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Abstract

We consider the global minimization of a polynomial on a com-
pact set B. We show that each step of the Moment-SOS hierarchy
has a nice and simple interpretation that complements the usual one.
Namely, it computes coefficients of a polynomial in an orthonormal
basis of L2(B, µ) where µ is an arbitrary reference measure whose sup-
port is exactly B. The resulting polynomial is a certain density (with
respect to µ) of some signed measure on B. When some relaxation
is exact (which generically takes place) the coefficients of the opti-
mal polynomial density are values of orthonormal polynomials at the
global minimizer and the optimal (signed) density is simply related to
the Christoffel-Darboux (CD) kernel and the Christoffel function as-
sociated with µ. In contrast to the hierarchy of upper bounds which
computes positive densities, the global optimum can be achieved ex-
actly as integration against a polynomial (signed) density because the
CD-kernel is a reproducing kernel, and so can mimic a Dirac measure
(as long as finitely many moments are concerned).
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1 Introduction

Consider the Polynomial Optimization Problem (POP):

f∗ = min
x

{ f(x) : x ∈ B },

where B ⊂ R
n is a compact basic semi-algebraic set. For the hierarchy of

upper bounds discussed below, B is restricted to be a “simple” set like e.g.
a box, an ellipsoid, a simplex, a discrete-hypercube, or their image by an
affine transformation. Indeed, to define an SOS-hierarchy of upper bounds
converging to the global minimum f∗ as described in e.g. [1, 6, 11], we use
a measure µ whose support is exactly B, and for which all moments

µα :=

∫

B

xα dµ , α ∈ N
n ,

can be obtained numerically or in closed-form. For instance if B is a box, an
ellipsoid or a simplex, µ can chosen to be the Lebesgue measure restricted
to B. On the hypercube {−1, 1}n µ one may choose for µ the counting
measure, etc.

1.1 Background

Let B ⊂ R
n be the basic semi-algebraic set defined by

B = {x ∈ R
n : gj(x) ≥ 0 j = 1, . . . ,m } , (1.1)

for some polynomials gj ∈ R[x], j = 1, . . . ,m. Let g0(x) = 1 for all x, and
let dj := ⌈deg(gj)/2⌉, j = 0, . . . ,m. Define Σ[x]t to be the set of sums-of-
squares (SOS) polynomials of degree at most 2t.

A hierarchy of lower bounds

To approximate f∗ from below, consider the hierarchy of semidefinite pro-
grams indexed by t ∈ N:

ρt = sup {λ : f − λ =
m∑

j=0

ψj gj ; ψj ∈ Σ[x]t−dj , j = 0, . . . ,m } , (1.2)

where Σ[x]t denotes the space of sum-of-squares (SOS) polynomials of degree
at most 2t. Under some Archimedean assumption on the gj ’s, ρt ≤ f∗ for
all t and the sequence of lower bounds (ρt)t∈N is monotone non decreasing
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and converges to f∗ as t increases. Moreover, by a result of Nie [9], its
convergence is finite generically, and global minimizers can be extracted from
an optimal solution of the semidefinite program which is the dual of (1.2);
see e.g. [7]. The sequence of semidefinite programs (1.2) and their duals,
both indexed by t, forms what is called the Moment-SOS hierarchy initiated
in the early 2000’s. For more details on the Moment-SOS hierarchy and its
numerous applications in and outside optimization, the interested reader is
referred to [5, 7].

A hierarchy of upper bounds

Let µ be a finite Borel measure whose support is exactly B, where now B is
a “simple” set as mentioned earlier. (Hence all moments of µ are available
in closed form.) To approximate f∗ from above, consider the hierarchy of
semidefinite programs

ut = inf
σ

{

∫

B

f σ dµ :

∫

B

σ dµ = 1 ; σ ∈ Σ[x]t } . (1.3)

That ut ≥ f∗ is straightforward since

f ≥ f∗ on B ⇒

∫

B

f σ dµ ≥ f∗
∫

B

σ dµ = f∗ ,

for any feasible SOS σ. In [6] it was proved that ut ↓ f
∗ as t increases, and

in fact solving the dual of (1.3) is solving a generalized eigenvalue problem
for a certain pair of real symmetric matrices. In a series of papers, de Klerk,
Laurent an co-workers have provided several rates of convergence of ut ↓ f

∗

for several examples of sets B. For more details and results, the interested
reader is referred to [1, 11, 12, 13] and references therein.

