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1 Delineation of Local Labor Markets 

The last years have witnessed a renewed interest in the 

estimation of economic models at local levels, something 

which has been fostered by the persistence of substantial 

local/regional differences in relevant variables such as 

unemployment, and indicators on cohesion and 

competitiveness, in a context of general growth of developed 

countries’ wellbeing. When conducting this kind of empirical 

exercises the election of the spatial framework is a crucial step 

in the research process. One obvious election is the use of 

administrative boundaries. This geographical reference is 

however of little help nowadays since economic activity 

exceeds traditional administrative limits and spreads 

throughout wider territories thanks to the improvement in the 

access to faster means of transport. The patterns of location of 

places of residence and economic activities are moreover 

becoming more complex, this resulting in multiple-direction 

flows that lead to the obsolescence of administrative areas as 
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functional regions. A new concept of ‘locality’ is therefore 

needed in which functional coherence dominates, as a crucial 

first step for meaningful research and policy-making purposes. 

Delineating local labor market areas (LLMAs) is an exercise 

that has become very common in the last decades across 

developed countries [1]. As stated above, these sets of 

functional areas are seen as an alternative to the use of local and 

regional administrative areas as the relevant geography for 

statistical purposes and for the design, implementation and 

monitoring of labor market and other public policies in related 

fields such education and housing markets. It is recognized that 

administrative areas are defined by boundaries that very 

frequently were established for historical reasons, and therefore 

it is not assured that they provide a meaningful insight of the 

territorial functional reality. The measurement of 

unemployment, for example, can be seriously biased if 

conducted on the grounds of administrative areas which on the 

one hand are frequently composed of very independent regions 

with different features that are averaged up in the aggregate 

-something that biases the perception of any external observer- 

and, on the other hand, are only one part of an upper tier 

functional reality whose consideration is necessary to fully 

understand the processes affecting a given territory. One of the 

scarce pieces of work where these effects have been formally 

tested is [2]. In this paper the relevance of the choice of a 

specific regionalization was tested through the use of five 

alternative geographical frameworks for the estimation of a 

multiregional model of labor supply. The conclusions of their 

analysis show that it is not admissible to ignore the potential 
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effects of the spatial representation choice given the effects that 

the different geographies have on the estimated parameter 

values and the model performance.  

Some countries have delineated homogeneous LLMAs 

through the aggregation of basic territorial units such as 

counties, wards or municipalities that are similar in their 

characteristics (a review of these procedures can be found in 

[3]). The most popular strand however consists in the 

aggregation of building blocks based on the observed 

interaction among them in terms of travel-to-work. 

An intuitive approach to the concept of LLMA leads us to 

define it as the area where the majority of the interaction 

between a group of workers seeking jobs and employers 

recruiting labor occurs (i.e. its boundaries should be defined so 

that relatively few people travel between home and work across 

them). This refers to what Goodman [4] called external 

perfection (the boundary of the area is rarely crossed in daily 

journeys to work) and together with a high degree of 

intra-market movement (so that the defined market is 

internally active and so as unified as possible) is the basis of the 

ideal LLMA. More than a decade ago Eurostat [5] established a 

code of good practices to guide the selection of a specific 

procedure through a project leaded by Prof. Coombes: (a) the 

ideal map of LLMAs should be based on statistical criteria, thus 

defined in a consistent way to allow comparison for statistical 

and policy purposes, (b) the procedure should allow the 

delineation of boundaries between areas within which most 

people both live and work, (c) each basic spatial unit should be 

in one, and only one LLMA, (d) contiguity should be respected, 

(e) a certain degree of self-containment should be reached, so 

that most of the LLMA’s workers live in that area and most of 

the area’s employed residents should work locally, (f) the map 

should consist on homogeneous units whose size should 

overpass a minimum threshold, (g) the areas defined should not 

be unnecessarily complex from a topographic point of view, (h) 

the map of LLMAs should respect where possible the standard 

administrative top tier boundaries, this being considered 

advantageous from both statistical and policy points of view 

and finally (i) the procedure should be flexible enough to allow 

evaluation and adjustment, although the possibility of varying 

the statistical criteria between regions must be excluded. The 

preference for detail (delineating as many criteria-meeting 

LLMAs as possible) is also frequently included as one 

additional criterion in this kind of exercises.  

Despite sharing a common basic view about the ideal 

features of such an area, current official methods have a very 

diverse nature and are mostly based in sets of rules whose 

sophistication substantially varies nationally and, to a certain 

degree, temporally. Among the diverse possible criteria, and 

based on previous works by them and other authors, Casado 

and Coombes [6] classify these official procedures by 

distinguishing between inductive and deductive methods, on 

the one hand, and between hierarchical and multi-step, on the 

other. Deductive methods depart from the identification of the 

potential centers of LLMAs and proceed by merging residual 

geographical units with them to form a whole map of LLMAs. 

