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Abstract

In this note, we prove that for homogeneous polynomial optimization on
the sphere, if the objective f is generic in the input space, all feasible
points satisfying the first order and second order necessary optimality
conditions are local minimizers, which addresses an issue raised in the
recent work by Lasserre (Optimization Letters, 2021). As a corollary, this
implies that Lasserre’s hierarchy has finite convergence when f is generic.
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1 Introduction

Consider the optimization problem

{

min f(x)
s .t . x ∈ S

n−1,
(1.1)

where f(x) is a homogeneous polynomial of degree d and Sn−1 denotes n-
dimensional unit sphere, i.e.,

S
n−1 := {x ∈ R

n : x2
1 + · · ·+ x2

n = 1}.
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2 Optimality conditions for homogeneous polynomial optimization on the unit sphere

This problem has broad applications in quantum entanglement, tensor decom-
positions and so on, referring to [1–3, 6] for details.

As a special case of general polynomial optimization problems, the clas-
sical Lasserre type Moment-SOS hiearchy of semidefinite relaxations [5] is
efficient for solving (1.1) globally, i.e., in general the optimal value and global
minimizers can be computed efficiently. Asymptotic convergence is always
guaranteed since the quadratic module generated by the constraining polyno-
mial is archimedean. Convergence rate of Lasserre’s hierarchy has been studied
in [3, 8]. For general polynomial optimization problems, it was shown in [7]
that the Lasserre’s hierarchy converges in finite steps generically under the
archimedeanness. To be more specific, Nie [7] proved that the Lasserre’s hier-
archy has finite convergence if the linear independence constraint qualification,
strict complementarity and second order sufficient conditions hold at every
global minimizer and these optimality conditions hold at every local minimizer
generically (we say a property holds generically if it holds except a zero measure
set in the input space). Recently, Lasserre [6] has characterized all points that
satisfy first and second order necessary optimality conditions, only in terms of
f , its gradient and the two smallest eigenvalues of its Hessian, and he also con-
jectured that generically all feasible points of (1.1) satisfying first and second
order necessary optimality conditions are local minimizers, for fixed degree d.

In this paper, we show that for fixed degree d, all feasible points of (1.1)
satisfying the first and second order necessary optimality conditions also satisfy
the second order sufficient condition except on a zero measure set in the input
space. This result gives a positive answer to the issue raised by Lasserre, since
every feasible point of (1.1) satisfying the first and second order sufficient
optimality conditions is a local minimizer. As a direct corollary, Lasserre’s
hierarchy has finite convergence for optimizing homogeneous polynomials on
the unit sphere generically. We would like to remark that the result of Nie [7]
can not be applied directly. For fixed degree d, suppose f(x) is a polynomial
of degree ≤ d and g(x) is a polynomial of degree ≤ 2. Nie’s result implies that
for problems of the form

min f(x) s.t. g(x) = 0, (1.2)

it is true that the second order sufficient condition holds at every feasible
point of (1.2) satisfying the first and second order necessary optimality con-
ditions when f is generic in the space of polynomials with degree ≤ d and g

is generic in the space of polynomials with degree ≤ 2. When it specializes to
the case where f is required to be homogeneous of degree d and g is the fixed
polynomial ‖x‖2 − 1, Nie’s result can not be applied. This is because the set
of homogeneous polynomials of degree d is already a zero measure set in the
space of polynomials with degree ≤ d and the same for ‖x‖2 − 1. The simi-
lar observation was also found by Lasserre in [6]. Throughout the paper, we
assume d ≥ 1 because the case d = 0 is trivial.

In Section 2, we address required preliminaries and the main results are
presented in Section 3.
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2 Preliminaries

We review some basic results on optimality conditions for homogeneous
polynomial optimization on the sphere. For every x ∈ Sn−1, let

x⊥ :=
{

u ∈ S
n−1 : uTx = 0}.