The meaning of (1.3) is clear if one recalls that

f∗ = inf
φ

{

∫

B

f dφ : φ(B) = 1 ; φ ∈ M (B)+ }, (1.4)

where M (B)+ is the space of all finite Borel measures on B. Indeed in (1.3)
one only considers the (restricted) subset of probability measures on B that
have a density (an SOS of degree at most 2t) with respect to µ whereas in
(1.4) one considers all probability measures on B. In particular, the Dirac
measure φ := δξ at any global minimiser ξ ∈ B belongs to M (B)+ but does
not have a density with respect to µ, which explains why the convergence
ut ↓ f

∗ as t increases, can be only asymptotic and not finite; an exception
is when B is a finite set (e.g. B = {−1, 1}n and µ is the counting measure).
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1.2 Contribution

Our contribution is to show that in fact the dual of the semidefinite program
(1.2) for computing the lower bound ρt has also an interpretation of the
same flavor as (1.3) where one now considers signed Borel measures φt with
a distinguished polynomial density with respect to µ. Namely, the dual of
(1.2) minimizes

∫

B
fdφt over signed measures φt of the form:

dφt(x) = σt(x) dµ(x) =




∑

|α|≤2t

σα Tα(x)



 dµ(x) , (1.5)

where :
- (Tα) ⊂ R[x] is a family of polynomials that are orthonormal with

respect to µ, and
- the coefficients σt = (σα)α∈Nn

2t
of the polynomial σt ∈ R[x]2t satisfy

the usual semidefinite constraints that are necessary for σt to be moments
of a measure on B.

Eventually for some t ∈ N, σt satisfies:

σα = Tα(ξ) =

∫

B

Tα(x) δξ(dx) , |α| ≤ 2t , (1.6)

where ξ is an arbitrary global minimizer and δξ is the Dirac measure at
ξ ∈ B. Indeed then

∫

B

f(x) dφt(x) :=

∫

B

f(x)
∑

|α|≤2t

Tα(ξ)Tα(x) dµ(x) = f(ξ) ,

because the Christoffel-Darboux KernelKt(x,y) :=
∑

|α|≤2t Tα(x)Tα(y) is a
reproducing kernel for R[x]2t, considered to be a finite-dimensional subspace
of the Hilbert space L2(B, µ). Moreover, σt(ξ)

−1 is nothing less than the
Christoffel function evaluated at the global minimizer ξ of f on B.

As a take home message and contribution of this paper, it turns out
that the dual of the step-t semidefinite relaxation (1.2) is a semidefinite
program that computes the coefficients σt = (σα) of the polynomial density
σt in (1.5). In addition, when the relaxation is exact then σt(ξ)

−1 is the
Christoffel function of µ, evaluated at a global minimizer ξ of f on B.

Interestingly, in the dual of (1.2) there is no mention of the reference
measure µ. Only after we fix some arbitrary reference measure µ on B,
we can interpret an optimal solution as coefficients σt of an appropriate
polynomial density with respect to µ.
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So in both (1.3) and the dual of (1.2), one searches for a polynomial
“density” with respect to µ. In (1.3) one searches for an SOS density (hence
a positive density) whereas in the dual of (1.2) one searches for a signed poly-
nomial density whose coefficients (in the basis of orthonormal polynomials)
are moments of a measure on B (ideally the Dirac at a global minimizer).

The advantage of the (signed) polynomial density in (1.5) compared to
the (positive) SOS density in (1.3), is to be able to obtain the global optimum
f∗ as the integral of f against this density, which is impossible with the SOS
density of (1.3).

At last but not least, this interpretation establishes another (and rather
surprising) simple link between polynomial optimization (here the Moment-
SOS hierarchy), the Christoffel-Darboux kernel and the Christoffel function,
fundamental tools in the theory of orthogonal polynomials and the theory of
approximation. Previous contributions in this vein include [8] to characterize
upper bounds (1.3), [1, 11, 12] to analyze their rate of convergence to f∗. The
more recent contribution [13] provides rates of convergence of both upper
and lower bounds on B = {0, 1}n, by following the strategy in [4] where
the authors also relate the Moment-SOS hierarchy with the upper bound
hierarchy (as also in [2]) to establish rates of convergence of the former on
the hypersphere.

