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Abstract

In this paper we introduce a new parameterized Quadratic Decision Rule (QDR), a generali-
sation of the commonly employed Affine Decision Rule (ADR), for two-stage linear adjustable
robust optimization problems with ellipsoidal uncertainty and show that (affinely parameter-
ized) linear adjustable robust optimization problems with QDRs are numerically tractable by
presenting exact semi-definite program (SDP) and second order cone program (SOCP) refor-
mulations. Under these QDRs, we also establish that exact conic program reformulations also
hold for two-stage linear ARO problems, containing also adjustable variables in their objec-
tive functions. We then show via numerical experiments on lot-sizing problems with uncertain
demand that adjustable robust linear optimization problems with QDRs improve upon the
ADRs in their performance both in the worst-case sense and after simulated realization of the
uncertain demand relative to the true solution.

Keywords: Adjustable robust optimization, semi-definite programs, second order cone
programs, ellipsoidal uncertainty, robust linear optimization

1. Introduction

Consider the two-stage linear Adjustable Robust Optimization (ARO) problem with an
ellipsoidal uncertainty set

(P0) min
x,y(·)

cTx

s.t. A(z)x+By(z) ≤ d(z), ∀z ∈ Z
(1.1)

where Z =
{
z ∈ Rl : ‖z‖2 ≤ r2, r > 0

}
is the user specified ellipsoidal uncertainty set, x ∈ Rn

is the first-stage “here and now” decision that is made before z ∈ Rl is realized, y(z) ∈ Rk is
the second-stage “wait and see” decision that can be adjusted according to the actual data; the
coefficient matrix A ∈ Rm×n and the right hand side vector d ∈ Rm depend on the uncertainty
parameter z, and the (fixed recourse) coefficient matrix B = (b1, . . . , bm)T , bi ∈ Rk does not
depend on z.

The ARO approach, which employs ARO model problems of the form (P0), is less conser-
vative than the traditional Robust Optimization (RO) methodology, pioneered by Ben-tal et.
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al [1, 5, 6, 7, 13, 15], as it yields more flexible decisions that can be adjusted according to the
realized portion of data at a given stage, and so allows multi-stage decision-making in practical
applications [12]. Moreover, ARO provides optimal objective values that are at least as good
as that of the standard RO approach [1, 17].

However, the two-stage ARO problem (P0) is a challenging optimization problem to study,
theoretically and numerically because a linear function is optimized over y(·), which are map-
pings y : Z → Rk, rather than vectors. It is generally hard to obtain a numerically tractable
characterization of the system with a mapping y(·) unless the mapping is restricted to satisfy
some special rules, called “decision rules”. Traditionally, y(·) is assumed to satisfy an Affine
Decision Rule (ADR), such as y(z) = y0 +Wz, where y0 ∈ Rk, W ∈ Rk×l are the coefficients
of the decision rule that are to be optimized [1, 11].

In many cases, affine decision rules, in particular, for the affinely parameterized ARO prob-
lems [3, 18], often result in computationally tractable reformulations and have been known to
give optimal or near optimal solutions for broad classes of practical problems,, e.g. inventory
management [1]. On the other hand, transformations of two-stage ARO problems with nonlin-
ear decision rules to single-stage robust problems often result in hard non-convex optimization
problems [1]. Consequently, the study of computational tractability and applicability of these
problems with nonlinear decision rules is of great interest in robust optimization.

In this paper we examine affinely parameterized two-stage adjustable robust linear optimiza-
tion problems with quadratic decision rules under an ellipsoidal uncertainty set and make the
following contributions.

(i) We introduce a new parameterized Quadratic Decision Rule (QDR), generalizing the
commonly employed affine decision rule, and show that affinely parameterized linear ARO
problems with QDRs are numerically tractable by presenting exact conic reformulations.
In particular, we establish exact second order cone program (SOCP) reformulations for
the linear ARO problems under a special separable QDRs.

We do this by generalizing the approach of [6, 1, 10] for ADRs and employing the S -
lemma [4] and the Schur’s complement. We further show how exact conic programming
reformulations can be derived from our results for ARO problems with adjustable variables
also in their objective functions as they appear in many practical decision-making models
of optimization, such as the lot-sizing problem with uncertain demand.

Various nonlinear decision rules, such as the homogeneous [21] and non-homogeneous
quadratic decision rules [19, 1], and polynomial decision rules [9], have also recently
been used to approximate and reformulate ARO problems. Our results readily yield
corresponding exact conic program reformulations for affinely parameterized linear ARO
problems [3] with affine decision rules and homogeneous as well as non-homogeneous
quadratic decision rules.

(ii) We employ our SDP and SOCP reformulations to solve the lot-sizing problem with uncer-
tain demand and present a comparison of our techniques in their performance by contrast-
ing their optimal solutions both in the worst-case sense and after simulated realisations of
the uncertain demand. Numerical experiments on lot-sizing problems demonstrate that
the quadratic decision rule outperforms affine decision rules in both cases, whilst the time
taken to solve problems with quadratic decision rules is significantly greater (due to the
larger number of variables) than the ones with affine decision rules.
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In section 2 we present the parameterized quadratic decision rule, an extension of the affine
decision rule, and present exact SDP and SOCP reformulations for two-stage ARO problems. In
section 3, we derive exact conic programming reformulations for ARO problems with adjustable
variables also in their objective functions. In section 4, we employ our reformulation schemes
to solve the lot-sizing problem and show that it is both consistent with the ADR and improves
upon it. In section 5 we present concluding remarks with a brief discussion on further research.