Proposition 2.1 ([6], Proposition 2.1) If x∗ ∈ S
n−1 is a local minimizer of (1.1),

then there exists λ∗ ∈ R such that:

(i) The first order necessary condition (FONC) holds:

∇f (x∗)− λ∗x∗ = 0. (2.1)

(ii) The second order necessary condition (SONC) holds:

uT∇2f (x∗)u− λ∗ ≥ 0, ∀u ∈ (x∗)⊥ . (2.2)

Conversely, if x∗ ∈ Sn−1 satisfies (2.1) and the second order sufficient
condition (SOSC)

uT∇2f (x∗)u− λ∗ > 0, ∀u ∈ (x∗)
⊥
, (2.3)

then x∗ is a local minimizer of (1.1).

A point x∗ ∈ Sn−1 is called an SONC (resp., SOSC) point of (1.1) if x∗

satisfies the FONC and SONC (resp., SOSC). We need the elimination theorem
for general homogeneous polynomial systems to prove our main result.

Theorem 2.2 ([4], Theorem 5.7A, Chapter 1) Let f1, . . . , fr be homogeneous poly-
nomials in x0, . . . , xn, having indeterminate coefficients aij . Then there is a set
g1, . . . , gt of polynomials in the aij , with integer coefficients, which are homogeneous
in the coefficients of each fi separately, with the following property: for any field k,
and for any set of special values of the aij ∈ k, a necessary and sufficient condi-
tion for the fi to have a common zero different from (0, . . . , 0) is that the aij are a
common zero of the polynomials gj .

3 Main result

In this section, we prove that for a fixed degree d, every SONC point of
(1.1) satisfies the SOSC except on a zero measure set in the input space. The
following is a useful lemma.
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Lemma 3.1 Suppose x∗ ∈ S
n−1. If x∗ is an SONC point of (1.1) and the SOSC

fails at x∗, then there exists a nonzero y∗ ∈ R
n such that

rank

[

∇f(x∗) x∗ 0

∇2f(x∗)y∗ y∗ x∗

]

≤ 2, (y∗)Tx∗ = 0. (3.1)

Conversely, if (3.1) holds for a nonzero y∗ ∈ R
n, then the FONC holds at x∗ while

the SOSC fails.

Proof Since x∗ is an SONC point, we have ∇f (x∗) = λ∗x∗ for some λ∗ ∈ R, by
Proposition 2.1. If the SOSC fails at x∗, then there exists 0 6= y∗ ∈ S

n−1 satisfying

(y∗)T∇2
f(x∗)y∗ − λ

∗ = 0, (y∗)Tx∗ = 0.

It implies that y∗ is a minimizer of the problem minz∈(x∗)⊥ zT∇2f(x∗)z. By the

first order optimality condition, we have ∇2f(x∗)y∗ = λ∗y∗ + βx∗, for some β ∈ R.
Thus (x∗, v) satisfies (3.1).

For the converse, suppose (3.1) holds for a nonzero y∗ ∈ R
n. Then there exists a

nonzero β := (β1, β2, β3) such that

β1∇f(x∗) + β2x
∗ = 0, β1∇

2
f(x∗)y∗ + β2y

∗ + β3x
∗ = 0.

If β1 = 0, then β2 = β3 = 0 since x∗ ∈ S
n−1. Thus β1 6= 0, and we have

∇f(x∗) +
β2
β1

x
∗ = 0, (y∗)T∇2

f(x∗)y∗ +
β2
β1

‖y∗‖2 = 0.

It implies that the FONC holds at x∗, while the SOSC fails. �

Hence, if the SOSC fails at an SONC point of the problem (1.1), the
following system

rank

[

∇f(x) x 0
∇2f(x)y y x

]

≤ 2, yTx = 0. (3.2)

has a solution (x, y) ∈ C2n with x 6= 0, y 6= 0. This is because that if x∗ is
such an SONC point of (1.1) (i.e., SOSC fails at x∗), it follows from Lemma
3.1 that there exists a nonzero vector y∗ such that (3.1) holds. Clearly, (x∗, y∗)
is a solution of (3.2) with x∗ 6= 0, y∗ 6= 0.

