Skip to main content
Log in

Multiple sink location problem in path networks with a combinational objective

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we consider the k-sink location problem in a path network with the goal of optimizing a combinational function of the maximum completion time and the total completion time. Let \(P=\left( V,E\right) \) be an undirected path network with n vertices. Each vertex has a positive weight, indicating the initial amount of supplies, and each edge has a positive length and a uniform capacity, which is the maximum amount of supplies that can enter the edge per unit time. Our goal is to identify k sink locations on the path P so that all supplies will be successfully evacuated and the given objective function is optimized. This paper presents two efficient polynomial time algorithms, which achieve \(O\left( n \right) \) for \(k=1\) and \(O\left( n^6 \right) \) for general k, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arumugam, G.P., Augustine, J., Golin, M.J., Strikanthan, P.: Minmax regret \(k\)-sink location on a dynamic path network with uniform capacities. Algorithmica 81(9), 3534–3585 (2019)

    Article  MathSciNet  Google Scholar 

  2. Benkoczi, R., Bhattacharya, B., Higashikawa, Y., Kameda, T., Katoh, N.: Minsum k-sink problem on path networks. Theor. Comput. Sci. 806(2), 388–401 (2020)

    Article  MathSciNet  Google Scholar 

  3. Berman, O., Yang, E.K.: Medi-centre location problems. J. Oper. Res. Soc. 42(4), 313–322 (1991)

    Article  Google Scholar 

  4. Bhattacharya, B., Golin, M.J., Higashikawa, Y., Kameda, T., Katoh, N.: Improved algorithms for computing \(k\)-sink on dynamic flow path networks. In: Proceedings of the 15th International Symposium, Workshop on Algorithms and Data Structures (WADS), LNCS, vol. 10389, pp. 133–144 (2017)

  5. Bhattacharya, B., Higashikawa, Y., Kameda, T., Katoh, N.: Minmax regret 1-sink for aggregate evacuation time on path networks. arXiv:1806.00814v1 (2018)

  6. Bhattacharya, B., Kameda, T.: Improved algorithms for computing minmax regret sinks on dynamic path and tree networks. Theor. Comput. Sci. 607(p3), 411–425 (2015)

    Article  MathSciNet  Google Scholar 

  7. Cheng, S.W., Higashikawa, Y., Katoh, N., Ni, G., Su, B., Xu, Y.: Minimax regret 1-sink location problems in dynamic path networks. In: Proceedings of the 10th Annual Conference on Theory and Applications of Models of Computation (TAMC), LNCS, vol. 7876, pp. 121–132 (2013)

  8. Ford, J.L., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows. Oper. Res. 6(3), 419–433 (1958)

    Article  MathSciNet  Google Scholar 

  9. Golin, M.J., Sandeep, S.: Minmax-regret \(k\)-sink location on a dynamic tree network with uniform capacities. arXiv:1806.03814 (2018)

  10. Halpern, J.: The location of a center-median convex combination on an undirected tree. J. Reg. Sci. 16(2), 237–245 (1976)

    Article  Google Scholar 

  11. Halpern, J.: Finding minimal center-median convex combination (cent-dian) of a graph. Manag. Sci. 24(5), 534–544 (1978)

    Article  MathSciNet  Google Scholar 

  12. Higashikawa, Y., Augustine, J., Cheng, S.W., Golin, M.J., Katoh, N., Ni, G., Su, B., Xu, Y.: Minimax regret 1-sink location problem in dynamic path networks. Theor. Comput. Sci. 588(11), 24–36 (2015)

    Article  MathSciNet  Google Scholar 

  13. Higashikawa, Y., Cheng, S.W., Kameda, T., Katoh, N., Saburi, S.: Minimax regret 1-median problem in dynamic path networks. Theory Comput. Syst. 62(6), 1392–1408 (2018)

    Article  MathSciNet  Google Scholar 

  14. Higashikawa, Y., Golin, M.J., Katoh, N.: Minimax regret sink location problem in dynamic tree networks with uniform capacity. In: Proceedings of the 8th International Workshop on Algorithms and Computation (WALCOM), LNCS, vol. 8344, pp. 125–137 (2014)

  15. Higashikawa, Y., Golin, M.J., Katoh, N.: Multiple sink location problems in dynamic path networks. In: Proceedings of the 10th International Conference on Algorithmic Aspects of Information and Management (AAIM), LNCS, vol. 8546, pp. 149–161 (2014)