2. Quadratic Decision Rules & Exact Conic Program Reformulations

We begin by fixing some preliminaries. The notation Rn signifies the Euclidean space for
each n ∈ N := {1, 2, . . .} and Sl is the space of all real l × l symmetric matrices. As usual, the
symbol In stands for the identity (n×n) matrix, while R+ := [0,+∞) ⊂ R. The inner product
in Rn is defined by 〈x, y〉 := xTy for all x, y ∈ Rn. A symmetric (n× n) matrix A is said to be
positive semi-definite, denoted by A � 0, whenever xTAx ≥ 0 for all x ∈ Rn.

In this section, we present numerically tractable conic linear program reformulations of
the affinely adjustable case of the two-stage robust linear optimization problem (P0) under a
parameterised quadratic decision rule (QDR) which is defined as follows:

Definition 2.1 (Quadratic Decision Rule). Let θ ∈ [0, 1]. The ARO problem (P0) is said
to satisfy the parameterized quadratic decision rule whenever the mapping y(·) is restricted to
mappings of the form

y(z) = θ(y0 +Wz) + (1− θ)


zTQ1z
zTQ2z

...
zTQkz

 .
We define the following operator to simplify working:

zTQkz =

 z
TQ1z
...

zTQkz


so that our QDR is y(z) = θ(y0 +Wz) + (1− θ)zTQkz.

QDRs and SDP Reformulations. Consider the following affinely parameterized version of
ARO problem (P0) with the parameterized QDR,

(P ) min
x,y0,

W,Qj ,j=1,...,k

cTx

s.t. A(z)x+B
(
θ(y0 +Wz) + (1− θ)zTQkz

)
≤ d(z), ∀z ∈ Z,

(2.1)

where Z =
{
z ∈ Rl : ‖z‖2 ≤ r2

}
is ellipsoidal uncertainty set; c ∈ Rn; B = (b1, . . . , bm)T ; b ∈

Rk; A(z) = (a1 + A1z, . . . ,am + Amz)T , ai ∈ Rn, Ai ∈ Rn×l, d(z) = (d0,1 + dT1 z, . . . , d0,m +
dTmz)T , d0,i ∈ R, di ∈ Rl and θ ∈ [0, 1].

We associate with (P ) the following semi-definite program
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(P −QDR) min
x,y0,λ,

W,Qj ,j=1,...,k

cTx

s.t. λi ≥ 0, i = 1, . . . ,m,

 P1

. . .

Pm

 � 0,

where x ∈ Rn, y0 ∈ Rk, W ∈ Rk×l, Qj ∈ Sl, j = 1, . . . , k and

Pi =


d0,i − aTi x− θbTi y0 − λir2 1

2
(dTi − xTAi − θbTi W )

1

2
(dTi − xTAi − θbTi W )T λiIl − (1− θ)

k∑
j=1

(bi)jQj

 , i = 1, . . . ,m.

We first show that the problem (P) admits an exact SDP reformulation in the sense that the
objective values of (P) and (P-QDR) are equal and their constraint systems are equivalent. To
do this, we first recall the celebrated S -Lemma [4] which is a useful tool in nonconvex quadratic
optimization.

Lemma 2.2 (S -Lemma). Let A, B be two symmetric matrices such that there exists a z0 such
that zT0Az0 > 0. Then,

zTAz ≥ 0 =⇒ zTBz ≥ 0

holds true if and only if
∃λ ≥ 0 : B − λA � 0.

The following Theorem provides an exact SDP reformulation result for the linear ARO
problem (P).

Theorem 2.3 (General QDRs and Exact SDP Reformulations). Let θ ∈ [0, 1]. Consider
the linear ARO problem (P) with the parameterized quadratic decision rule and its associated
semi-definite program (P-QDR). Then, problem (P) and the semi-definite program (P-QDR)
are equivalent, in the sense that, (x,y0,W,Q1, . . . , Qk) is a solution for (P) if and only if
there exists λ ∈ Rm

+ such that (x,y0,λ,W,Q1, . . . , Qk) is a solution for (P-QDR). Moreover,
min (P) = min (P-QDR).