Next we investigate when the system (3.2) has a pair of solution (x, y) ∈
Cn × Cn with x 6= 0, y 6= 0. When n = 1, the rank condition in (3.2) always
holds and can be dropped. When n > 1, we can replace the rank condition by
the vanishing of all maximal minors. Thus, (3.2) is equivalent to

Q1(x, y) = · · · = Qt(x, y) = yTx = 0

for some polynomials Q1, . . . , Qt, which are homogeneous in both x and y, and
their coefficients are also homogeneous in the coefficients of f . By applying
Theorem 2.2 in x first, and then in y, there exist polynomials φi (f) (i =
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1, . . . , s) with integer coefficients, homogeneous in the coefficients of f , such
that there exist 0 6= x ∈ Cn, 0 6= y ∈ Cn satisfying (3.2) if and only if

φ1 (f) = · · · = φs (f) = 0.

We would like to remark that the property of polynomials Q1, . . . , Qt being
homogeneous in both x and y is important. This is because it allows us to
apply the elimination theorem twice, separately in x, y.

Denote by R[x]=d the set of all homogeneous polynomials of degree d. Let

φ(f) = φ2
1 (f) + · · ·+ φ2

s (f) .

Note that φ(f) is also a polynomial in the coefficients of f . Proposition 3.2 is
directly implied by the analysis above.

Proposition 3.2 Suppose the polynomial f ∈ R[x]=d. Then for this fixed f , there
exist 0 6= x ∈ C

n, 0 6= y ∈ C
n satisfying (3.2) if and only if φ(f) = 0.

If φ(f) = 0, then there exist 0 6= x∗ ∈ Cn, 0 6= y∗ ∈ Cn satisfying (3.2). It
implies that

∇f(x∗)− λ∗x∗ = 0, ∇2f(x∗)y∗ − λ∗y∗ − µ∗x∗ = 0, (y∗)Tx∗ = 0,

for λ∗ ∈ C, µ∗ ∈ C. Note that the vector (y∗, µ∗) is nonzero and we have
H(x∗, λ∗)(y∗, µ∗) = 0, where

H(x, λ) =

[

∇2f(x) − λIn x

xT 0

]

. (3.3)

It implies that det(H(x∗, λ∗)) = 0. Hence, if φ(f) = 0, there exist 0 6= x∗ ∈ Cn,
λ∗ ∈ C such that

∇f(x∗)− λ∗x∗ = 0, det(H(x∗, λ∗)) = 0. (3.4)

For a complex number z, |z| denotes its modulus. In the following, we prove
that φ(f) does not identically vanish.

Lemma 3.3 The polynomial φ(f) does not vanish identically in the coefficients of
f ∈ R[x]=d.

Proof We prove the result by considering the cases d = 2 and d 6= 2. To show that
φ(f) does not vanish identically, we only need to prove that φ(p) = 0 for a special p.
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(1) Suppose d = 2. Let p(x) := 1
2 (x

2
1 + 2x2

2 + · · · + nx2
n). If φ(p) = 0, the

equation (3.4) holds for some x∗ 6= 0, λ∗ ∈ C. Thus, we have kx∗
k = λ∗x∗

k

(k = 1, . . . , n). Note that there exists ℓ ∈ {1, . . . , n} such that

x∗
ℓ 6= 0, x∗

1 = · · · = x∗
ℓ−1 = x∗

ℓ+1 = · · · = x∗
n = 0.

Otherwise, if x∗
i 6= 0, x∗

j 6= 0 for i 6= j, we have i = λ∗ = j, which is a
contradiction. Hence λ∗ = ℓ, and the following holds

H(x∗, λ∗) =

















1− ℓ

· · ·
0 x∗

ℓ

· · ·
n− ℓ

x∗
ℓ 0

















.

Clearly, we have det(H(x∗, λ∗)) 6= 0, which contradicts the second equation
in (3.4). Hence, φ(p) 6= 0.

(2) Suppose d 6= 2. Let α := 2d−2, p := αxd
1 + α2xd

2 + · · · + αnxd
n. If φ(p) = 0,

then there exist x∗ 6= 0, λ∗ ∈ C satisfying (3.4). Note that the multiplier
λ∗ 6= 0, otherwise x∗ would vanish. Without loss of generality, assume that
x∗
1 = · · · = x∗

ℓ = 0, x∗
ℓ+1 6= 0, . . . , x∗

n 6= 0 for ℓ ∈ {0, 1, . . . , n − 1}. From the
equation (3.4), the following holds

λ∗ = dαℓ+1(x∗
ℓ+1)

d−2 = · · · = dαn(x∗
n)

d−2.