On the contrary, inductive methods do not depart from a 

preconceived idea of which the centers are, and give a central 

role to commuting flows from the beginning. Hierarchical 

methods consist on a rule that indicates which basic units 

should merge first according to the intensity of their 

relationship in commuting terms and proceed iteratively by 

applying the same rule until a termination condition is met. 

Finally, multi-step procedures consist on much more 

sophisticated sets of rules and frequently have a theoretical 

model behind that guides the decisions of when and why a 

certain rule has to be applied. One of the procedures that has a 

longer history and has been more widely applied is that of 

Coombes et al. [7] which has been used in the United Kingdom 

for the delineation of LLMAs (so-called Travel-to-Work Areas, 

TTWAs) since the decade of 1980. This sophisticated 

procedure was also used, with minor changes, to define LLMAs 

in Italy [8-10], Spain [11], New Zealand [12] and Australia 

[13], among other countries. This is the procedure that inspires 

the one proposed in the article. 

Given the complexity of the problem an exhaustive search of 

the optimal solution is not possible in many cases. This is the 

reason why some kind of heuristic is needed. In this paper we 

opt for an evolutionary approach. Although computational 

intelligence techniques are becoming quite popular in 

Economics and Finance [14,15], and there are many 

techniques for clustering or grouping employing evolutionary 

computation [16-18], the use of such techniques for the 

delineation of functional areas has not been attempted.  

In our proposal the regionalization problem is presented as 

the maximization of markets’ internal cohesion in terms of 

travel-to-work subject to a number of restrictions among which 

stands meeting certain self-containment and minimum size (in 

terms of occupied population) thresholds, with the aim of 

identifying as many independent markets as possible, and 

without making use of geographical distance measures or 

contiguity constrictions (although the contiguity between the 

units constituting a functional region is desirable, the use of 

such conditions during the first steps of the regionalization 

procedures are likely to bias the results [6]). Unlike other 

procedures, the method proposed here meets the criteria listed 

above, and results in a significant improvement in measurable 

indicators such as the number of identified LLMAs which 

satisfy the stated criteria. We illustrate our approach using the 

latest Census data available for Spain [19]. 

The multiple constraints the problem involves (such as the 

absence of overlapping and the exhaustive coverage of the 

territory) result in the number of valid solutions being 

extraordinarily small with regards to the search space. This is 

the reason why an evolutionary algorithm with standard 

representation and operators does not lead to a near-optimal 

solution in a feasible time. A deep knowledge of the problem 

has allowed the design of an extensive set of crossover and 
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mutation operators, some of which have similarities with those 

used in other grouping and clustering problems to which they 

could be immediately applied, whilst other are much more 

related to the very specific nature of the problem, i.e. the 

delineation of LLMAs. This is a strategy that has proved to 

allow reaching the final solution, and to do so much more 

rapidly [20].  

Next section is devoted to describe the problem formally. 

Third section is concerned with the development of our 

evolutionary proposal, including how the individuals are 

represented, the selection procedure and the explanation of the 

recombination and mutation operators, most of which have 

been specifically designed for this problem. In Section IV an 

application of the method is presented. The Region of 

Valencia, Spain, is the territory chosen for the 

experimentation. The election of this case study is justified at 

the beginning of the section which also includes the assessment 

of the relative performance of the diverse operators, the 

analysis of the robustness of the delineation results as well as 

the evaluation of the convergence process. The concluding 

section contains some final remarks and sketches a few of the 

possible extensions of the model in terms both of empirical 

applications in different research and policy-making processes 

and regarding methodological future developments.  

2 Problem formulation 

Let  1 2 nA A ,A , ,A  be a set of areas (the territory to be 

divided into functional areas). The objective is to obtain the set 

of regions (LLMAs)  1 2 mR R ,R , ,R  so as 
m

i 1
i

R A


  

and  i jR R , i, j 1,m , i j     , that maximizes a fitness 

function f based on the interaction index II between an area and 

the rest of the region it belongs to: 
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where 
i jA AW  is the number of commuters from area iA  to area 

jA , that is the number of employed residents in area iA  that 

work in area jA . 

Also, expressed in a more intuitive form as: 
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For a better understanding of each factor, in its general form, 

j iR ,RPE  is the proportion of employees residing in 
iR  that 

work in 
jR , 

j iR ,RPJ is the proportion of jobs in 
jR  that are held 

by employees residing in 
iR . In our case we calculate the 

interaction index between an area Ak, that is considered as a  

single area region, and the region resulting from subtracting Ak 

to  the region  kR A it belongs to. This interaction index 

between an area and its region is a generalization of the 

interaction index used in [7] and discussed among others in [6]. 