Proof. The constraint system of (P)

A(z)x+B
(
θ(y0 +Wz) + (1− θ)zTQkz

)
≤ d(z), ∀z ∈ Z

is equivalently re-written as the following semi-infinite system of m constraints:

(ai +Aiz)Tx+ bTi
(
θ(y0 +Wz) + (1− θ)zTQkz

)
≤ d0,i +dTi z, ∀z ∈ Z, i = 1, 2, . . . ,m (2.2)

For each i = 1, 2, . . . ,m, we claim that the system

(ai + Aiz)Tx+ bTi
(
θ(y0 +Wz) + (1− θ)zTQkz

)
≤ d0,i + dTi z, ∀z ∈ Z
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is equivalent to the liner matrix inequality:

∃λi ≥ 0,


d0,i − aTi x− θbTi y0 − λir2 1

2
(dTi − xTAi − θbTi W )

1

2
(dTi − xTAi − θbTi W )T λiIl − (1− θ)

k∑
j=1

(bi)jQj

 � 0. (2.3)

Granting this, we obtain that (x,y0,W,Qj) ∈ Rn × Rk × Rk×l × Sl, j = 1, . . . , k, satisfies the
system of constraints in (2.2) if and only if there exists λ ∈ Rm

+ such that (x,y0,λ,W,Qj) ∈
Rn × Rk × Rm × Rk×l × Sl satisfies the semi-definite constraint system of (P-QDR). As the
objective functions of both problems (P) and (P-QDR) are the same, we see that problem (P)
and the semi-definite program (P-QDR) are equivalent and min (P) = min (P-QDR). Then,
the conclusion of this theorem follows.

We now turn to the proof of the claim. Fix i ∈ {1, . . . ,m}. Then,

(ai + Aiz)Tx+ bTi
(
θ(y0 +Wz) + (1− θ)zTQkz

)
≤ d0,i + dTi z, ∀z ∈ Z

⇐⇒ (ai + Aiz)Tx+ bTi

θ(y0 +Wz) + (1− θ)

 z
TQ1z
...

zTQkz


 ≤ d0,i + dTi z, ∀z ∈ Z

⇐⇒ (d0,i − aTi x− θbTi y0) +
(
dTi − xTAi − θbTi W

)
z − zT

(
(1− θ)

k∑
j=1

(bi)jQj

)
z ≥ 0,∀z ∈ Z

which is, in turn, equivalent to the implication:

r2 − zTz ≥ 0 =⇒ (d0,i − aTi x− θbTi y0) +
(
dTi − xTAi − θbTi W

)
z

−zT
(

(1− θ)
k∑
j=1

(bi)jQj

)
z ≥ 0.

(2.4)

Letting u =

[
1
z

]
we can write the above implication as

uTPu ≥ 0 =⇒ uTRiu ≥ 0,

where

P =

[
r2 0
0 −Il

]
, Ri =


d0,i − aTi x− θbTi y0

1

2
(dTi − xTAi − θbTi W )

1

2
(dTi − xTAi − θbTi W )T −(1− θ)

k∑
j=1

(bi)jQj

 .
Clearly P and R are symmetric matrices. If we choose u0 =

[
1 0

]T
then uT0 Pu0 = r2 > 0

and so the S -Lemma [4] applies. Hence, (2.2) is equivalent to the linear matrix inequality:

∃λi ≥ 0 : Ri − λiP � 0
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⇐⇒ λi ≥ 0,


d0,i − aTi x− θbTi y0 − λir2 1

2
(dTi − xTAi − θbTi W )

1

2
(dTi − xTAi − θbTi W )T λiIl − (1− θ)

k∑
j=1

(bi)jQj

 � 0.

Thus, the claim follows.

Remark 2.4 (Exact SDPs for affine & and other known quadratic decision rules).
It is worth noting that Theorem 2.3. readily yields exact SDP reformulations for linear ARO
problems with affine decision rules [1] by setting θ = 1, homogeneous quadratic decision rules
[21] by setting θ = 0 and with non homogeneous quadratic decision rules [19] by setting θ = 1

2
.

Separable QDRs and SOCP Reformulations. We now show that, if we consider a re-
stricted version of the quadratic decision rule (see Definition 2.1), then the ADR problem can
be equivalently reformulated as a second order cone programming problem. Second order cone
programming reformulations for classes of nonconvex quadratic optimization problems and ro-
bust optimization problems have been of great interest in recent years [2, 16]. This is because
the second order cone programming method has proved to be a powerful scheme for solving
various class of practical optimization problems and advanced commercial software is available
to solve SOCPs.

Definition 2.5 (Separable Quadratic Decision Rule). Let θ ∈ [0, 1]. The ARO problem
(P0) is said to satisfy the parameterized separable quadratic decision rule whenever the mapping
y(·) is restricted to mappings of the form

y(z) = θ(y0 +Wz) + (1− θ)


zTQ1z
zTQ2z

...
zTQkz

 = θ(y0 +Wz) + (1− θ)



l∑
p=1

q1,pz
2
p

l∑
p=1

q2,pz
2
p

...
l∑

p=1

qk,pz
2
p


,

where Qj, j = 1, . . . , k, are diagonal matrices whose diagonal elements are q1,j, . . . , ql,j.

We now consider the following affinely parameterized version of ARO problem (P0) with
the separable quadratic decision rule:

(Ps) min
x,y0,

W,Qj ,j=1,...,k

cTx

s.t. A(z)x+B
(
θ(y0 +Wz) + (1− θ)zTQkz

)
≤ d(z), ∀z ∈ Z,

(2.5)

where zTQkz =

 z
TQ1z
...

zTQkz

 and each Qj, j = 1, . . . , k, is a diagonal matrix whose diagonal

elements are q1,j, . . . , ql,j. Other assumptions on (Ps) are the same as on (P ).
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To do this, we first show that, using a linear transform and Schur’s complement, the con-
straints of (Ps) (with separable quadratic decision rule) can be characterized in terms of second
order cone constraints.

Proposition 2.6 (Equivalent Second-order Cone Constraints). Let θ ∈ [0, 1]; let a ∈
Rn, A ∈ Rn×l, b ∈ Rk, d ∈ Rl, d0 ∈ R; let x ∈ Rn, y0 ∈ Rk, W ∈ Rk×l, Qj ∈ Sl, j =
1, . . . , k. Let Z be an ellipsoidal uncertainty set, defined by Z =

{
z ∈ Rl : ‖z‖2 ≤ r2

}
. Suppose

that each Qj, j = 1, . . . , k, is a diagonal matrix whose diagonal elements are q1,j, . . . , ql,j. Then,
the following systems are equivalent:

(I) (a+ Az)Tx+ bT
(
θ(y0 +Wz) + (1− θ)zTQkz

)
≤ d0 + dTz, ∀z ∈ Z

(II) There exist λ ∈ R+ and sp ∈ R+, p = 1, . . . , l, such that
l∑

p=1

sp ≤ d0 − aTx− θbTy0 − λr2,

λ− (1− θ)σp ≥ 0, p = 1, . . . , l,∥∥((d− ATx− θW Tb)p, sp − λ+ (1− θ)σp
))
‖ ≤ sp + λ− (1− θ)σp, p = 1, . . . , l.

Here, σp =
∑k

j=1 bjqp,j, p = 1, . . . , l are the diagonal elements of
∑k

j=1 bjQj.

Proof. Following the same line of arguments as in the proof of Theorem 2.3 we can prove, using
S -Lemma, that (I) is equivalent to the semi-definite inequality:

∃λ ≥ 0, such that


d0 − aTx− θbTy0 − λr2 1

2
(dT − xTA− θbTW )

1

2
(dT − xTA− θbTW )T λIl − (1− θ)

k∑
j=1

bjQj

 � 0. (2.6)

[(I) ⇒ (II)] We now show that (2.6) implies (II). Observe that (2.6) implies that, for each
p = 1, . . . , l the following (2× 2) matrix d0 − aTx− θbTy0 − λr2 1

2

(
d− ATx− θW Tb

)
p

1

2

(
d− ATx− θW Tb

)
p

λ− (1− θ)σp

 � 0.

So, d0 − aTx− θbTy0 − λr2 ≥ 0, for each p = 1, . . . , l, λ− (1− θ)σp ≥ 0, and

(
d0 − aTx− θbTy0 − λr2

)
(λ− (1− θ)σp) ≥

[
1

2

(
d− ATx− θW Tb

)
p

]2

. (2.7)

Now, define the index L by

L = {p ∈ {1, . . . , l} : λ− (1− θ)σp > 0}, (2.8)

and let

sp =


0 if p /∈ L,[(

d− ATx− θW Tb
)
p

]2

4(λ− (1− θ)σp)
if p ∈ L.
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Then it follows that, for all p /∈ L, λ− (1− θ)σp = 0 and (2.7) gives us that(
d− ATx− θW Tb

)
p

= 0.

So, from the construction of sp, we obtain that sp ≥ 0, p = 1, . . . , l, and,[(
d− ATx− θW Tb

)
p

]2

≤ 4sp(λ− (1− θ)σp), p = 1, . . . , l.

Using the following well-known equivalence

t2 ≤ 4αβ, α, β ≥ 0 ⇔ ‖(t, α− β)‖ ≤ α + β, (2.9)

we obtain that d0 − aTx− θbTy0 − λr2 ≥ 0, and for each p = 1, . . . , l, λ− (1− θ)σp ≥ 0, and∥∥∥((d− ATxT −W T θb
)
p
, sp − λ+ (1− θ)σp

)∥∥∥ ≤ sp + λ− (1− θ)σp.

Let M = diag(λ− (1− θ)σ1, . . . , λ− (1− θ)σl) ∈ Rl×l and u = d−ATx− θW Tb ∈ Rl. For the
index L ⊆ {1, . . . , l} defined as before, let ML = (Mαβ)α,β∈L and uL = (uα)α∈L. Then, (2.6)
gives us that [

d0 − aTx− θbTy0 − λr2 1
2
uTL

1
2
uL ML

]
� 0. (2.10)

Note from the definition of L that ML � 0. The Schur’s complement together with (2.10)
implies that

(d0 − aTx− θbTy0 − λr2)− 1

4
uTLM

−1
L uL ≥ 0.

It follows from the definitions of ML and uL that

0 ≤ (d0 − aTx− θbTy0 − λr2)− 1

4

∑
p∈L

[
(
d− ATxT −W T θb

)
p
]2

λ− (1− θ)σp

= (d0 − aTx− θbTy0 − λr2)−
∑
p∈L

sp

= (d0 − aTx− θbTy0 − λr2)−
l∑

p=1

sp,

where the first equality is from the definition of sp, p = 1, . . . , l, and the last system of equalities
follows from the fact that sp = 0 for all p /∈ L. So, (II) holds.

[(II)⇒ (I)] Suppose that (II) holds. Define the index L as in (2.8). The last relation in (II)
shows that [(

d− ATx− θW Tb
)
p

]2

≤ 4sp (λ− (1− θ)σp) , p = 1, . . . , l.

So, up =
(
d− ATx− θW Tb

)
p

= 0 for all p /∈ L, and for all p ∈ L

sp ≥

[(
d− ATx− θW Tb

)
p

]2

4(λ− (1− θ)σp)
.

8



This together with the second relation in (II) gives us that

d0 − aTx− θbTy0 − λr2 ≥
l∑

p=1

sp ≥
∑
p∈L

sp ≥
∑
p∈L

[(
d− ATx− θW Tb

)
p

]2

4(λ− (1− θ)σp)
=

1

4
uTLM

−1
L uL,

where the first equality follows by noting that sp ≥ 0 for all p = 1, . . . , l, and the last equality
follows from the definitions of ML and uL. This shows that (2.10) holds. As for all p /∈ L,
up = 0 and λ− (1− θ)σp = 0, it follows that[

d0 − aTx− θbTy0 − λr2 1
2
uT

1
2
u M

]
� 0, (2.11)

and so, (2.6) holds. Hence, (I) follows.

We now associate with (Ps) the following second order cone program:

(Ps-QDR) min
x, y0,W, λi, sp,i, σp,i

cTx

s.t. λi ≥ 0, sp,i ≥ 0, i = 1, . . . ,m, p = 1, . . . , l,

l∑
p=1

sp,i ≤ d0,i − aTx− θbTi y0 − λir2, i = 1, . . . ,m,

λi − (1− θ)σp,i ≥ 0, i = 1, . . . ,m, p = 1, . . . , l,∥∥∥((di −ATx− θW Tbi
)
p
, sp,i − λi + (1− θ)σp,i

)∥∥∥ ≤ sp,i + λi − (1− θ)σp,i,

i = 1, . . . ,m, p = 1, . . . , l,

where x ∈ Rn, y0 ∈ Rk, W ∈ Rk×l, λi ∈ R, sp,i ∈ R, σp,i ∈ R, p = 1, . . . , l, i = 1, . . . ,m.
Using Proposition 2.6, we now show that the problem (Ps) admits an exact SOCP reformu-

lation in the sense that the objective values of (Ps) and (Ps-QDR) are equal and their constraint
systems are equivalent.

Theorem 2.7 (Separable QDRs and Exact SOCP Reformulations). Let θ ∈ [0, 1]. Con-
sider the linear ARO problem (Ps) with the parameterized separable quadratic decision rule and
its associated second order cone program (Ps-QDR). Then, problem (Ps) and the second order
cone program (Ps-QDR) are equivalent, in the sense that, (x,y0,W,Q1, . . . , Qk) is a solution
for (Ps) with Qj = diag(q1,j, . . . , ql,j), j = 1, . . . , k, if and only if there exists λi, sp,i, σp,i ≥ 0,
p = 1, . . . , l, i = 1, . . . ,m, such that (x,y0,W, λi, sp,i, σp,i) is a solution for (Ps-QDR) with

σp,i =
∑k

j=1(bi)jqp,j, p = 1, . . . , l, i = 1, . . . ,m. Moreover, min(Ps) = min(Ps-QDR)

Proof. The constraint of (Ps)

A(z)x+B
(
θ(y0 +Wz) + (1− θ)zTQkz

)
≤ d(z), ∀z ∈ Z

can be equivalently rewritten as the following system of m constraints:

(ai + Aiz)Tx+ bTi
(
θ(y0 +Wz) + (1− θ)zTQkz

)
≤ d0,i + dTi z, ∀z ∈ Z, i = 1, 2, . . . ,m.
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It now follows from Proposition 2.6 that, for each i = 1, 2, . . . ,m, the system

(ai + Aiz)Tx+ bTi
(
θ(y0 +Wz) + (1− θ)zTQkz

)
≤ d0,i + dTi z, ∀z ∈ Z

is equivalent to

∃λi ≥ 0, sp,i ≥ 0, p = 1, . . . , l such that

λi ≥ 0, sp,i ≥ 0, i = 1, . . . ,m, p = 1, . . . , l,
l∑

p=1

sp,i ≤ d0,i − aTx− θbTi y0 − λir2,

λi − (1− θ)σp,i ≥ 0, i = 1, . . . ,m, p = 1, . . . , l,∥∥∥((di −ATx− θW Tbi
)
p
, sp,i − λi + (1− θ)σp,i

)∥∥∥ ≤ sp,i + λi − (1− θ)σp,i, p = 1, . . . , l,

where, for each i = 1, . . . ,m, σp,i, p = 1, . . . , l, are the diagonal elements of
∑k

j=1 (bi)jQj,

that is, σp,i =
∑k

j=1(bi)jqp,j, p = 1, . . . , l, i = 1, . . . ,m. As the objective functions of both
problems (Ps) and (Ps-QDR) are the same, we obtain that (x,y0,W,Q1, . . . , Qk) is a solution
for (Ps) if and only if there exist λi, sp,i, σp,i ≥ 0, p = 1, . . . , l, i = 1, . . . ,m, such that

(x,y0,W, λi, sp,i, σp,i), is a solution for (Ps-QDR) with σp,i =
∑k

j=1(bi)jqp,j, p = 1, . . . , l,
i = 1, . . . ,m, and min(Ps) = min(Ps-QDR).