  16. Higashikawa, Y., Golin, M.J., Katoh, N.: Multiple sink location problems in dynamic path networks. Theor. Comput. Sci. 607(1), 2–15 (2015)

    Article  MathSciNet  Google Scholar 

  17. Hooker, J.N., Garfinkel, R.S., Chen, C.: Finite dominating sets for network location problems. Oper. Res. 39(1), 100–118 (1991)

    Article  MathSciNet  Google Scholar 

  18. Li, H., Xu, Y.: Minimax regret 1-sink location problem with accessibility in dynamic general networks. Eur. J. Oper. Res. 250(2), 360–366 (2016)

    Article  MathSciNet  Google Scholar 

  19. Li, H., Xu, Y., Ni, G.: Minimax regret vertex 2-sink location problem in dynamic path networks. J. Comb. Optim. 31(1), 79–94 (2016)

    Article  MathSciNet  Google Scholar 

  20. Mamada, S., Makino, K., Fujishige, S.: Optimal sink location problem for dynamic flows in a tree network. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 85(5), 1020–1025 (2002)

    Google Scholar 

  21. Mamada, S., Uno, T., Makino, K., Fujishige, S.: An \(O(n\log ^{2}n)\) algorithm for the optimal sink location problem in dynamic tree networks. Discrete Appl. Math. 154(16), 2387–2401 (2006)

    Article  MathSciNet  Google Scholar 

  22. Ni, G., Xu, Y., Dong, Y.: Minimax regret \(k\)-sink location problem in dynamic path networks. In: Proceedings of the 10th International Conference on Algorithmic Aspects of Information and Management (AAIM), LNCS, vol. 8546, pp. 23–31 (2014)

  23. Toregas, C.R., Swain, R., Bergman, L.: The location of emergency service facilities. Oper. Res. 19(6), 1363–1373 (1971)

    Article  Google Scholar 

  24. Wang, H.: Minmax regret 1-facility location on uncertain path networks. Eur. J. Oper. Res. 239(3), 636–643 (2014)

    Article  MathSciNet  Google Scholar 

  25. Xu, Y., Li, H.: Minimax regret 1-sink location problem in dynamic cycle networks. Inf. Process. Lett. 115(2), 163–169 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the MOE (Ministry of Education in China) Project of Humanities and Social Sciences under Grant 18YJC630114, the National Natural Science Foundation of China under Grant 71701162, the Fundamental Research Funds for the Central Universities under Grant XJS190602, the Natural Science Foundation of Shaanxi Province of China under Grants 2019JQ-079, 2019JQ-154, 2015JQ7278, and the China Postdoctoral Science Foundation under Grant 2017M613192.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Proof of Lemma 2

Proof

Compute \(f_1^L\left( v_i\right) \) in increasing order of i. By definition, \(f_1^L\left( v_1\right) =0\). According to Eq. (2), \(f_1^L\left( v_2\right) =\left( v_2-v_1\right) \tau + w_1/c\). For \(2 < i \le n\), we have

$$\begin{aligned} f_1^L\left( v_i\right) =\max \left\{ f_1^L\left( v_{i-1}\right) +\left( v_i - v_{i-1} \right) \tau , ~~\left( v_i - v_{i-1} \right) \tau + \frac{\sum _{1 \le j \le i-1} w_j}{c} \right\} . \end{aligned}$$

Therefore, \(f_1^L\left( v_i\right) \) for all \(v_i\) can be computed in \(O\left( n\right) \) time. Because of the symmetry of \(f_1^L\left( v_i\right) \) and \(f_1^R\left( v_i\right) \), \(f_1^R\left( v_i\right) \) for all \(v_i\) can also be computed similarly in reverse order of i. The calculation is as follows:

$$\begin{aligned} \begin{aligned}&f_1^R\left( v_n\right) = 0, \\&f_1^R\left( v_{n-1}\right) = \left( v_n-v_{n-1}\right) \tau + w_n/c, \\&f_1^R\left( v_i\right) = \max \left\{ f_1^R\left( v_{i+1}\right) +\left( v_{i+1} - v_{i} \right) \tau , ~~\left( v_{i+1} - v_{i} \right) \tau + \frac{\sum _{i+1 \le j \le n} w_j}{c} \right\} ,\\&(1 \le i < n).\\ \end{aligned} \end{aligned}$$

\(\square \)

Proof of Lemma 3

Proof

We focus on the calculation of \(f_2^L \left( v_i\right) \), without loss of generality, because \(f_2^R \left( v_i\right) \) can be computed in a similar manner. Compute \(f_2^L\left( v_i\right) \) in increasing order of i. By definition, \(f_2^L\left( v_1\right) =0\). According to Eq. (4), \(f_2^L\left( v_2\right) =\left( v_2-v_1\right) w_1 \tau + {w_1}^2/\left( 2c\right) \). Below, we show how to compute \(f_2^L\left( v_{i+1}\right) \) in constant time, given \(f_2^L\left( v_{j}\right) \), \(j \le i\).