2 Main result

2.1 Notation and definition

Let R[x] = R[x1, . . . , xn] be the ring of real polynomials in the variables
x1, . . . , xn and let R[x]t ⊂ R[x] be its subspace of polynomials of degree at
most t. Let N

n
t := {α ∈ N

n : |α| ≤ t} where |α| =
∑

i αi. For an arbitrary
Borel subset X of Rn, denote by M (X )+ the convex cone of finite Borel
measures on X ⊂ R

n, and by P(X ) is subset of probability measures on X .

2.2 Moment and localizing matrices

Given an sequence y = (yα)α∈Nn and polynomial g ∈ R[x], x 7→ g(x) :=
∑

γ gγ x
γ , the localizing matrix Mt(g y) associated with g and y is th real

symmetric matrix with rows and columns indexed by α ∈ N
n
t and with

entries
Mt(g y)(α, β) :=

∑

γ

gγ yα+β+γ , α, β ∈ N
n
t . (2.1)

If g(x) = 1 for all x then Mt(g y) (= Mt(y)) is called the moment matrix.
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A sequence y = (yα)α∈Nn has a representing measure if there exists
a (positive) finite Borel measure φ on R

n such that yα =
∫
xα dφ for all

α ∈ N
n.

If y has a representing measure supported on the set {x : g(x) ≥ 0}
then Mt(y) � 0 and Mt(g y) � 0 for all t ∈ N. The converse is not true
in general; however, the following important result is at the core of the
Moment-SOS hierarchy.

Theorem 2.1. (Putinar [10]) Let gj ∈ R[x], j = 0, . . . ,m with g0(x) = 1
for all x, and let G := {x ∈ R

n : gj(x) ≥ 0, j = 1, . . . ,m } be compact.
Moreover, assume that for some M > 0, the quadratic polynomial x 7→
M −‖x‖2 can be written in the form

∑m
j=0 ψj gj, for some SOS polynomials

ψ0, . . . ψm (called an Archimedean assumption on the gj’s that define G).
Then a sequence y = (yα)α∈Nn has a representing measure on G if and

only if Mt(gj y) � 0 for all t ∈ N, and all j = 0, . . . ,m.

Orthonormal polynomials

Let B ⊂ R
n be the compact basic semi-algebraic set defined in (1.1) assumed

to have a nonempty interior. Let µ be a finite Borel (reference) measure
whose support is exactly B and with associated sequence of orthonormal
polynomials (Tα)α∈Nn ⊂ R[x]. That is

∫

B

Tα Tβ dµ = δα=β , ∀α, β ∈ N
n .

For instance, if B = [−1, 1]n and µ is the uniform probability distribution on
B, one may choose for the family (Tα) the tensorized Legendre polynomials.
Namely if (Tj) ⊂ R[x] is the family of univariate Legendre polynomials, then

Tα(x) :=
n∏

j=1

Tαj
(xj) , α ∈ N

n .

For every t ∈ N, the mapping Kt : B×B → R,

(x,y) 7→ Kt(x,y) :=
∑

|α|≤t

Tα(x)Tα(y) , x,y ∈ B

is called the Cristoffel-Darboux kernel associated with µ. An important
property of Kt is to reproduce polynomials of degree at most t, that is:

p(x) =

∫

B

p(y)Kt(x,y) dµ(y) ∀x ∈ B , ∀p ∈ R[x]t . (2.2)
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This is why Kt is called a reproducing kernel, and R[x]t viewed as a finite-
dimensional vector subspace of the Hilbert space L2(B, µ), is called a Re-
producing Kernel Hilbert Space (RKHS). For more details on the theory of
orthogonal polynomials, the interested reader is referred to e.g. [3] and the
many references therein.