Remark 2.8. Note that, in the SDP formulation, the decision variable is (x,y0,W,Q1, . . . , Qk)

which is of dimension n+k+kl+k l(l+1)
2

; while in the SOCP formulation, the decision variable
is (x,y0,W, λi, sp,i, σp,i) which is of dimension n+ k + kl +m+ 2ml.

3. ARO Problems with Objective and Constraint Adjustable Variables

In this section we establish exact conic program reformulations for the following affinely
parameterized version of ARO problem (P0) with adjustable variables also in the objective
function:

(P0) min
x,y(·)

cTx+ max
z∈Z
{wTy(z)}

s.t. A(z)x+By(z) ≤ d(z), ∀z ∈ Z
(3.1)

where Z =
{
z ∈ Rl : ‖z‖2 ≤ r2

}
is ellipsoidal uncertainty set; c ∈ Rn; w ∈ Rk; B =

(b1, . . . , bm)T , b ∈ Rk; A(z) = (a1 + A1z, . . . ,am + Amz)T ,ai ∈ Rn, Ai ∈ Rn×l and d(z) =
(d0,1 +dT1 z, . . . , d0,m +dTmz)T , d0,i ∈ R, di ∈ Rl. The problem (P0) with the quadratic decision
rule as in Definition 2.1 takes the form:

(P ) min
x,y0,

W,Qj ,j=1,...,k

cTx+ max
z∈Z
{wT (θ(y0 +Wz) + (1− θ)zTQ z)}

s.t. A(z)x+B
(
θ(y0 +Wz) + (1− θ)zTQkz

)
≤ d(z), ∀z ∈ Z.

(3.2)

We associate with (P ) the following semi-definite program

(P -QDR) min
x,y0,λ, τ ,

W,Qj ,j=1,...,k

cTx+ τ

s.t. λi ≥ 0, i = 1, . . . ,m,

 P1

. . .

Pm+1

 � 0,
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where x ∈ Rn, y0 ∈ Rk, τ ∈ R, W ∈ Rk×l, Qj ∈ Sl, j = 1, . . . , k and

Pi =




d0,i − aTi x− θbTi y0 − λir2 1

2
(dTi − xTAi − θbTi W )

1

2
(dTi − xTAi − θbTi W )T λiIl − (1− θ)

k∑
j=1

(bi)jQj

 i = 1, . . . ,m,


τ − θwTy0 − λm+1r

2 1

2
(−θwTW )

1

2
(−θwTW )T λiIl − (1− θ)

k∑
j=1

wjQj

 i = m+ 1.

Pd

Corollary 3.1. Let θ ∈ [0, 1]. Consider the linear ARO problem (P ) with the parameterized
quadratic decision rule and its associated semi-definite program (P -QDR) . Then, problem (P )
and the semi-definite program (P -QDR) are equivalent, in the sense that, (x,y0,W,Q1, . . . , Qk)
is a solution for (P ) if and only if there exists λ ∈ Rm

+ and τ ∈ R such that (x,y0,λ, τ,W,Q1, . . . , Qk)
is a solution for (P -QDR). Moreover, min(P ) = min(P -QDR)

Proof. The problem (P ) can be equivalently rewritten as

min
x,y0,

W,Qj ,j=1,...,k,τ

cTx+ τ

s.t. A(z)x+B
(
θ(y0 +Wz) + (1− θ)zTQkz

)
≤ d(z), ∀z ∈ Z, ,

wT (θ(y0 +Wz) + (1− θ)zTQkz) ≤ τ, ∀z ∈ Z,

(3.3)

The constraints of (3.2) can equivalently be re-written as the following system of m + 1 con-
straints:

(ai +Aiz)Tx+ bTi
(
θ(y0 +Wz) + (1− θ)zTQkz

)
≤ d0,i +dTi z, ∀z ∈ Z, i = 1, 2, . . . ,m (3.4)

and
wT
(
θ(y0 +Wz) + (1− θ)zTQkz

)
≤ τ.

So, the conclusion follows by the same line of arguments as in Theorem 2.3.

Now, consider the following ARO problem with separable quadratic decision rule as in
Definition 2.5:

(P s) min
x,y0

W,Qj ,j∈[k]+

cTx+ max
z∈Z
{wT (θ(y0 +Wz) + (1− θ)zTQkz)}

s.t. A(z)x+B
(
θ(y0 +Wz) + (1− θ)zTQkz

)
≤ d(z), ∀z ∈ Z,

(3.5)

where the assumptions of (P s) are the same as of (Ps). We associate with (P s) the following
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second order cone program:

(P s-QDR) min
x, y0,W, τ,
λi, sp,i, σp,i

cTx+ τ

s.t. λi ≥ 0, sp,i ≥ 0, i = 1, . . . ,m+ 1, p = 1, . . . , l,

l∑
p=1

sp,i ≤ d0,i − aTx− θbTi y0 − λir2, i = 1, . . . ,m,

l∑
p=1

sp,m+1 ≤ τ − θwTy0 − λm+1r
2,

λi − (1− θ)σp,i ≥ 0, i = 1, . . . ,m+ 1, p = 1, . . . , l,∥∥∥((di −ATx− θW Tbi
)
p
, sp,i − λi + (1− θ)σp,i

)∥∥∥ ≤ sp,i + λi − (1− θ)σp,i,

i = 1, . . . ,m, p = 1, . . . , l,∥∥((−θW Tw)p, sp,m+1 − λm+1 + (1− θ)σp,m+1

)∥∥ ≤ sp,m+1 + λm+1 − (1− θ)σp,m+1,

p = 1, . . . , l.