Different sink points usually mean different congestion situations, that is, different \(P^\prime \). For convenience, let \(P_i^\prime \) be the new path, where \(v_i\) is the sink point. Therefore, we need to obtain n new paths. We show how to transform P to \(P^\prime \) in \(O\left( n\right) \) time. The transformation of the left side of the sink point \(v_i\) is taken as an example, and the right side can be treated in the same manner. In the following, \(P_i^\prime \) is always used to mean the left side of \(P_i^\prime \). To determine whether a vertex \(v_{i-1}\) will congest at vertex \(v_{i}\), we actually need to know whether \(\left( v_{i}-v_{i-1} \right) \tau \) is greater than \(w_{i}/c\). \(\left( v_{i}-v_{i-1} \right) \tau \ge w_{i}/c\) means that \(v_{i-1}\) does not need to wait at \(v_{i}\). In this case, the two vertices can keep their respective weights. \(\left( v_{i}-v_{i-1} \right) \tau < w_{i}/c\) means that \(v_{i-1}\) should wait at \(v_{i}\), that is, congestion occurs. In this case, \(v_{i-1}\) and \(v_{i}\) are merged into a single new vertex, whose weight is \(\left( w_i+w_{i-1}\right) \). If the sink point is \(v_i\), \(v_{i-1}\) will never congest at \(v_i\). In \(O\left( n\right) \) time, we can determine whether \(v_{i-1}\) will congest at \(v_{i}\), for all \(2\le i \le n\).

Without loss of generality, suppose that

$$\begin{aligned} f_2^L\left( v_{i}\right) =\sum _{1\le j \le i-1} \left[ \tau \left( v_i-v_j\right) w_j+ \left. {{w_j}^2 } \big / {2c} \right. \right] . \end{aligned}$$

If \(v_{i-1}\) will not congest at \(v_i\), we have the following recursive formula:

$$\begin{aligned} \begin{aligned} f_2^L\left( v_{i+1}\right)&=\sum _{1\le j \le i} \left[ \tau \left( v_{i+1}-v_j\right) w_j + \frac{\left( w_{j}\right) ^2}{2c}\right] \\&= f_2^L\left( v_{i}\right) + \tau \left( v_{i+1} -v_{i}\right) \cdot \left( \sum _{1\le j \le i} w_j\right) + \frac{\left( w_{i}\right) ^2}{2c}. \end{aligned} \end{aligned}$$

Otherwise, if \(v_{i-1}\) will congest at \(v_{i}\), then \(v_{i-1}\) and \(v_i\) should be merged as a new vertex. In this case, we also have the following recursive formula,

$$\begin{aligned} \begin{aligned} f_2^L\left( v_{i+1}\right)&=\sum _{1\le j \le {i-2}} \left[ \tau \left( v_{i+1}-v_j\right) w_j + \frac{\left( w_{j}\right) ^2}{2c}\right] \\&\quad +\tau \left( v_{i+1}-v_i\right) \left( w_{i-1}+w_{i}\right) + \frac{\left( w_{i-1}+w_{i}\right) ^2 }{2c}\\&= f_2^L\left( v_{i}\right) + \tau \left( v_{i+1} -v_{i}\right) \cdot \left( \sum _{1\le j \le i} w_j\right) + \frac{\left( w_{i-1}+w_{i }\right) ^2}{2c} \\&\quad -\tau \left( v_{i}-v_{i-1}\right) w_{i-1} - \frac{\left( w_{i-1}\right) ^2}{2c}. \end{aligned} \end{aligned}$$

Therefore, we can obtain all \(f_2^L\left( v_i\right) \) within \(O\left( n\right) \) time. The lemma follows. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, T., Li, H., Ru, S. et al. Multiple sink location problem in path networks with a combinational objective. Optim Lett 15, 733–755 (2021). https://doi.org/10.1007/s11590-020-01597-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-020-01597-w

Keywords

Navigation