2.3 Main result

An observation

Let f ∈ R[x] and let t ≥ deg(f) = df be fixed. Let P(B) ⊂ M (B)+ be the
space of probability measures on B. Then

f∗ = min
φ∈P(B)+

∫

B

f dφ

= min
φ∈P(B)+

∫

B

∫

B

f(y)Kt(x,y) dµ(y) dφ(x)

= min
φ∈P(B)+

∫

B

f(y) (

∫

B

Kt(x,y) dφ(x) ) dµ(y)

= min
φ∈P(B)+

∫

B

f(y)







∑

|α|≤t

(

∫

B

Tα(x) dφ(x)

︸ ︷︷ ︸

σα

)Tα(y)






dµ(y)

= min
φ∈P(B)+

∫

B

f(y) (
∑

|α|≤t

σα Tα(y)

︸ ︷︷ ︸

σt(y)∈R[x]t

) dµ(y) ,

where the second equality follows from Fubini-Tonelli interchange theorem
valid in this simple setting. In other words, we have proved the following:

Lemma 2.2. Let B ⊂ R
n be as in (1.1) and let µ be a finite Borel (refer-

ence) measure whose support is exactly B and with associated sequence of
orthonormal polynomials (Tα)α∈Nn. Let f∗ = min {f(x) : x ∈ B}. Then for
every fixed t ≥ deg(f):

f∗ = inf
σ∈R[x]t

∫

B

f(y)σ(y) dµ(y) , (2.3)
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where the infimum is over all polynomials σ ∈ R[x]t of the form:

σ(x) =
∑

|α|≤t

σα Tα(x) , ∀x ∈ B with (2.4)

σα =

∫

B

Tα(x) dφ(x) , ∀α ∈ N
n
t , for some φ ∈ P(B). (2.5)

So solving (2.3) is equivalent to searching for a signed measure σ dµ with
polynomial (signed) density σ ∈ R[x]t that satisfies (2.4)-(2.5).

2.4 A hierarchy of relaxations of (2.3)

In this section we show the SOS-hierarchy defined in (1.2) is the dual
semidefinite program of a natural SDP-relaxation of (2.3). In fact the only
difficult constraint in (2.3) is (2.5) which demands σ to admit a representing
probability measure φ on B.

Let Dt be the lower triangular matrix for the change of basis of R[x]2t
from the monomial basis v2t(x) = (xα)α∈Nn

2t
of R[x]2t to the basis (Tα)α,

i.e.,






T0
· · ·
Tα
· · ·







= Dt ·







1
· · ·
xα

· · ·







= Dt · v2t(x) (2.6)

and denote D′
t the transpose of Dt. The matrix Dt is nonsingular with

positive diagonal. Then with σ = (σα)α∈Nn
2t
, (2.5) reads

σ = Dt · y with y =

∫

B

v2t(x) dφ(x). (2.7)

That is, y = (yα)α∈Nn
2t

is required to be a moment sequence as it has a
representing probability measure φ ∈ P(B). So in view of Theorem 2.1,
the constraint (2.7) can be relaxed to

σ = Dt · y with y0 = 1 and Mt−dj (gj y) � 0 , j = 0, . . . ,m .

Therefore, consider the following relaxation of (2.3)

ρ2t = inf
σ∈R[x]2t

{

∫

B

f(x) (
∑

α∈Nn
2t

σα Tα(x)) dµ(x) : σ = Dt · y ;

y0 = 1 ; Mt−dj (gj y) � 0 , j = 0, . . . ,m } .

(2.8)
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Lemma 2.3. Let B ⊂ R
n be as in (1.1) and let µ be a finite Borel (ref-

erence) measure whose support is exactly B and with associated sequence
of orthonormal polynomials (Tα)α∈Nn. The semidefinite relaxation (2.8) of
(2.3) reads:

inf
y

{ 〈f ,y〉 : y0 = 1 ; Mt−dj (gj y) � 0 , j = 0, . . . ,m } , (2.9)

which is the dual of (1.2)

Proof. With f(x) =
∑

α fα x
α = 〈f ,v2t(x)〉, write f(x) =

∑

α∈Nn
2t
f̃α Tα(x)

in the basis (Tα)α∈Nn
2t
. Then with f̃ = (f̃α) one obtains

〈f̃ ,Dt · v2t(x)〉 = 〈D′
t f̃ ,v2t(x)〉 = 〈f ,v2t(x)〉 ⇒ f̃ = (D′

t)
−1f .

Finally, as the Tα’s form an orthonormal basis, the criterion
∫

B

f(x) (
∑

α∈Nn
2t

σα Tα(x)) dµ(x)

to minimize in (2.8) reads:
∫

B

f(x) (
∑

α∈Nn
2t

σα Tα(x)) dµ(x) = 〈f̃ ,σ〉 = 〈(D′
t)
−1f ,Dt y〉 = 〈f ,y〉 ,

which yields that (2.8) is exactly (2.9). Next, that (2.9) is a dual of (1.2) is
a standard result in polynomial optimization [5, 7].

Of course by reverting the process of the above proof, the semidefinite
program (2.9) can be transformed to (2.8) once a reference measure µ with
support exactly B is defined with its associated orthonormal polynomials
(Tα). Indeed, once µ and the Tα’s are defined, one may use the change of
basis matrix D in (2.6) to pass from (2.9) to (2.8).

Corollary 2.4. Let B ⊂ R
n be as in (1.1) and let µ be a finite Borel

(reference) measure whose support is exactly B and with associated sequence
of orthonormal polynomials (Tα)α∈Nn.

Let f∗ be the global minimum of f on B, and let t be such that an optimal
solution y∗ of (2.9) has a representing measure φ∗ ∈ M (B)+, implying that
the semidefinite relaxation (2.9) (or (2.8)) is exact, i.e., ρ2t = f∗. Then for
every ξ ∈ supp(φ∗), the signed density

x 7→ σ∗(x) =
∑

α∈Nn
2t

Tα(ξ)Tα(x) = K2t(ξ,x) , (2.10)
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is an optimal solution of (2.8). In addition σ∗(ξ)−1 is the Christoffel func-
tion evaluated at the global minimizer ξ ∈ B.

Proof. If y∗ has a representing measure φ∗ ∈ M (B)+ then necessarily
f(ξ) = f∗ for all ξ ∈ sup(φ∗); see e.g. [5, 7]. In particular, for every
ξ ∈ sup(φ∗), the vector ŷ := (ξα)α∈Nn

2t
is also an optimal solution of (2.9).

Then letting

σ∗ := Dt · ŷ = Dt · v2t(ξ) =







T0(ξ)
· · ·
Tα(ξ)
· · ·







(so that σ∗α = Tα(ξ) for all α ∈ N
n
2t), yields (2.10) and

∫

B

f(x)σ∗(x) dµ(x) =

∫

B

f(x)K2t(ξ,x) dµ(x) = f∗ ,

which shows that σ∗ is optimal for (2.8). In addition, σ∗(ξ) = K2t(ξ, ξ),
that is, σ∗(ξ)−1 is the Christoffel function associated with µ, evaluated at
ξ ∈ B.

Discussion

Observe that the formulation (2.8) does not require that the set B is a
“simple” set as it is required in (1.3). Indeed the orthonormal polynomials
(Tα) are only used to provide an interpretation of the hierarchy of lower
bounds (2.9) (and its dual (1.2)). On the other hand, for the hierarchy of
upper bounds (1.3), B indeed needs to be a “simple” set for computational
purposes. This is because one needs the numerical value of the moments of
µ for a practical implementation of (1.3).

Lemma 2.3 shows that the Moment-SOS hierarchy described in [5, 7]
amounts to computing a hierarchy of signed polynomial densities with re-
spect to some reference measure µ with support exactly B. When the step-t
relaxation is exact (which takes place generically [9]) the resulting optimal
density σ in (2.8) is nothing less than the polynomial x 7→ Kt(ξ,x) where ξ

is a global minimizer of f on B, Kt(ξ,x) is the celebrated Cristoffel-Darboux
kernel in approximation theory, and σ(ξ) is the reciprocal of the Christoffel
function evaluated at a global minimizer ξ.

3 Conclusion

We have shown that the Moment-SOS hierarchy that provides an increasing
sequence of lower bounds on the global minimum of a polynomial f on a
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compact set B, has a simple interpretation related to orthogonal polyno-
mials associated with an arbitrary reference measure whose support is ex-
actly B. This interpretation strongly relates polynomial optimization (here
the Moment-SOS hierarchy) with the Christoffel-Darboux kernel and the
Christoffel function, fundamental tools in the theory of orthogonal polyno-
mials and the theory of of approximation.

It is another item in the list of previous contributions [8, 1, 11, 12] that
also link some issues in polynomial optimization with orthogonal polynomi-
als associated with appropriate measures. We hope that such connections
will stimulate even further investigations in this direction.
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