Corollary 3.2. Let θ ∈ [0, 1]. Consider the linear ARO problem (P ) with the parameter-
ized separable quadratic decision rule and its associated second order cone program (P s-QDR).
Then, problem (P ) and the second order cone program (P s-QDR) are equivalent, in the sense
that, (x,y0,W,Q1, . . . , Qk) is a solution for (P ) with Qj = diag(q1,j, . . . , ql,j), j = 1, . . . , k,
if and only if there exists τ, λi, sp,i, σp,i ≥ 0, p = 1, . . . , l, i = 1, . . . ,m + 1, such that

(x,y0,W, τ, λi, sp,i, σp,i) is a solution for (P s-QDR) with σp,i =
∑k

j=1(bi)jqp,j, p = 1, . . . , l,

i = 1, . . . ,m and σp,m+1 =
∑k

j=1wjqp,j, p = 1, . . . , l. Moreover, min(P s) = min(P s-QDR).

Proof. As we have seen in Corollary 2.8, the problem (P s) can be equivalently rewritten as

min
x,y0,W, τ
Qj ,j=1,...,k

cTx+ τ

s.t. A(z)x+B(θ(y0 +Wz) + (1− θ)zTQkz)(z) ≤ d(z), ∀z ∈ Z,
wT (θ(y0 +Wz) + (1− θ)zTQkz) ≤ τ, ∀z ∈ Z.

(3.6)

Now, the conclusion follows from Proposition 2.6.

Remark 3.3. We note that, our exact SDP (resp. SOCP reformulation) continues to hold in
the general case where the cost vector c is also uncertain and it belongs to the norm uncertainty
set U := {c : ‖c − c0‖ ≤ ρ} for some c0 ∈ Rn and ρ ≥ 0. Here ‖ · ‖ denotes a norm in Rn.
Indeed, in this case, problem (P ) becomes

min
x,y0

W,Qj ,j=1,...,k

max
c∈U

cTx+ max
z∈Z
{wT (θ(y0 +Wz) + (1− θ)zTQkz)}

s.t. A(z)x+B(θ(y0 +Wz) + (1− θ)zTQkz) ≤ d(z), ∀z ∈ Z,
(3.7)
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which can be further rewritten as

min
x,y0, τ1, τ2

W,Qj ,j=1,...,k

cTx+ τ1 + τ2

s.t. A(z)x+B(θ(y0 +Wz) + (1− θ)zTQkz) ≤ d(z), ∀z ∈ Z,
wT (θ(y0 +Wz) + (1− θ)zTQkz) ≤ τ1, ∀z ∈ Z,

cT0 x+ ρ‖x‖ ≤ τ2.

(3.8)

Thus, the conclusion follows by employing the same line of arguments as in the proof of the
preceding two corollaries.

4. Lot-Sizing Problem: Worst-case & Uncertainty-Realisation Comparisons

In the lot-sizing problem on a network, we consider N stores, for which stock allocations
must be determined to fulfill the demand at each store. Stock can be delivered at the beginning
of the day and stored, or transported from another store at a later point in time. Let xi denote
the quantity of stock to initially deliver to store i, with unit storage cost ci. Each store can
hold up to Γ units of stock at any time. Let yij denote the quantity of stock to transport from
store i to store j, with unit transportation cost tij. Note that tii = 0 and tij is not necessarily
equal to tji.

In general the demand for store i, denoted zi, is uncertain at the beginning of the day,
only known to reside in some uncertainty set Z. Hence, we formulate the problem as a two-
stage adjustable robust problem, by allowing the transportation decisions yij to become wait-
and-see variables. That is, an initial stock delivery x is sent to all stores at the beginning
of the day, and once the demand z is revealed, the transportation decisions yij(z), i, j =
1, . . . , N are implemented to fulfill the demand at each store. Wanting to minimize total costs,∑N

i=1 cixi +
∑N

i,j=1 tijyij(z), this gives the following ARO formulation:

(LS) min
x ∈ X ⊂ RN , τ ∈ R,
yij : Z ⊆ RN → R,

i,j=1,...,N

N∑
i=1

cixi + max
z∈Z

{
N∑

i,j=1

tijyij(z)

}

s.t. xi +
N∑
j=1

yji(z)−
N∑
j=1

yij(z) ≥ zi, ∀z ∈ Z, , i = 1 . . . N,

yij(z) ≥ 0, ∀z ∈ Z, i, j = 1 . . . N,

where xi are the here-and-now decisions, x ∈ X = {x ∈ RN : 0 ≤ xi ≤ Γ, i = 1, . . . , N}, yij
are the wait-and-see variables, with uncertainty set Z = {z ∈ RN : ‖z‖2 ≤ Γ2

