithm significantly.

It was found that the algorithm can be slightly shortened when considering a minimal positive
basis (s = n + 1) or a maximal positive basis (s = 2n).Thereafter, an example was provided
demonstrating that the abridged version of the algorithm is not valid for intermediate positive
bases.

Moreover, it was showed that a maximal positive basis contained 2n bases of Rn and a minimal
positive basis contained n + 1 bases of Rn. The maximal number of bases contained in a positive
basis of intermediate size (n+1 < s < 2n) would be valuable to investigate. A better understanding
of the structure of intermediate positive bases will certainly help to answer this question.

In 2018, it was rigorously showed, with concepts of matrix algebra, that a maximal positive basis
(s = 2n) has maximal cosine measure 1/

√
n and a minimal positive basis (s = n+ 1) has maximal

cosine measure 1/n. The positive bases attaining these upper bounds have also been characterized
[18]. However, finding the positive basis of intermediate size with maximal cosine measure is still an
open question [12,18]. Hopefully the algorithm provided in this paper will be useful to answer this
question. The algorithm presented in this paper could also be used to find, employing a numerical
approach, the maximal cosine measure for a positive spanning set of 2n vectors (the maximal cosine
measure for a positive basis of size 2n is 1/

√
n, but this value could be wrong if we consider all the

positive spanning sets of size 2n instead, as discussed in [12]).
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