We have tested our method with two different fitness functions 

based on (1). First, we intend to maximize the sum of the 

interaction indexes for all the areas of the territory:  

 
i

1 i

A A

f II A
 

   (7) 

Second, since one of the criteria stated in Section 1 is detail, 

i.e. reaching the highest possible number of independent 

LLMAs, we have also considered a variation of that function: 
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Besides, each region iR R  must fulfill two requirements 

in terms of minimum self-containment ( 1 , 2 ), 
2 1

    and 

minimum size (
3 , 

4 ), 
3 4
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   the total amount of employees that 

reside in sR and work in tR . 

A trade-off between both constraints has been introduced 

similarly to [7], but in the formulation proposed by Casado 

[11]. According to this trade off, the minimum 

self-containment requirement is relaxed for regions which are 

sufficiently large following a linear relationship (this allows 

identifying more separate LLMAs in very urbanized 

environments, something desirable according to the principles 

listed in Section 1). This trade-off is considered as follows: 

i i i i
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We have also included a requisite to guarantee some degree 

of contiguity by employing only commuting data: an area can 

only belong to a region if it is reachable from any other area of 
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that region through the  highest outgoing/incoming 

commuting flows (by checking graph connectivity). 

3 Evolutionary proposal 

The structure of the evolutionary algorithm for the 

regionalization of the territory follows the next steps: 

Step 1. Produce an initial population of a given size. The 

whole set of areas (the whole territory A) is taken as individual 

#1 (this is an individual meeting all the requirements). 

Complete the initial population with n-1 randomly generated 

individuals (experimentation showed that most of these are 

invalid solutions).  

Step 2. Evaluate fitness of all individuals and sort them 

accordingly. 

Step 3. Generate nr new individuals by recombination, 

selecting the parents from the population by 

fitness-proportional probability, and selecting the operator to 

apply according to a pre-established probability. 

Step 4. Generate nm new individuals by mutation, selecting 

the original individual from the population by fitness 

probability, and selecting the operator to apply according to a 

pre-established probability. 

Step 5. Evaluate fitness of all new individuals. 

Step 6. Sort the whole population, composed of n+nr+nm 

individuals, by their fitness value. 

Step 7. Generate a new population choosing the n best 

individuals. 

Step 8. Stop condition: if the best individual remains without 

changes for g generations, finish. Otherwise, return to step 3.  

3.1 Individual Representation 

The individuals of the population represent possible 

solutions, that is, the aggregation of the whole set of areas 

composing territory A into no over-lapping local labor markets 

(regions). There are different alternatives for the encoding of a 

data set grouping [16-18]. In our case, we have chosen a 

group-number encoding where each individual is represented 

by a vector of n components, each of which corresponds to an 

area of A, and takes the value of the identifier of the region the 

area belongs to (Fig. 1). 

 

 
Fig. 1.  Individual representation 

 

3.2 Selection 

The selection of the individuals to be affected by 

recombination and mutation operations is performed following 

a ranking method [21], according to which those individuals 

scoring higher in the fitness function have a larger probability 

of being selected. 

3.3 Recombination Operators 

Due to the large number of constraints that the individuals 

must fulfill, and very notably to the fact that in a 

regionalization exercise it is important to guarantee the 

exhaustive coverage of the territory and the avoidance of 

overlapping between regions, the usual operator of 

recombination does not in many cases lead to feasible solutions. 

This is the reason why we have designed a wide group of 

specific operators that has proved to allow a more rapid 

evolution of the population towards acceptable solutions: 

1) Recombination1: A crossover point is randomly selected. 

Offspring is generated by taking the initial part of one of 

the parents and the final part of the other one. This is the 

standard 1-point crossover operator. However, in this 

specific case this operator frequently results in invalid 

offspring due to the lack of a compatible correspondence 

between the region identifiers of both parents (see Fig. 2 – 

region 3 in parent #1 and region 4 in parent #2 are 

identical but they are codified with a different region 

identifier, resulting in a fragmentation of the region in the 

offspring). 

 
Fig. 2. Operator Recombination1 

 

2) Recombination2: A region identifier belonging to parent 

#1 is randomly chosen. The areas with identifiers lower or 

equal to the chosen one are inherited by the offspring. Each 

of the rest of the areas takes the identifier from parent #2, 

except in those cases when it belongs to a region from 

which one or more of its constituting areas were already in 

the offspring. In such cases, the areas take the identifiers 

from parent #1 (see Fig. 3 – areas in parent #2 belonging to 

region R3 must be assigned to R1 in the offspring). 

 

 
Fig. 3. Operator Recombination2 

 

3) Recombination3: a crossover point is randomly selected. 

For the areas previous to that point, the offspring takes the 

values of parent #1. From that crossover point, values from 

parent #2 are inherited, unless this involves a region with 

an area already set in the offspring; in such cases the 

identifier of parent #1 is used (see Fig. 4 – areas in parent 

#2 belonging to R3 and R4 must be assigned to R1 and R3 

respectively. 
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Fig. 4. Operator Recombination3 

 

4) Since the areas characterized by lower identifiers are also 

assigned to regions with lower identifiers, their probability 

of being taken from parent #1 is greater than that of areas 

with high identifiers. To cope with this we have added two 

recombination operators (Recombination4 and 

Recombination5), as variations of Recombination2 and 

Recombination3 respectively. In them a random recoding 

of the regions in the representation of both parents is 

performed previously to the recombination. 

3.4 Mutation Operators 

We have designed an extensive set of mutation operators, 

some of them specifically intended for the delineation of local 

labour market areas, with the aim to accelerate the obtaining of 

individuals with adequate fitness. These operators have four 

main functions: division of regions, fusion of regions, 

reassignment of single areas, and reassignment of group of 

areas. 

1) Division1: This operator divides a region into two. The 

splitting process is as follows: 

a) A region iR is randomly selected. It must fulfill two 

constraints to guarantee that the region is large enough 

to be divided: 

iR ,A 4W 2   (14) 

 i i
R ,A 4focus R ,A

W W    (15) 

where 

   s i s si A R A ,A A,Afocus R arg max W W    (16) 

b) An area belonging to iR is randomly chosen and 

assigned to the new region '

iR . 

c) Another area belonging to  iR  is randomly chosen. It is 

then assigned to the new region ''

iR . 

d) The rest of the areas belonging to iR  are taken at 

random, being assigned to the region ( '

iR  or ''

iR ) with 

which each of them has the strongest link according to 

the interaction index. 

2) Division2: This operator creates a new region from 

another one by removing from the latter a number of areas 

sufficiently large so as to form a valid market: 

a) As in step a) of Division1. 

b) An area belonging to iR is chosen at random, being 

assigned to the new region '

iR . 

c) If region '

iR does not fulfill the size constraint (10), it 

takes the area belonging to
iR with which it has the 

highest interaction index. This process is repeated 

until '

iR is large enough. 

3) Division3: This operator divides one region into two, each 

with a similar number of areas: 

a) As in steps a) to c) of Division1. 

b) '

iR  y ''

iR , alternately, take the area of 
iR  with which it 

has the highest interaction index, until no area remains 

assigned to region
iR . 

4) Fusion1: Two randomly selected regions are merged. 

5) Fusion2: A region is randomly chosen. Each of its 

constituting areas is then assigned to its optimal region, 

that is, the region with which it has the highest interaction 

index: 

 
 

i j j i

j i
i j j i

2 2

A ,R R ,A

i
R R R A A ,A A,R R ,A A,A

W W
R ' A arg max

W W W W  

 
  
  
 

  (17) 

So, as a result of this operator, the number of regions in the 

offspring is one less compared to its parent. 

6) Reassignment1: Similar to the standard mutation operator 

in EC, randomly reallocating to any region up to 1 per cent 

of the areas in the territory. 

7) Reassignment2: This operator is analogous to 

Reassignment1. However, the destination region for each 

mutated area is its optimal region according to (17) (as in 

Fusion2). 

8) Reassignment3: An exchange of areas between regions is 

performed. One area is randomly chosen and it is assigned 

to its optimal region. One area of that optimal region is 

then transferred to the region of origin. 

9) GlobalReassignment1: This operation removes from a 

region the areas that score lower in the interaction index 

when measured with regards the rest of the region. Such 

areas are then assigned to their optimal regions: 

a) As in step a) of Division1. 

b) The area to remove is selected as: 

j i j i j j

j i
j i j i j j

2 2

A ,R A R A ,A

s
A R A ,A A,R A R A ,A A,A

W W
A arg min

W W W W

 

   

 
  
  
 

 (18) 

c) If 
i sR A ,A 4W     ( iR is large enough), the area As is 

assigned to its optimal region, and step b) is repeated. If 

that condition is not fulfilled, mutation is finished. 

10) GlobalReassignment2: This operator is similar to 

Reassignment2 since areas are assigned to their optimal 

regions. In this case, however, instead of a single area a 

group of them is transferred. Such a group is chosen so that 

it is composed of highly integrated areas. The process is as 

follows: 

a) An area i is randomly selected. 

b) The k areas belonging to iR with which area i has the 

highest interaction are also selected; k is chosen at 

random. 
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c) All the selected areas are assigned to the optimal region 

for area i. 

11) GlobalReassignment3: As in some cases there is a high 

level of interaction between regions, this operator tries to 

redistribute areas in such regions. The procedure is: 

a) A number k 2 of regions to be mutated is randomly 

chosen. 

b) A region 
iR  is selected at random. 

c) The k-1 regions that have a higher degree of interaction 

with
iR are selected. 

d) These regions are then disintegrated into their 

constituting areas. 

e) k areas from this new group are selected at random. 

These areas act as seeds for the new regions. 

f) The rest of unassigned areas are individually taken at 

random and merged with their optimal region among 

those k new regions. 

12) GlobalReassignment4: This operator is very similar to the 

previous one. Only the way in which new regions are 

generated has been modified: 

a) As in steps a) to d) of GlobalReassignment3. 

b) For each one of the k new regions: 

i. A random area is selected as its seed. 

ii. This new region takes the areas with which it has the 

highest interaction, until the size of the region is 

larger than 
4  –fulfilling (10).  

c) Unassigned areas are merged with their optimal region 

among those k new regions.  

4 Experimentation 

Our proposal has been implemented for the delineation of 

local labor markets in the Region of Valencia, Spain, using 

travel-to-work data derived from the Spanish Census of 

Population [19]. This data allowed us to build a 541x541 

matrix (541 is the number of municipalities that integrate the 

Region), where each cell captures ijW . The Region of Valencia 

is an appropriate case study since it can be considered a 

geographical laboratory where many of the typical commuting 

‘types’ in any territory can be found. It will allow moreover the 

analysis of longitudinal changes in the areas identified thanks 

to the availability of relevant data which do not exist for other 

territories.  To set the case study context, the Region of 

Valencia includes metropolitan territories such as those around 

the capital city of Valencia, and the surroundings of the capital 

of the Northern Province of Castellón, where an industrial 

cluster specialized in the tile industry is located. These areas 

are characterized by a dense and complex multi-directional 

pattern of commuting flows which make it very difficult to 

identify separate functional areas, something that is however 

desirable from the governance and statistical point of view. The 

region also embraces rural areas inland where agriculture is 

still overrepresented and where a dual pattern of commuting is 

observed which distinguishes between those employed in the 

primary sector and those commuting longer distances to the 

service centers closer to the coast. The Southern province of 

Alicante is constituted, except for the coastal line, to a large 

extent by medium-size cities that are specialized in diverse 

manufacturing activities of the Marshallian industrial-district 

type, and attract workers from surrounding municipalities for 

which they act as employment centers. The coast is finally very 

service sector-focused, with a high specialization in tourism 

and second-residence building activities. 

Parameters employed in the following examples are: size 

population = 100, offspring size = 170 (nr=50 and nm=120) 

where each recombination or mutation operator generates 10 

new individuals, generations g without changes in the best 

individual to stop the process = 250. Parameter  of ‘functional 

neighborhood’ is 5.  

In the experimentation conducted for this paper we decided 

to test two different sets of the parameters related to 

self-containment and minimum size conditions, (9) to (11). In 

the first one, only the minimum self-containment requisite (9) 

is considered and we decided to fix the parameters values at the 

level most widely used in the relevant literature (see [6]): β1 = 

β2 = 0.75. The trade-off (11) to (13) does not apply in this case. 

The second set of values includes self-containment as well as 

minimum size constraints, (10) and (11); the values were in 

this case taken from the official method applied in the UK for 

the delineation of the official sets of Travel-to-Work Areas 

(TTWAs), i.e. β1 = 0.7, β2 = 0.75, β3 = 20000 and β4 = 3500. 

Three different exercises have been conducted using both 

sets of parameters. The first two follow the steps described in 

Section 1 using fitness function f1 (7) and f2 (8). The third 

exercise is the optimization of delineations obtained through 

the application of the TTWAs method [7]. This procedure 

originally included as a final stage the possibility of using a 

heuristic to reassign some areas and therefore improve the 

results, although it was not finally applied for the official 

delineation of British TTWAs. In this third exercise, one of the 

individuals in the first generation is the result of applying 

Coombes’ method. In this particular application we have added 

an extra constraint to ensure that no new regions (LLMAs) are 

created by our algorithm. To do so we do not allow the centers 

of each area to be altered. As there is not need of 

creating/removing regions, operators of division and fusion are 

not employed, so offspring size = 120, and fitness function is f1. 

 We have conducted 50 independent runs of each test in 

order to validate our approach.  

In the remaining of this section we start by discussing the 

results and comparing them in terms of the score reached in the 

fitness function and the number of LLMAs resulting from each 

test. We then discuss the convergence process and we finally 

conclude the section with the assessment of the relative 

relevance of each of the operators developed in getting the best 

individual.   
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4.1 Results  

The main goal of our research is to develop a method to 

obtain a near-optimal division of a given territory into 

functional areas according to the criteria expressed in Section I. 

So, besides performing a qualitative study some statistics have 

been generated to facilitate the comparison of the diverse 

alternatives. 

Fig. 8 to 11 show that all the solutions are roughly similar in 

territorial terms. However, when results are analyzed in detail, 

we can observe the contribution of our evolutionary approach to 

the improvement (increase) in the number of markets and in 

the value of the fitness function. The main difference in the 

results obtained in the three exercises described above in 

graphical terms is of course the degree of division of the 

territory. Our proposal allows reaching finer-grained outcomes 

(for comparison purposes none of the regionalization exercises 

depicted there have been modified to achieve contiguity 

between the municipalities constituting each market; this can 

be easily done through a final optimization step that assigns 

non-contiguous municipalities to the contiguous regions with 

which they have the highest interaction index, provided that 

the rest of statistical constraints is satisfied).  

Tables 1 and 2 show the results of the division of the Region 

of Valencia into functional areas according to each of the three 

exercises, and with two variants depending on whether the 

minimum size constraint is included or not. For comparison 

purposes also the results of applying the TTWAs’ method [7] 

are included in the first column in both tables (this method 

produces 44 LLMAs when minimum size constraints are 

considered – Table 1- and 95 otherwise – Table 2). The values 

of f1 and f2 for both sets of markets are also included in that 

column. In the rest of columns in bold, and under the heading 

‘Best individual’ the results of the best individual of the 50 

independent runs that were conducted for each combination 

exercise/ set of parameters are displayed. As shown by Table 1, 

the use of our proposal as a final optimization step in the 

TTWAs’ method increases f1 by 4.8% (Fig.10). When our 

alternatives are applied using f1 and f2 the number of identified 

LLMAs reaches 54 and 61 respectively, and the fitness 

improvement is apparent (from 2.73 to 3.14 –f1- and from 

120.23 up to 185.42 –f2, i.e. 15% and 54.2% higher 

respectively; Fig. 8). As expected the use of fitness function f2 

results in a considerable increase in the number of markets (i.e. 

an enhancement in one of the criteria stated in Section 1, 

Detail). Besides, averages and standard deviations show that 

Table 1 Results with minimum size constraints 

 
TTWAs 

method 

Optimization of TTWAs method 

(f1 is applied) 
f1 f2 

 Best 

individual 
Mean 

Standard 

deviation 

Best 

individual 
Mean 

Standard 

deviation 

Best 

individual 
Mean 

Standard 

deviation 

Number of labor markets 44 44 44 0 54 52.78 0.67 61 58.76 1 

Fitness function 
f1=2.73, 

f2=120.23 
2.86 2.84 0.0086 3.14 3.11 0.014 185.42 179.41 3.56 

 

Table 2 Results without minimum size constraints 

 
TTWAs 

method 

Optimization of TTWAs method 

(f1 is applied) 
f1 f2 

 Best 

individual 
Mean 

Standard 

deviation 

Best 

individual 
Mean 

Standard 

deviation 

Best 

individual 
Mean 

Standard 

deviation 

Number of labour markets 95 95 95 0 114 109.4 2.3 124 120.35 1.58 

Fitness function 
f1=3.11, 

f2=295.633 
3.34 3.33 0.004 3.67 3.62 0.024 447.04 425.76 8.36 
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Fig. 5. Assignment frequency of each area (municipality) to the same region 

(LLMA) (50 runs; f2 as fitness function; minimum size constraints included). 
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Fig. 6. Assignment frequency of each area (municipality) to the same region 

(LLMA) in terms of population (50 runs; f2 as fitness function; minimum size 

constraints included). 
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the different runs of the algorithm reach comparable solutions 

in terms of quality, what gives robustness to our procedure. The 

outcomes of the exercises conducted using the alternative set of 

parameters (i.e. excluding minimum size constraints – Table 2, 

Fig. 9 and 11) are very similar. 

Fig. 5 and 6 illustrate that conclusion. After running the 

procedure 50 times using f2 and the set of parameters that 

include minimum size constraints (last group of columns in 

Table 1), the majority of areas (and a large proportion of total 

population) is systematically assigned to the same region 

(LLMA). According to Fig. 5 most areas (417 out of 541, 77.1 

per cent) are assigned in more than 90 per cent of cases to the 

same market in all the independent runs. Among them, 239 are 

always assigned to the same region. These results give support 

to the capacity of the method to reach a near-optimal solution. 

Moreover, if we move the focus from the municipalities to the 

share of the population being assigned to the same market (Fig. 

6), this conclusion becomes even more apparent. Eighty per 

cent of the population has been systematically (100 per cent of 

cases) assigned to the same market, and 90.73% is assigned to 

the same market in 90 per cent of the runs. Those cases where 

the percentages of assignment are lower typically correspond to 

small areas whose commuting flows are similarly distributed 

between several regions, and where dominance cannot be 

clearly established. 

4.2 Convergence Process  

 Convergence of the evolutionary process is rapidly 

achieved; and our approach improves the results obtained with 

the TTWAs method in less than 100 generations. Only a few 

more generations are needed so that the best individual almost 

reaches its final value. In the last 50 per cent of generations the 

solution is not improved in more than 1 per cent. Therefore the 

proposed procedure rapidly gives place to a good coarse 

division of the territory into functional areas, which is later 

refined by the application of -mainly- the recombination 

operators. These observations are illustrated here in Fig. 7, 

where our evolutionary proposal (as an example we have only 

included the case where f2 is the fitness function and minimum 

size constraints are considered) is compared with the results 

from the official TTWAs method.  

4.3 Behavior of the Operators   

As stated above, a crucial part of our proposal includes the 

designing of specific operators that improve the search for a 

good solution, in terms of fitness function, but also in 

consumed time. Table 3 depicts the results of analyzing their 

trajectory within the final solution (best individual of the last 

generation), i.e. the sequence of operators that led from an 

individual of the first generation to that solution in the 50 

independent runs for each combination exercise/set of 

 

Table 3 

Frequency of appearance of the operators in the best individual 

 Operator With size constraint Without size constraint 

f1 

Recombination1 9.60% 

48.80% 

9.30% 

45.50% 

Recombination2 9.10% 11.50% 

Recombination3 3.80% 2.50% 

Recombination4 12.60% 14.80% 

Recombination5 13.70% 7.40% 

Division1 12.60% 

21.00% 

15.70% 

26.20% Division2 4.60% 6.40% 

Division3 3.80% 4.10% 

Fusion1 1.30% 
3.50% 

1.80% 
5.10% 

Fusion2 2.20% 3.30% 

Reassignment1 0.20% 

9.20% 

0.10% 

8.40% Reassignment2 7.90% 5.00% 

Reassignment3 1.10% 3.30% 

GlobalReassignment1 9.60% 

17.60% 

9.20% 

14.80% 
GlobalReassignment2 4.40% 2.80% 

GlobalReassignment3 1.30% 1.30% 

GlobalReassignment4 2.30% 1.50% 

f2 

Recombination1 10.20% 

49.30% 

9.50% 

42.90% 

Recombination2 8.70% 10.10% 

Recombination3 4.00% 2.30% 

Recombination4 12.60% 13.20% 

Recombination5 13.80% 7.80% 

Division1 10.70% 

19.90% 

14.90% 

26.40% Division2 5.50% 6.20% 

Division3 3.70% 5.30% 

Fusion1 0.70% 
1.60% 

1.00% 
2.90% 

Fusion2 0.90% 1.90% 

Reassignment1 0.20% 

11.30% 

0.20% 

10.20% Reassignment2 8.60% 5.90% 

Reassignment3 2.50% 4.10% 

GlobalReassignment1 10.40% 

17.90% 

11.80% 

17.60% 
GlobalReassignment2 5.00% 3.00% 

GlobalReassignment3 0.90% 1.50% 

GlobalReassignment4 1.60% 1.30% 

*  

Recombination1 17.20% 

80.50% 

17.10% 

77.90% 

Recombination2 10.50% 15.30% 

Recombination3 7.80% 5.20% 

Recombination4 19.70% 20.90% 

Recombination5 25.30% 19.40% 

Reassignment1 0.60% 

8.80% 

0.20% 

9.50% Reassignment2 7.50% 6.60% 

Reassignment3 0.70% 2.70% 

GlobalReassignment1 6.00% 

10.60% 

9.50% 

12.50% 
GlobalReassignment2 3.40% 2.10% 

GlobalReassignment3 0.40% 0.50% 

GlobalReassignment4 0.80% 0.40% 

* Optimization of TTWAs method through our evolutionary approach 
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Fig. 7. Change in the number of LLMAs and fitness throughout the evolutionary 

process (including minimum size constraints; fitness function is f2) compared 

with the values from the TTWAs method. 
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parameters.  

According to Table 3 the operators of fusion and 

Reassignment1 almost never contributed to the final best 

individual. The other operators are more or less used 

depending on the specific form of the fitness function used and 

on the algorithm parameters. We have also tested that their use 

is also affected by the territory over which the procedure is 

applied. Division operators allow reaching the final number of 

markets from the original individual where all the areas were 

merged in a single region. The experimentation stage shows 

that the operators of recombination perform a local search in 

the space of solutions, contributing with small improvements 

in the value of the fitness function. On the other hand, 

mutations for the reassignment of individual areas -or groups 

of them- result in local searches as well as in great jumps which 

allow to departure from local minima. These are the reasons 

why we consider all of them necessary so as to reach a good 

solution, despite some of them being successful only rarely. 