2
} (for further

details, see [20]).
We wish to compare the solution methods of direct ADR substitution, QDR via SDP as in

Corollary 3.1 and Separable QDR via SOCP as in Corollary 3.2. We will first compare their
solutions after realisation of the uncertain demand d, by comparison of the realised cost to the

13



true solution given by

(TD) min
x, yij

N∑
i=1

cixi +
N∑

i,j=1

tijyij

s.t. xi +
N∑
j=1

yji −
N∑
j=1

yij ≥ di, i = 1, . . . , N,

0 ≤ xi ≤ Γ, i = 1, . . . , N,

yij ≥ 0, i, j = 1, . . . , N.

We will then compare our solution methods to the worst-case solution, given by substitution
into (TD) of the worst case value for di in Z; namely, di = Γ√

2
:

(WC) min
x, yij

N∑
i=1

cixi +
N∑

i,j=1

tijyij

s.t. xi +
N∑
j=1

yji −
N∑
j=1

yij ≥
Γ√
2
, i = 1, . . . , N,

0 ≤ xi ≤ Γ, i = 1, . . . , N,

yij ≥ 0, i, j = 1, . . . , N.

Note that the direct ADR substitution into (LS) is solved via a SOCP (see, e.g. [5, Theorem
3.1]).

We create 50 random instances of the lot-sizing problem by generating storage and trans-
portation costs from the uniform distribution on [0, 1000]. We produce a random demand d ∈ Z
for each. We then compare the methods by calculating the following percentage difference met-
rics:

m1 = 100 · v − t
v

, m2 = 100 · w − v
w

where v is the optimal (realized/worst-case) value produced by solving (LS) via the method,
t is the optimal value for (TD), w is the optimal value for (WC), m1 is a comparison metric
against (TD) and m2 is a comparison metric against the (WC). We also compute the average
time taken to solve a single problem instance, for each of these methods. Note that the lower
the calculated m1 and the higher the calculated m2, the better the performance of the method.

All computations were performed using a 3.2GHz Intel(R) Core(TM) i7-8700 and 16GB of
RAM, equipped with MATLAB R2019B. All problem instances, being conic programs, were
solved using the CVX toolbox (see, e.g. [14]).

14



True Solution ADR via SOCP [5]. QDR via SDP Separable QDR via SOCP

N = 2: % Diff. 67.7072 64.7297 64.9984

N = 3: % Diff. 67.5402 63.9634 64.4285

N = 4: % Diff. 70.6617 65.9177 66.6341

N = 5: % Diff. 68.8926 63.6860 64.5545

N = 8: % Diff. 71.8619 64.1862 65.3614

Table 1: Results for the case of true solution comparison. % Diff. represents the average percentage difference
between the solution to (TD) and the realised solution for the method (m1). Time is measured in seconds.
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Worst-Case ADR via SOCP [5]. QDR via SDP Separable QDR via SOCP

N = 2: % Diff. 17.2541 20.7104 20.6353

N = 3: % Diff. 30.3298 36.4901 35.6099

N = 4: % Diff. 42.1128 49.4073 48.2685

N = 5: % Diff. 46.9065 55.1508 53.9234

N = 8: % Diff. 63.2694 71.2344 70.2952

Table 2: Results for the case of worst-case comparison and random costs. % Diff. represents the average
percentage difference between worst-case solution of (WC) and the worst-case solution for the method (m2).
Average Time is not presented as it is previously demonstrated in Table 1.
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Problem Sizes ADR via SOCP [5]. QDR via SDP Separable QDR via SOCP

N = 2: Variables: 25 78 154

Constraints: 14 27 73

N = 3: Variables: 63 200 370

Constraints: 25 84 186

N = 4: Variables: 123 435 728

Constraints: 41 215 383

N = 5: Variables: 213 840 1264

Constraints: 61 468 688

N = 8: Variables: 723 3890 4813

Constraints: 145 1271 2322

Table 3: Representation of the problem size for each method. Number of optimisation variables and number of
equality constraints as outputted by CVX after solving.

Based on the numerical experiments, we can conclude then that both SDP and SOCP
reformulation based methods for solving affinely parameterized ARO problems with a quadratic
decision rule exceed the performance of the classical ADR approach.

With our state-of-the-art conic programming solver, we were only able to solve up to size
N = 8, as is demonstrated in Table 1.

5. Conclusion and Outlook

In this paper we have shown that affinely parameterized linear adjustable robust opti-
mization problems with a new parametric QDRs under ellipsoidal uncertainty are numerically
tractable by establishing exact semi-definite program and second order cone program refor-
mulations. We have also demonstrated via numerical experiments on lot-sizing problems with
uncertain demand that these adjustable robust linear optimization problems with QDRs im-
prove upon the affine decision rules in their performance both in the worst-case sense and after
simulated realization of the uncertain demand relative to the true solution. It is of great inter-
est to study computational tractability of adjustable robust linear optimization problems with
QDRs in the presence of uncertainty sets that are expressed as the intersection of ellipsoids and
will be examined in a forthcoming study.
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