Denote s∗ = (x∗
ℓ+1, . . . , x

∗
n)

T , we have

H(x∗, λ∗) =





−λ∗Iℓ 0 0
0 (d− 2)λ∗In−ℓ s∗

0 (s∗)T 0



 .

Thus, it holds that

|det(H(x∗, λ∗))|
1

2 = |d− 2|n−ℓ−1|λ∗|n−1|(x∗
ℓ+1)

2 + · · ·+ (x∗
n)

2|

≥ |d− 2|n−ℓ−1|λ∗|n−1(|x∗
ℓ+1|

2 − |x∗
ℓ+2|

2 − · · · − |x∗
n|

2)

≥ |d− 2|n−ℓ−1|λ∗|n−1|
λ∗

d
|

2

d−2 (
1

4ℓ+1
−

1

4ℓ+2
− · · · −

1

4n
)

> 0,

which contradicts the second equation in (3.4). Hence, φ(p) 6= 0.
�

The following is our main result.
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Theorem 3.4 Suppose the polynomial f ∈ R[x]=d satisfies φ(f) 6= 0, then every
SONC point of (1.1) satisfies the SOSC. Moreover, when f is generic in R[x]=d,
every SONC point of (1.1) is an SOSC point.

Proof Suppose otherwise the SOSC fails at a SONC point of (1.1). By Lemma 3.1, the
system (3.2) is feasible for some x∗ 6= 0, y∗ 6= 0. It follows from Proposition 3.2 that
φ (f) = 0, which contradicts the assumption of Theorem 3.4. Since the polynomial
φ(f) does not vanish identically (cf. Lemma 3.3), the set {f ∈ R[x]=d : φ(f) = 0} is
a zero measure subset of R[x]=d. Thus, every SONC point of (1.1) is an SOSC point
when f is generic in R[x]=d. �

A direct corollary of Theorem 3.4 is that the standard Lasserre’s hierarchy
converges in finite steps generically.

Corollary 3.5 Suppose f is generic in R[x]=d, then the Lasserre’s hierarchy of (1.1)
has finite convergence.

Proof Note that every local minimizer of (1.1) is an SONC point. By Theorem 3.4,
for generic f , every local minimizer of (1.1) is an SOSC point. We can easily verify
that the linear independence constraint qualification, strict complementarity condi-
tions hold at every local minimizer since there is no inequality constraint. Thus the
Lasserre’s hierarchy of (1.1) has finite convergence for generic f , by Theorem 1.1,
[7]. �

We would like to remark that Theorem 3.4 has a simple principle when
d = 2.

Lemma 3.6 Suppose f = 1
2x

TAx for a symmetric matrix A ∈ R
n×n, and the

eigenvalues of A are ordered by λ1 ≤ λ2 ≤ . . . ≤ λn. Then every SONC point of
(1.1) satisfies the SOSC if and only if the least eigenvalue λ1 is simple.

Proof Note that each point satisfying the FONC is an eigenvector of A with asso-
ciated eigenvalue 2f (x∗). Suppose x∗ is an SONC point, then x∗ must be the
eigenvector associated with λ1, by Corollary 2.4, [6]. If λ1 is not simple, there must
exist a nonzero v ∈ S

n−1 such that

Av = λ1v, v
T
x
∗ = 0.

Hence, we have
v
T∇2

f
(

x
∗
)

v − λ1 = 0,

which implies the SOSC fails at x∗. On the another hand, suppose λ1 is simple. Let
v2, . . . , vn be the unit orthogonal eigenvectors associated with eigenvalues λ2, . . . , λn,
and we have

(x∗)⊥ = {u ∈ S
n−1 : u = µ2v2 + · · ·+ µnvn, µ2, . . . , µn ∈ R}.
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For any u ∈ (x∗)⊥, we have

u
T∇2

f
(

x
∗
)

u− λ1 =

n
∑

i=2

λiµ
2
i − λ1 > λ1

n
∑

i=2

µ
2
i − λ1 = 0.

Hence, x∗ is an SOSC point. �

Note that for generic symmetric matrix A, every eigenvalue is simple, which
directly implies that for generic f ∈ R[x]=2, every SONC point of (1.1) is an
SOSC point.
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