5 Conclusion 

The degree of success in the delineation, implementation 

and monitoring of public policies in different contexts 

(statistics, labor markets, housing markets, transportation, 

urban planning…) heavily depends on the adequateness of the 

geographical reference. The delineation of functional regions 

consists on the aggregation of the basic spatial units 

constituting a territory into regions according to certain 

criteria. Very frequently this aggregation is based on 

information about the spatial interaction between such units. 

Examples of such datasets are commuting or migration 

origin-destination matrices between pairs of municipalities. 

One way of dealing with this problem is to maximize 

intra-region interaction under constraints of inter-region 

separation and (eventually) minimum size. The use of 

functional areas for policy making and statistical purposes 

makes it necessary to consider at least two additional 

requirements: absence of overlapping between regions and 

exhaustive coverage of the territory (every spatial basic unit 

must be allocated to one region). 

Official methods for the delineation of functional areas have 

until now rely on procedures that very frequently were designed 

some decades ago and that can now be improved through the 

use of new procedures as evolutionary computation. The use of 

these techniques has allowed us to model the regionalization 

problem as one of optimization which is then solved through a 

genetic algorithm that builds upon one of the most widely and 

successfully applied procedures, the official method used for 

the delineation of so-called Travel-to-Work Areas (TTWAs) in 

Britain. Given the complexity of the specified requirements 

(notably the absence of overlapping between the groups and the 

need to assign every basic unit to one group) conventional 

operators hardly ever generate valid solutions. Therefore our 

genetic algorithm approach includes developing and testing a 

new set of operators which has been specifically designed to 

cope with the complex requirements typical of any functional 

regionalization, and that could be easily generalized for their 

use in other grouping problems based on interaction data.  

The experimental results show that the proposed method 

out-performs current official procedures, since it manages to 

(a) identify a larger number of Local Labour Market Areas 

(LLMAs) -the preference for detail (delineating as many 

criteria-meeting LLMAs as possible) is one of the principles 

that guide these exercises- and (b) improve the fitness (i.e. the 

internal integration between the areas that constitute these 

markets) without failing to fulfill the rest of statistical 

requirements as listed in codes of good practices like that of the 

Statistical Office of the European Union [5] (in particular all 

LLMAs meet the minimum self-containment condition). 

The major concern in this policy making context is 

undoubtedly the fact that the use of our evolutionary approach 

does not guarantee that the results of the regionalization 

exercise would remain unaltered in different sets of runs. 

Despite giving place to worse results in the referred terms, 

traditional methods are consistent through different 

applications. In this paper we provide evidence that indicates 

that this ‘uncertainty’ problem is very limited. The 

discrepancies observed in different runs of the whole procedure 

are rare, have a low relevance in terms of the population 

affected, and are in any case constrained to a specific set of 

municipalities typically situated on nebulous boundaries 

between functional areas which are equally ‘attractive’ for 

them (and whose assignment by traditional procedures is to a 

certain extent arbitrary).  

Although the particular application in this paper has been 

the analysis of commuting flows, other applications which 

constitute typical Regional and Urban Economics topics are 

also possible, including grouping based on shopping trips, 

communication flows, and trips derived from the use of public 

services, among others. More generally this procedure is 

potentially useful for the delineation of clusters in which the 

guiding principle is not the similarity between the units to be 

grouped but the interaction between them. 

Our work currently focuses in several extensions. First, the 

changing success of the operators during the process of 

generation of good individuals is leading us to consider the use 

of a self-adaptive variation of the method, i.e. the proportion of 

application of each operator will depend on previous results. 

Therefore each operator would be applied depending on several 

criteria, such as success, temporal cost or improvement in the 

best individual, among others. Second, we are designing a 

parallel implementation of the algorithm to improve 

convergence in large problems. Third, other representations 

that have been used in grouping or clustering problems such as 

the Grouping Genetic Algorithms [16] are currently being 

explored in order to measure their convergence time. Finally, 

as the problem has different components that could eventually 

be evaluated, a re-formulation of the problem based on 

multi-objective optimization is also being considered.  
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Fig. 8.  Regionalization of the Region of Valencia with minimum size constraints applying TTWAs method (left); and our proposal: f1 (center) and f2 (right). 
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Fig. 9.  Regionalization of the Region of Valencia without minimum size constraints applying TTWAs method (left); and our proposal: f1 (center) and f2 (right). 
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Fig. 10.  Optimization with minimum size constraints (right) of the results from the TTWAs method (left) with our evolutionary approach.  

 

 

 
Fig. 11.  Optimization without minimum size constraints (right) of the results from the TTWAs method (left) with our evolutionary approach. 


