Skip to main content
Log in

A configuration deactivation algorithm for boosting probabilistic roadmap planning of robots

  • Published:
International Journal of Automation and Computing Aims and scope Submit manuscript

Abstract

We present a method to improve the execution time used to build the roadmap in probabilistic roadmap planners. Our method intelligently deactivates some of the configurations during the learning phase and allows the planner to concentrate on those configurations that are most likely going to be useful when building the roadmap. The method can be used with many of the existing sampling algorithms. We ran tests with four simulated robot problems typical in robotics literature. The sampling methods applied were purely random, using Halton numbers, Gaussian distribution, and bridge test technique. In our tests, the deactivation method clearly improved the execution times. Compared with pure random selections, the deactivation method also significantly decreased the size of the roadmap, which is a useful property to simplify roadmap planning tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Choset. Principles of Robot Motion: Theory, Algorithms, and Implementations, USA: MIT Press, 2005.

    MATH  Google Scholar 

  2. S. M. LaValle. Planning Algorithms, Cambridge, UK: Cambridge University Press, 2006.

    Book  MATH  Google Scholar 

  3. L. E. Kavraki, P. Švestka, J. C. Latombe, M. H. Overmars. Probabilistic roadmaps for path planning in highdimensional configuration spaces. IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

    Article  Google Scholar 

  4. M. H. Overmars. A Random Approach to Motion Planning. Technical Report RUU-CS-92-93, Department of Computer Science, Utrecht University, the Netherlands, 1992.

    Google Scholar 

  5. J. H. Reif. Complexity of the mover’s problem and generalizations. In Proceedings of the 20th Annual Symposium on Foundations of Computer Science, IEEE, San Juan, Puerto Rico, pp. 421–427, 1979.

    Google Scholar 

  6. J. F. Canny. The Complexity of Robot Motion Planning, Cambridge, MA, USA: MIT Press, 1988.

    Google Scholar 

  7. T. Lozano-Pérez. Spatial planning: A configuration space approach. IEEE Transactions on Computing, vol.C-32, no. 2, pp. 108–120, 1983.

    Article  Google Scholar 

  8. J. B. Kuipers. Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace and Virtual Reality, Princeton, USA: Princeton University Press, 2002.

    Google Scholar 

  9. J. C. Latombe. Robot Motion Planning, 2nd ed., Boston, USA: Springer, 1991.

    Book  Google Scholar 

  10. O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research, vol. 5, no. 1, pp. 90–98, 1986.

    Article  MathSciNet  Google Scholar 

  11. Q. J. Peng, X. M. