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Abstract
Mathematical approaches, such as compartmental models and agent-based models,
have been utilized for modeling the spread of the infectious diseases in the compu-
tational epidemiology. However, the role of social network structure for transmission
of diseases is not explicitly considered in these models. In this paper, the influence
maximization problem, considering the diseases starting at some initial nodes with
the potential to maximize the spreading in a social network, is adapted to model the
spreading process. This approach includes the analysis of network structure and the
modeling of connections among individuals with probabilities to be infected. Addi-
tionally, individual behaviors that change along the time and eventually influence the
spreading process are also included. These considerations are formulated by integer
optimization models. Simulation results, based on the randomly generated networks
and a local community network under the COVID-19, are performed to validate the
effectiveness of the proposed models, and their relationships to the classic compart-
mental models.

Keywords Infectious diseases spread · Influence maximization · Optimization ·
Integer linear programming

1 Introduction

The novel coronavirus disease (COVID-19), first identified in December 2019 in
Wuhan, China, has spread rapidly to the world, resulting in the ongoing COVID-19
pandemic. In recent decades, the infectious diseases, such as severe acute respira-
tory syndrome (SARS), dengue fever, middle east respiratory syndrome (MERS), and
Ebola virus disease, caused serious global threats. They can be easily spread from one
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individual to another, through the direct transfer of bacteria, viruses or other germs by
physical touches, kisses, coughs or sneezes. Therefore, understanding the spreading
or transmission process among individuals, and taking precautions to control or slow
this process is critical during the pandemic periods.

Mathematical approaches have been widely utilized for modeling the spread of
the infectious diseases. For example, compartmental models, including susceptible–
infectious (SI), susceptible–infectious–susceptible (SIS) and susceptible–infectious–
recovered (SIR) models, characterize the spread of an epidemic over time in a
population of agents who pass through the states like “Susceptible”, “Infectious” and
“Removed” (recovered or dead). The compartmental models were first proposed by
McKendrick andKermack [1] in 1926 andwere successful in predicting the behavior of
outbreaks in many recorded epidemics. Recently, agent-based models (ABMs) [2,3],
simulating the actions and interactions of autonomous agents, have been designed in
place of simple compartmental models when trying to model precisely the phenomena
occurring at the individual level. In the last two years, for COVID-19, researchers from
several countries have also used mathematical modelling to predict the spread of this
infectious disease [4–6] and to identify predictors of mortality [7,8].

However, these mathematical models do not explicitly consider the network struc-
ture and random transmission probability to simulate spreading process among
individuals within a social network. Besides, behavior changes along the time and
the cumulative effect of time that eventually influences the spreading results are sel-
dom considered in these models.

On the other hand, to study the largest influence spread in terms of product sales or
brand awareness (i.e., viral marketing) in social networks, the InfluenceMaximization
(IM) problem is introduced as an optimization problem by Kempe et al. [9] in 2003.
This problem studies a social network represented as a graph G = (V , E), where V
is the set of nodes in G (i.e., individuals) and E is the set of (directed/undirected)
edges in G (i.e., social links between individuals). The goal of the IM problem is to
find a B-sized set of nodes (called seed set D) with the maximum influence in graph
G, that is, to find the most influential individuals to maximize the influence spread
σ(D) over social networks. The influence of any seed set is defined based on some
diffusion models simulating the information diffusion process like Linear Threshold
(LT) model [10,11], Independent Cascade (IC) model [12], Triggering (TR) model
[9], Time-Aware model [13,14], etc. The formal definition of IM is defined as follows:

Problem 1 (Influence maximization [15]) Given a graph G = (V , E) representing
social network, a diffusion model on G and a budget B, find a seed set D ⊆ V with
|D| ≤ B, such that the influence spread of D, σ(D), under the given diffusion model
is maximized. That is, compute D∗ ⊆ V such that D∗ = argmaxD⊆V , |D|≤B σ(D).

In addition to viral marketing, IM is also applied in other areas, such as network
monitoring [16], rumor control [17], misinformation detection [18] and social recom-
mendation [19].

The computational hardness and algorithm results of IM under the above-defined
diffusion models have also been studied widely in literature. IM problem has shown
to be NP-hard under the LT, IC and TR models [9], and there exists a simple greedy
algorithm that approximates the optimal solution within a factor of (1 − 1/e) for
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submodular diffusion models [20]. In addition, some optimization approaches (e.g.,
integer linear optimization) [21–25] have also been applied to IM problem in recent
years. For more details about diffusion models, hardness and algorithms of the IM
problem, we refer the readers to the surveys [26–28].

There is a close similarity between the infectious disease spread and information
spread in social networks. It can be seen in many corresponding concepts between
IM and compartmental models, such as active/inactive nodes in IM models can be
regarded as infectious/susceptible individuals in compartmental models, and the seed
set of IM is considered to be initial infectious individuals in compartmental models.
Besides, the diffusion process of IM is similar to the spreading process of infectious
diseases over networks as well. In the diffusion framework of IM, each node v ∈ V
is associated with a status of either inactive or active. Then, based on the graph G, it
considers the following diffusion process among nodes. Firstly, it starts with an initial
set of active nodes (seed set D ⊆ V ). Then, it considers the diffusion process that
the seed nodes in D can “influence” their (inactive) neighbors to be active, the newly
activated nodes can further activate their neighbors, and so on. This diffusion process
terminates when no new nodes can be activated. Due to this similarity, the popular
compartmentalmodels of epidemiologyhave been adopted to study information spread
in social networks as well [29–31]. Additionally, among various diffusion models of
IM, Linear Threshold (LT) model is one of the most popular ones. In the LT diffusion
model, influence of nodes on each other is quantized by edge weights and each node
has a threshold for activation. If sum of the influence of activated (in-)neighbors of
a node reaches a certain threshold, the node is activated. Recently, Cheng et al. [32]
proved the targeted immunization (TI) problem [33–36], whose goal is tominimize the
impact of outbreaks, is equivalent to the IM problem under the LT diffusion model and
proposed an optimization framework to study outbreak minimization over networks.
They gave an explicit and concise formulation of the IM problem over networks under
the Time-Aware Linear Threshold model. Motivated by the above considerations,
we introduce a much more general IM problem to investigate the infectious disease
spreading process over a social network. The problem is defined as follows:

Problem 2 (Time-aware influence maximization problem) Given a directed social
network G = (V , A, π) with weight πi j for each arc (i, j) ∈ A, and a budget B
restricting the size of seed set, find a seed set D ⊆ V such that the number of infected
individuals at time T starting at D at time 0, is maximized under the threshold model.

Since individuals in the same network G may perform different behaviors during
the transmission of infectious disease, to better characterize the network structure
and to distinguish different behaviors, we divide the whole node set V of G into
two subsets V1, V2, where individuals in different subsets take distinct actions when
facing the infectious disease before any future potential behavior change, and study
the interaction between V1 and V2. Specifically, in the previous definition, the directed
edge-weighted graphG = (V1∪V2, A, π) represents the whole social network, where
V1 involves individuals who take precautions (e.g., wearing masks and keeping social
distance) against the infectious disease while individuals in V2 do not take active
action to protect themselves from the disease. Each arc (i, j) ∈ A indicates that there
is a social link between two individuals, i.e., person i can directly contact person j
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through the arc (i, j). As active nodes in V1 or V2 may have distinct transmission
probabilities to infect their neighbors, we classify this infectious disease transmission
process between nodes in G into several cases. Suppose that the number of nodes is
fixed all along during the transmission. The transmission probabilities πi j , similar to
the infection rate, are defined as

πi j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a, if i ∈ V1, j ∈ V1, i is infectious, and j is susceptible
b, if i ∈ V1, j ∈ V2, i is infectious, and j is susceptible
c, if i ∈ V2, j ∈ V1, i is infectious, and j is susceptible
d, if i ∈ V2, j ∈ V2, i is infectious, and j is susceptible
0, otherwise

where 0 < a < b < c < d < 1 in this social network G. Each arc (i, j) ∈ A is
associated with a positive weight πi j . If there is no arc between i and j and if i is
infectious, then πi j = 0 means i cannot infect j directly. The inequality 0 < a < b <

c < d < 1 represents the relationship between different transmission probabilities in
various cases. For instance, a < b indicates that the transmission probability is b if an
infectious person wears a mask and comes in contact with someone without a mask,
but this probability drops to a if both individuals are wearing masks. Other notations
are defined as follows: The (in-)neighbor set of node i in graph G is denoted by NG(i)
(N−

G (i)). And the degree of a node i ∈ V in G is defined as dG(v) = |NG(i)|. The
seed set D contains the initial infectious individuals.

In this paper, wewill model themaximum (worst-case) infectious disease (COVID-
19) propagation through influence maximization under linear threshold model. As
compartmental models have become one of the most common approaches to simulate
the infectious diseases, this paper follows the assumptions of compartmental models
(SI, SIS and SIR) and consider three cases during infectious disease spreading:

(1) The outbreak stage of an infectious disease (i.e., do not consider the recovery
process). Transmission process is similar to the SI compartmental model.

(2) Infections do not give immunity upon recovery from infection. That is, once a
person is recovered from infection, he/she become susceptible again. Transmission
process is similar to the SIS compartmental model.

(3) Infections do give immunity upon recovery from infection. Namely, once an indi-
vidual is recovered, the individual is no longer susceptible and become immune
to the disease. Transmission process is similar to the SIR compartmental model.

The contribution of this paper includes: (i) We introduce the linear threshold model
of IM to capture how an individual switches its status from susceptible to infectious
and exploit the discrete propagation nature. (ii) We provide three explicit formulations
to model the spreading of an infectious disease through IM. Behavior change and the
cumulative effect of time are also considered in thesemodels. (iii)We use the randomly
generated networks and a local community network under the COVID-19 to validate
the effectiveness of the proposed models. Our experiments results illustrate that the
sparse and clustered structure of network topology and precautionary actions play a
significant role in preventing the spread of infectious diseases.
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The remainder of this paper is organized as follows. We investigate three different
cases of infectious disease spreading by optimization approaches in Sects. 2, 3, and 4.
In Sect. 5, we explore the behavior change in the spreading process. The experimental
evaluation is illustrated in Sect. 6. Finally, Sect. 7 provides some concluding remarks.

2 Influencemaximization for modeling SI spreading process

During the outbreak stage of an infectious disease, all infected individuals have not
been fully recovered. The spreading process only considers the states of individuals
only change from susceptible (S) to infectious (I ) in only one direction, and the SI
compartmental model is expressed by

dS(t)

dt
= −βS(t)I (t)

N
, and

d I (t)

dt
= βS(t)I (t)

N
,

where β is the infection rate, S(t) and I (t) represent the number of susceptible and
infected individuals at time t , respectively, and N denotes the total population. In this
model, each individual is considered as having the same probability of contracting the
disease and contacting with same number of individuals per unit time. Each infectious
individual can infect β · S(t)

N other susceptible ones, and thus the number of newly

infected people per unit time is β
S(t)
N · I (t).

Next, the SI spreading process is modeled within the influence maximization prob-
lem by integer optimization. For individuals changing from susceptible to infectious
state, linear threshold (LT) model of diffusion process is considered.

Linear threshold (LT) is a diffusion model, first introduced by Granovetter [10],
and the basic idea is that an individual can switch its status from inactive to active if a
“sufficient” number of its incoming neighbors are active. In the social network G, the
individual i has a threshold si to be infected by its infectious neighbors j ∈ N−

G (i),
where arc ( j, i) has a transmission probability π j i .

Influence of nodes on each other is quantized by arc weights. If sum of the influence
of activated in-neighbors of a node reaches a certain threshold, the node is activated.
Specifically, given the thresholds and an initial set of active nodes, the process unfolds
deterministically in discrete steps. At each time step t , a susceptible (inactive) node
i becomes infectious (active) at time step t + 1 if the total weights from its active
in-neighbors reach its threshold si , that is,

pit =
∑

j ∈ N−
G (i)

j is active

π j i ≥ si . (1)

where pit denotes such total weights from active in-neighbors of node i at current time
t . We introduce binary variables xit = 1,∀i ∈ V , 0 ≤ t ≤ T , if node i is infectious
at time t , and xit = 0 otherwise, and the above transmission rules can be formulated
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by the following two constraints:

∑

j∈N−
G (i)

x j(t−1)π j i ≥ si (xit − xi(t−1)), ∀i ∈ V , t ∈ {1, . . . , T } (2a)

∑

j∈N−
G (i)

x j(t−1)π j i + ε ≤ si + Mxit , ∀i ∈ V , t ∈ {1, . . . , T } (2b)

These two constraints make sure that an individual i is newly infected at period t
if and only if the total influence from the infectious in-neighbors in the previous
period reaches his or her threshold level. Specifically, constraints (2a) ensure that if an
individual i is not infected at time t −1 but become infected at period t (i,e., xi(t−1) =
0, xit = 1), then the total influence from the neighborsmust exceed the threshold si . On
the other hand, constraints (2b) guarantee that if an individual i is susceptible at period
t , then the total influence from the neighbors is below the threshold si . Here, M is a
sufficiently large positive number and we can choose M = maxi

∑
j∈N−

G (i) π j i in real
experiments. Besides, we add a sufficiently small positive number ε in constraints (2b)
to make sure that the node is activated when the total in-neighbor infection probability
is exactly equal to the threshold. In real experiments, ε can be set as 0.001 to attain
the precision we want. It is also noted that if the in-neighbor infection probability is
never equal to the threshold, then we can set ε = 0 in our experiments.

Sometimes, it is not enough to characterize the discrete propagation by nature just
using the previous transmission rules (1). For example, if the in-degree of i in G is
equal to 1, by the transmission rules (1), node i may never become activated as time
passes. Hence, to avoid this case, we consider the cumulative effect of time in LT
model so as to better describe the real propagation nature. For instance, for each node
i , if we consider the total cumulative influence from the infectious neighbors of i in
the last t days, then the condition of LT model becomes

pit = pi(t−1) +
∑

j ∈ N−
G (i)

j is active

π j i ≥ si ,

where pi0 = 0 for all i ∈ V . To model this cumulative effect, a new parameter t0
is introduced in the SI-LT model, meaning we consider the cumulative effect in the
last t0 days, and we use

∑t0
k=1

∑
j∈N−

G (i) x j(t−k)π j i to calculate the total infection
probability from the infectious in-neighbors of node i in the last t0 days. Then the
constraints (2a) and (2b) become

t0∑

k=1

∑

j∈N−
G (i)

x j(t−k)π j i ≥ si (xit − xi(t−1)), ∀i ∈ V , t ∈ {1, . . . , T } (3a)

t0∑

k=1

∑

j∈N−
G (i)

x j(t−k)π j i + ε ≤ si + Mxit , ∀i ∈ V , t ∈ {1, . . . , T } (3b)
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In the beginning periods (t < t0), we set x j(t−k) = 0 for node j if t − k < 0.
Accordingly, the big M can be set as maxi t0 · ∑

j∈N−
G (i) π j i in real experiments.

Finally, we formulate the IM problem by integer optimizationmethod under the Linear
Threshold (LT) model considering the cumulative effect of time:

[SI-LT] max
∑

i∈V
xiT (4a)

s.t. (3a), (3b)
∑

i∈V
xi0 ≤ B (4b)

xi(t−1) ≤ xit , ∀i ∈ V , t ∈ {1, . . . , T } (4c)

xit ∈ {0, 1}, ∀i ∈ V , t ∈ {0, . . . , T } (4d)

where the objective function (4a) is to maximize the potential number of infected
people in the last period T . Constraints (3a) and (3b) represent LT transmission rule
considering the cumulative effect of time. Constraint (4b) is budget restriction for the
size of seed set S. Constraints (4c) ensures that if we only consider the outbreak stage
of an infectious, then an infectious individual stays active as time passes. Constraints
(4d) are usual binary restrictions for decision variables xit .

3 Influencemaximization for modeling SIS spreading process

The classic SIS compartment model considers a fixed population with only two com-
partments Susceptible S and Infected I , thus the flow of this model may be considered
as follows:

S � I

From the above flow, we know individuals immediately become susceptible once they
have recovered. Using the contact rate β from S to I and recovery rate δ from I to S,
we can have the following differential equations:

dS(t)

dt
= −βS(t)I (t)

N
+ δ I (t), and

d I (t)

dt
= βS(t)I (t)

N
− δ I (t).

Again, the number of newly infected people per unit time is βS(t)I (t)/N . If we
assume that the probability of an infectious individual recovering in any time interval
dt is simply δdt , then there are δ I (t) people recovered from the disease per unit
time, hence we get the rate of change of I (t) is βS(t)I (t)/N − δ I (t). Furthermore,
considering the population leaving the susceptible group is equal to the number of
entering the infected class, we can have the first equation above.

Now we consider the SIS spreading process based on IM problem under LT. In
compartmental models, we usually assume that the recovery rate δ is defined as the
inverse of the duration of recovery, that is, the average recovery time for infectious
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disease is 	1/δ
, meaning that an individual is infectious for an average time period
	1/δ
 [37]. Here 	x
 is the ceiling functionwhich is defined as the smallest integer that
is not smaller than x . If we consider both infection and recovery process during epi-
demic spreading, and suppose the infections do not confer any long-lasting immunity,
we need to change the constraints (3b) to

t0∑

k=1

∑

j∈N−
G (i)

x j(t−k)π j i + ε ≤ si + M(xit + xi(t−1)), ∀i ∈ V , t ∈ {1, . . . , T } (5)

These new constraints ensure that if the total influence from the in-neighbors of
node i exceeds the threshold si , then either i is infectious at time t (xit = 1), or
i is recovered at time t (xit = 0, xi(t−1) = 1). Moreover, we also need to change
constraints (4c) to

xi(t−1) ≤ xit , ∀i ∈ V , t ∈
{

1, . . . ,

⌈
1

δ

⌉

− 1

}

(6)

xi(t−1) − 1

	1/δ

	1/δ
∑

k=1

xi(t−k) ≤ xit ≤
⌈
1

δ

⌉

−
	1/δ
∑

k=1

xi(t−k), ∀i ∈ V , t ∈
{⌈

1

δ

⌉

, . . . , T

}

(7)

which indicate if an individual i is infectious, he/she can be recovered from the disease
after time period 	1/δ
. Otherwise, an infectious individual stays active as time passes.
Specifically, we consider three cases:

– At the outbreak stage (t < 	1/δ
), an infectious individual stays active with the
passage of time by Constraints (6);

– If xi(t−1), . . . , xi(t−	1/δ
) all equal one when 	1/δ
 ≤ t ≤ T , then xit become zero
by Constraints (7);

– If not all xi(t−1), . . . , xi(t−	1/δ
) equal onewhen 	1/δ
 ≤ t ≤ T , then an infectious
individual stays active as time passes by Constraints (7).

Consequently, we obtain the following SIS-LT model:

[SIS-LT] max
∑

i∈V
xiT

s.t. (3a), (4b), (4d)

(5)−(7)

4 Influencemaximization for modeling SIR spreading process

The SIR (Susceptible–Infectious–Recovered) compartmental model is first proposed
by Kermack and McKendrick [1]. This model considers a fixed population which
is divided into three distinct classes: Susceptible (S), Infectious (I ), and Recovered
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(R). Suppose if an individual is recovered, the individual is no longer susceptible and
becomes immune to the disease. The individual goes through consecutive states:

S → I → R

Using the same notations β and δ, Kermack andMcKendrick [1] derived the following
equations:

dS(t)

dt
= −βS(t)I (t)

N
,

d I (t)

dt
= βS(t)I (t)

N
− δ I (t),

dR(t)

dt
= δ I (t),

where S(t), I (t) and R(t) represent the number of susceptible, infectious and recov-
ered individuals at time t , separately, and N is the sum of these three. The first equation
is the same as the first equation in SI compartmental model. For the second and third
equations, consider the population leaving the infected class as equal to the number
entering the recovered class. There are δ I (t) of infectious individuals leaving the
infected class per unit time to enter the recovered class, which leads to the second and
third equations.

Next, the SIR spreading process is modeled within the IM problem by integer
optimization. New binary variables yit denote whether node i is recovered at period
t if yit = 1 or not if yit = 0. The main difference between SIS and SIR model lies
on the recovery process, thus we need to update transmission rules that indicate an
individual switches its status to incorporate the new state “Recovered”. And then we
can obtain the modified rules: if the total influence from the infectious in-neighbors of
an individual exceed the threshold si at time t , then the individual is either infectious
or recovered at time t , which can be formulate as

t0∑

k=1

∑

j∈N−
G (i)

x j(t−k)π j i ≥ si (xit − xi(t−1)), ∀i ∈ V , t ∈ {1, . . . , T } (9a)

xit + yit ≤ 1, ∀i ∈ V , t ∈ {0, . . . , T } (9b)
t0∑

k=1

∑

j∈N−
G (i)

x j(t−k)π j i + ε ≤ si + M(xit + yit ), ∀i ∈ V , t ∈ {1, . . . , T } (9c)

Specifically, Constraints (9a)–(9b) make sure that if an individual i is newly infected
at period t , then the total influence from the infectious in-neighbors in the previous
period must exceed the threshold level si and node i should be unrecovered at time t .
Since when i is recovered at time t , the total influence from the in-neighbors of i may
still exceed the threshold si at this point, Constraints (9c) guarantee that if the total
influence from the in-neighbors of node i exceed the threshold si at time t , then either
i is infectious at time t (xit = 1), or i is recovered at time t (xit = 0, yit = 1).

From Constraint (9b), every individual has only one of the three states (susceptible,
infectious or recovered) at time t . The states are characterized by variables xit and yit ,
and the relationship between these variables can be ensured by (9b) and the following
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constraints:

yit − yi(t−1) ≤ xi(t−1), ∀i ∈ V , t ∈ {1, . . . , T } (10a)

xi(t−1) − yit ≤ xit , ∀i ∈ V , t ∈ {1, . . . , T } (10b)

Constraints (10a) ensure that if an infected individual recovers at time t , then he/she
must be infected at time t − 1. Constraints (10b) indicate that how an infectious
individual stays active as time passes, i.e., if a node i is infectious at previous time
t − 1 and is not recovered at current time t , then node i remains infectious.

We still need some constraints to ensure the recovery process. Recall that an infec-
tious individual becomes recovered if he/she stays infectious for a time period 	1/δ
.
Based on this fact, the whole recovery process can be guaranteed by the following
constraints:

yit = 0, ∀i ∈ V , t ∈
{
0, . . . ,

⌈1

δ

⌉
− 1

}
(11a)

	1/δ
∑

k=1

xi(t−k) −
⌈1

δ

⌉
+ 1 ≤ yit , ∀i ∈ V , t ∈

{⌈1

δ

⌉
, . . . , T

}
(11b)

	1/δ
∑

k=1

xi(t−k) ≥
⌈1

δ

⌉
(yit − yi(t−1)), ∀i ∈ V , t ∈

{⌈1

δ

⌉
, . . . , T

}
(11c)

yi(t−1) ≤ yit , ∀i ∈ V , t ∈ {1, . . . , T } (11d)

Constraints (11a) mean all nodes remain unrecovered at the outbreak stage (i.e., t <

	1/δ
) of the disease. Constraints (11b)–(11c) guarantee that an infectious individual
i recovers from the disease if and only if it takes 	1/δ
 days. Constraints (11d) show
that a recovered individual i remains recovered as time goes by.

To better understand the these constraints as a whole, we can divide the periods of
transmission process into five cases:

(i) A susceptible individual remains susceptible (xi(t−1) = xit = 0): Constraints
(10a) ensure that yi(t−1) = yit and Constraints (11a) and (11c) guarantee that
yi(t−1) = yit = 0. By Constraints (9c), we obtain the total influence from the
active in-neighbors of node i does not exceed the threshold si .

(ii) A susceptible individual becomes infectious (xi(t−1) = 0, xit = 1): The total
influence from the active in-neighbors of node i must exceed the threshold si by
Constraints (9a). Constraints (9b) and (11d) ensure that yi(t−1) = yit = 0.

(iii) An infectious individual remains infectious (xi(t−1) = xit = 1): Constraints
(9b) ensure that yi(t−1) = yit = 0. Constraints (9a) and (9c) become redundant.
Constraints (10b) ensure that node i remains infectious as time passes.

(iv) An infectious individual becomes recovered (xi(t−1) = 1, xit = 0): Constraints
(9b) ensure that yi(t−1) = 0 and Constraint (11b) guarantee that yit = 1 as it
takes 	1/δ
 days to recover from the disease.
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(v) A recovered individual remains recovered (yi(t−1) = yit = 1): Constraints (9b)
ensure that xi(t−1) = xit = 0. Constraints (11d) ensure that node i remains
recovered as time passes.

Finally, putting the above constraints together, we obtain the following SIR-LT
formulation:

[SIR-LT] max
∑

i∈V
(xiT + yiT )

s.t. (4b), (4d), and yit ∈ {0, 1}, ∀i ∈ V , t ∈ {0, . . . , T }
(9a)−(9c), (10a)−(10b), (11a) − (11d)

where the objective function
∑

i∈V (xiT + yiT ) is to maximize the total number of
infectious and recovered individuals at time T so as to better describe the final influence
spread.

Remark 1 Note that Constraints (9b), together with Constraints (11d), enforce the
assumption of SIR model, i.e., once an individual is recovered, the individual is no
longer susceptible and become immune to the disease.

5 Behavior change

In Sect. 1, we introduce V1 and V2 to denote that individuals take distinct actions to face
the infectious disease initially, that is, V1 involves individuals who take precautions
against the infectious diseasewhile individuals in V2 do not take active action to protect
themselves from the disease in the beginning period. If some individuals in the node
set V2 may change their minds and take precautions against disease as time passes,
then the above network optimization models become dynamic network models. In this
section, we consider behavior change among the network G.

We still consider the graph G as a whole, and study the connection between nodes
within G. To better describe each case, we introduce more notations as follows. Let
G1,G2 be the graph induced by V1 and V2, respectively. Suppose that an individual
i ∈ V2 take precautions (e.g., wears a mask) if the number of infectious neighbors of i
exceed the threshold n0 and we introduce new binary variables zit to indicate whether
node i ∈ V2 take precautions at period t if zit = 1 or not if zit = 0. (Usually we choose
n0 = 1 meaning that an individual changes the behavior to take precautions if one of
his/her neighbors becomes infected.) If we take SIR-LT model as an example (SI-LT
and SIS-LT are similar), then constraints (9a)–(9c) should bemade smallmodifications
[see below constraints (13a)–(15e)].

An individual i ∈ V2 change the behavior if and only if the number of infectious
neighbors of node i ∈ V2 exceed the threshold n0, which can be formulated by the
following two constraints:

∑

j∈NG (i)

x j(t−1) ≤ n0 + Mzit , ∀i ∈ V2, t ∈ {1, . . . , T } (13a)
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∑

j∈NG (i)

x j(t−1) ≥ n0(zit − zi(t−1)), ∀i ∈ V2, t ∈ {1, . . . , T } (13b)

Specifically, Constraints (13a) ensure that if the number of infectious neighbors of i ∈
V2 exceed the threshold n0, then the individual will change the behavior. Constraints
(13b) make sure that if an individual i ∈ V2 change the mind at period t (i,e., zi(t−1) =
0, zit = 1), then the total number of infectious individuals must exceed the threshold
n0.

We have some requirements for the variable zit as well. Based on the definition
of zit and V2, every individual in V2 do not take precautions initially. Further, we
also assume that an individual i ∈ V2 can only change the behavior once during the
spreading process, and then we obtain the following constraints:

zi0 = 0, zit ∈ {0, 1} ∀i ∈ V2, t ∈ {1, . . . , T } (14a)

zi(t−1) ≤ zit , ∀i ∈ V2, t ∈ {1, . . . , T } (14b)

Constraints (14a) are binary restrictions for zit and indicate that each node i ∈ V2
do not take precautions at the beginning. Constraints (14b) guarantee that if a person
takes precautions at some point, then he/she will always choose to take precautions as
time passes.

Now we consider the SIR transmission rules incorporating the behavior change.
Note that the probability π j i between j and i mainly depends on (1) which set that
i and j comes from (2) whether i or j take precaution at the current time period.
Considering all situations, we have the following constraints:

t0∑

k=1

⎧
⎪⎨

⎪⎩

∑

j∈N−
G1

(i)

ax j(t−k) +
∑

j∈N−
G2

(i)

[
cx j(t−k) + (a − c)x j(t−k)z j(t−k)

]

⎫
⎪⎬

⎪⎭

≥ si (xit − xi(t−1)),∀i ∈ V1, t ∈ {1, . . . , T } (15a)

t0∑

k=1

⎧
⎪⎨

⎪⎩

∑

j∈N−
G1

(i)

[bx j(t−k) + (a − b)x j(t−k)zi(t−k)] + zi(t−k)

∑

j∈N−
G2

(i)

[cx j(t−k) + (a − c)x j(t−k)z j(t−k)]

+ (1 − zi(t−k))
∑

j∈N−
G2

(i)

[dx j(t−k) + (b − d)x j(t−k)z j(t−k)]

⎫
⎪⎬

⎪⎭

≥ si (xit − xi(t−1)), ∀i ∈ V2, t ∈ {1, . . . , T } (15b)

xit + yit ≤ 1, ∀i ∈ V , t ∈ {0, . . . , T } (15c)
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t0∑

k=1

⎧
⎪⎨

⎪⎩

∑

j∈N−
G1

(i)

ax j(t−k) +
∑

j∈N−
G2

(i)

[cx j(t−k) + (a − c)x j(t−k)z j(t−k)]

⎫
⎪⎬

⎪⎭
+ ε

≤ si + M(xit + yit ), ∀i ∈ V1, t ∈ {1, . . . , T } (15d)

t0∑

k=1

⎧
⎪⎨

⎪⎩

∑

j∈N−
G1

(i)

[bx j(t−k) + (a − b)x j(t−k)zi(t−k)] + zi(t−k)

∑

j∈N−
G2

(i)

[cx j(t−k) + (a − c)x j(t−k)z j(t−k)]

+(1 − zi(t−k))
∑

j∈N−
G2

(i)

[dx j(t−k) + (b − d)x j(t−k)z j(t−k)]

⎫
⎪⎬

⎪⎭

+ ε ≤ si + M(xit + yit ), ∀i ∈ V2, t ∈ {1, . . . , T } (15e)

Constraints (15a)–(15e) represent the new dynamic transmission rules when some
nodes in V2 may change the behaviors at time t . The new transmission rules consider
three cases: (a) whether the neighbor j of i is infectious at time t − k, (b) whether j ∈
N−
G (i) take precautions at time t−k, (c) whether i takes precautions at time t−k. Thus,

we use the product terms x j(t−k)zi(t−k) and x j(t−k)zi(t−k)z j(t−k) to identify the com-
bination of these cases. For instance, the term zi(t−k)[cx j(t−k) + (a−c)x j(t−k)z j(t−k)]
in constraints (15b) means that when node i ∈ V2 takes precautions and its neighbor
j ∈ V2 is infectious at time t − k, if j also takes precautions at time t − k, then the
transmission probability from j to i is a, else the transmission probability is c. Based
on the above consideration, the transmission probabilityπ j i can be determined accord-
ingly. For instance, if i ∈ V1, j ∈ N−

G2
(i), x j(t−k) = 1 and z j(t−k) = 1, then π j i = a

in Constraints (15a) and (15d). Finally, the SIR-LT-dynamic model is represented as
follows:

[SIR-LT-dynamic] max
∑

i∈V
(xiT + yiT )

s.t. (4b), (4d), and yit ∈ {0, 1}, ∀i ∈ V , t ∈ {0, . . . , T }
(10a)−(10b), (11a)−(11d)

(13a)−(13b), (14a)−(14b), (15a)−(15e)

To linearize this model, we can introduce new binary variables wi j t = xit z j t and
hi j t = x jt zi t z j t and consider the following linear inequalities

wi j t ≤ xit , wi j t ≤ z jt , xit + z jt − 1 ≤ wi j t , ∀i, j ∈ V , t ∈ {1, . . . , T }
hi j t ≤ x jt , hi j t ≤ zit , hi j t ≤ z jt ,

xit + zit + z jt − 2 ≤ hi j t , ∀i, j ∈ V , t ∈ {1, . . . , T }
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to represent wi j t and hi j t , separately.

6 Experimental evaluation

In Sects. 2, 3, 4 and 5, the proposed models SI-LT, SIS-LT, SIR-LT and SIR-LT-
dynamic are all integer programming models, which will be implemented by using
optimization solver CPLEX in this section. Although there was no data that can quan-
tify how wearing a mask reduces the risk of contracting the COVID-19 by the end
of 2020, according to the CDC (Centers for Disease Control and Prevention), there
still exist some qualitative analyses of wearing masks to reduce the risk of disease
infections [38–40]. Based on the previous research and reports, here we initialize the
optimization models by choosing the parameters a = 1.5%, b = 5%, c = 30% and
d = 90% to represent different risks of transmission, with thresholds si = 0.99 for
each i ∈ V . Suppose one unit of time equals 1 day, we set the recovery rate δ = 0.04
due to the results of the study in [41]. It is found that the average recovery time of
Covid-19 patients in India is 25 days (95% CI 16–34 days). The above values of
parameters were used for all experiments unless specified.

In the following, we present network transmission results for LTmodels on random
generated Watts–Strogatz small-world graphs and a community network.

6.1 Network transmission

We use the connected Watts–Strogatz small-world graphs to simulate the propagation
characteristics of the disease. For each small-world network used in this subsection,
we randomly divide the graph into two networks G1,G2 with equal orders (i.e.,
|V1|/|V | = 1/2). All edges in the graphs are bidirectional, and the network simu-
lation parameters are as follows: The number of nodes n = 50 and 100, the number
of edges m = 100 and 200, the random reconnection probability p = 0.5, each node
joined with its 5 nearest neighbors in an initial ring topology.

We first compute the transmission results in SI-LTmodel for three different budgets
in two Watts–Strogatz small-world networks. Since we only consider the outbreak
stage in SI-LT transmission process, we choose T = 25 for this model. Figure 1
shows the infection curves for three different budgets B = 3, 5, 9 on a connected
Watts–Strogatz small-world graph of order |V | = 50, and B = 5, 10, 15 on a graph
of order |V | = 100 by solving SI-LT model.

Overall, the larger the size of seed set, the faster the rate of spread, the more people
infected at the same time. But there exist some exceptions like B = 10 in Fig. 1b.
This situation can be attributed to the network topology and the optimization process.
Since our final goal is to find the maximized influence at time T , it may not always
be the optimal in any previous period t < T . Moreover, Fig. 1 also illustrates that, if
we consider the epidemic spreading over a network, then the rate of spread increases
faster than a linear function.

Next we compute the transmission results on the sameWatts–Strogatz small-world
graphs in SIS-LT and SIR-LT models. For comparison, we also compute evolution
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(a) |V| = 50,m= 100,T = 25, t0 = t (b) |V| = 100,m= 100,T = 25, t0 = t

Fig. 1 Diagram of the SI-LT model

results for the traditional SIS and SIR compartmental model (see Fig. 4). Note that
when we obtain the solutions after solving SIS-LT and SIR-LTmodels, we also get the
number of susceptible individuals at time t is equal to |V |−∑

i∈V xit in SIS-LTmodel
and |V | − ∑

i∈V xit − ∑
i∈V yit in SIR-LT model. Figures 2 and 3 are the diagrams

of infection curves of SIS-LT and SIR-LT model, separately.
From SIS-LT results in Fig. 2, we can see the curves perform similarly as SIS

compartmental model at first and the value of budget B has little effect on the final
objective function value. Further, the curves show somekinds of periodicity fromabout
25 days, which is very different from traditional SIS compartmental model (see below
Fig. 4a). The main reason that can cause this problem is our optimization approach
itself. Since we suppose that an infectious individual can be recovered from the disease
after time period 	1/δ
 in SIS-LTmodel, the periodicity in SIS-LT curves comes from
the recovered individuals during the 	1/δ
 time window. The declines in blue SIS-LT
curves represent the recovery process of the previous infectious individuals, and this
effect could become much more remarkable at about k · 	1/δ
 days (k = 1, 2, . . .),
since almost all individuals in the network are infectious before these time periods due
to small-sized network structure and there could be less new infectious individuals at
time periods k · 	1/δ
 comparing to the number of new recovered individuals.

One way to solve this periodicity problem might be increasing the order of the
networks. For instance, consider a random network of 1000 nodes. In our experiments,
the number of infectious individuals increases very fast at the beginning over these
small network structures, which results in a phenomenon that almost all individuals
become infectious at about 15 days or earlier. If the network scale can be large enough,
then the number of new infectious individuals will be greater than the number of new
recovered individuals at time periods k · 	1/δ
, k = 1, 2, . . .. And the declining
and periodical phenomenon will disappear at these time periods. However, given that
optimization solver was not efficient in solving large sparse networks, methods and
techniques in speeding up solving these models are still expected. Also, it’s worth
mentioning that this phenomenon does not appear in SIR-LT model, since once an
infectious individual becomes recovered inSIR-LTmodel, he/shewill become immune
to the disease and exclude from susceptible status permanently, as shown in the green
curves in Fig. 3.
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(a) |V| = 50,m= 100,T = 70, t0 = 5 (b) |V| = 100,m= 200,T = 70, t0 = 5

Fig. 2 Diagram of the SIS-LT model

(a) |V| = 50,m= 100,T = 70, t0 = 5 (b) |V| = 100,m= 200,T = 70, t0 = 5

Fig. 3 Diagram of the SIR-LT model

Figure 3 illustrates that although budgets are different in SIR-LT models, most
curves have very similar shapes and trends. For instance, in Fig. 3b, the time when
the number of infections peaked for the first time is in about 18 days, and the curves
become stable in about 45 days that ismuch shorter than traditional SIR compartmental
model in Fig. 4b.

6.2 Comparison of different edge densities

In this subsection,we use three connectedWatts–Strogatz small-world graphs of differ-
ent edge densities for comparison. Each node joins with 5, 7 and 10 nearest neighbors
in an initial ring topology, which generates three graphs of size m = 100, 150, 250.
Other parameters: the number of nodes n = 50, the random reconnection probability
p = 1/2, the ratio |V1|/n = 1/2, the period T = 70, the budget B = 5.

From Fig. 5, we can find out the time when the number of infections peaked for
the first time becomes shorter as the edge density increases. Three curves have very
similar shapes and trends whether in Fig. 5a or b. Besides, periodic oscillations are
more evident in Fig. 5a than Fig. 2a.

Regarding the change of behavior on the transmission process, we compute the
infection curves for the dynamic network model as well. Figure 6 shows how this
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(a) SIS model (b) SIR model

Fig. 4 Diagram of the compartmental models with initial values: total population n = 100, number of
initial infectious individuals I (0) = 5, infection rate β = 0.2, recovery rate δ = 0.04

(a) SIS-LT model (b) SIR-LT model

Fig. 5 Comparison of different edge densities in LT optimization model with initial values |V | = 50,
T = 70, t0 = 5, B = 5

strategy of wearing masks affects the transmission process in SIR-LT model. Com-
pared with SIR-LT model, the total number of infected individuals within 70 days in
this dynamic SIR-LT model is much less than that of SIR-LT model. To some extent,
Fig. 6 illustrates that if people can take precautions quickly to protect themselves, it
will be very effective to prevent epidemic spread over the whole network.

6.3 Simulation on a community network

In this section, we simulate the infectious disease transmission process in a community
located in Wuhan, China during the lockdown of this city starting from Jan 23, 2020.
There are 25 buildings in this community, every buildings has 18 households and we
assume that each household may have 2, 3 or 5 people and the percentages of a family
made up of 2, 3 and 5members are 20%/50%/30%. Thus there are 1512 nodes in total
in this community network. Next we consider the edges between these nodes. During
the lockdown of this city, people may directly contact each other when they are family,
use the same elevator, or pick up groceries at the same time. Since family members
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(b)(a)
Fig. 6 Diagram of the SIR-LT dynamic network model with initial values |V | = 50, |V1|/|V | = 1/2, T =
70, t0 = 5, B = 5, n0 = 1. a The susceptible, infected and recovered population fraction curves; b Fraction
of individuals wearing masks versus time in the network G

Fig. 7 A community network with 1512 nodes of 25 buildings, 25 × 18 = 450 yellow nodes are the
representatives of families, 25 green nodes are the resident representatives in each building, brown nodes
represent the family members who always stay at home during the lockdown of this city

contact with each other in their homes, we consider a complete graph structure in
each family. Suppose only one person in each family goes out during the lockdown
of Wuhan, and each building needs one resident representative to pick up groceries
outside the community. Thus, 18 people may contact when using the same elevator
and 25 people may meet when they pick up groceries. We consider a cycle topology
among these 18 people and 25 people separately meaning that they do these things in
order.

Figure 7 shows the community network we constructed. Green, yellow and brown
nodes represent resident representatives in buildings, representatives of families and
family members who always stay at home, separately.

Sincewe only consider the outbreak stage of COVID-19 in a community, we use SI-
LTmodel to simulate this spreading process on this network. Suppose familymembers
who always stay at home during the lockdown of this city do not wear masks all along,
others (the representatives) in this network all wear masks to protect themselves. That
is, if we useG = (V1∪V2, E) to denote this community network, then the node set V1
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Fig. 8 Simulation results of the SI-LT model on the community network with initial values: T = 30, t0 =
t, B = 3

includes all the 450 representatives in this community, the others belong to the node
set V2. And the transmission probabilities πi j can be interpreted in a more specific
way. For instance, if πi j = a, then it represents an infectious individual i can be in
contact with a susceptible individual j and i and j are both representatives in this
community. Other parameter settings are T = 30, t0 = t, B = 3.

Since the network is too large to solve it directly by integer programming solver,
we propose a simulation-based approach. Note that this community network we con-
structed has a strong symmetric structure and the size of seed set is a small value
(B = 3). Three nodes in candidate seed sets may belong to some cases like three
nodes are all green nodes, all yellow nodes, all brown nodes in the same family, all
brown nodes in different families, two green nodes and one brown node, etc. Due to
these reasons, we can first generate all possible candidate seed sets by eliminating all
duplicates, then run the simulation starting at these candidate seed sets one by one
and choose the best solution achieving the maximized influence spread. The results
of SI-LT model can be obtained quickly, once a candidate seed set is given.

The simulation results show that the final solution consists of three brown nodes
coming from three different families. The infection is clustered, and there are 15
infected people in total during the lockdown of this city, which come from three
different families. And there are no infections between households when we set the
parameter a = 1.5%. Figure 8 shows the simulation results on this community net-
work, which can reveal some observations on the spreading process over community
networks: (1) the infection is clustered, meaning once an individual becomes infected,
his/her family can be infected aswell. (2) Ifmost individuals take precautions in a com-
munity network, then the transmission process will stop quickly. (3) The sparse and
clustered structure of community network also plays an important role in preventing
the further spread of infectious diseases.
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6.4 Numerical results

We compare the running times and solution properties of above-mentioned optimiza-
tionmodels and they are displayed in Table 1. The proposedmodels were implemented
in Python 3.8 using the optimization solver CPLEX 20.1.0. All the experiments were
performed on a Linux server running CentOS 7 with one AMD EPYC 7642 48-Core
processor (2.3 GHz) and 512 GB memory. Computational time is reported by CPU
seconds.

From Table 1, we can observe that the computation time of these models is closely
related to the number of vertices in a graph and the budget we provided. Note that
when n = 100, B = 5 in SI-LT, SIS-LT and SIR-LT model, the computational time is
much longer than solving other instances, the reason may be that, the initial gaps of
these instances (upper bound–lower bound) are larger than the other instances, and the
optimization solver is not efficient in finding strong cutting plane due to the limited
infection level. Furthermore, computational experiments also illustrate that methods
and techniques in speeding up solving these LT models are still expected, given that
the optimization solver is not efficient in solving large sparse networks. Also, when
we try to consider the cumulative effect of time in the SIR-LT-dynamic model, all
instances cannot be solved within an acceptable time (within 12 h), which means
solving SIR-LT-dynamic model is more challenging than solving the other models
and some methods of solving this model still need to be considered in the future work.

7 Conclusions

In this paper, we studied the spread of infectious disease process through the
time-aware influence maximization problem. We first proposed three optimization
models—SI-LT, SIS-LT and SIR-LT to investigate the discrete propagation nature and
considered the cumulative effect of time in these threshold models of IM as well. Then
we modeled the behavior change with respect to precautionary actions (e.g., wearing
or not wearing masks) during the period of epidemic spreading over a network. In
addition to studying overall infection trend like in SI/SIS/SIR compartmental models,
our work also considers the interactions between individuals over networks.

Our computational experiments were performed on Watts–Strogatz small-world
networks and a hand-designed community network that reflects a simplified social
network in the early days of the lockdown inWuhan,China. The results not only display
several spreading curves using our approaches in networks with different settings, but
also reveal several important observations on community networks. Namely, it can be
found that the sparse and clustered structure of network topology and precautionary
actions play a significant role in preventing the spread of infectious diseases. However,
methods and techniques in speeding up solving these LT models were still expected,
given that optimization solver was not efficient in solving large sparse networks.
Besides, there is still a gap between the results of the SIS-LT optimization model and
the actual SIS epidemic spreading process.

Future works can include the study of the impact of vaccination on the spread of
the epidemic by using some optimization methods, or consideration of the interdic-
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tion problem of epidemic spreading, that is, to minimize the maximum amount of
damage that the virus could possibly inflict on the network G. Furthermore, there
exist many other compartmental models (like SIR-Deceased (SIRD), SIR-Vaccinated
(SIRV), S-Exposed-IR (SEIR), etc.) reflecting different features of disease spreading.
For instance, S-Exposed-IR (SEIR) family ofmodels encapsulate transient interactions
of disease spreading and can be used for pathogen-modeling with/without fomites.
These compartmental models might be considered from an optimization perspective
as well.
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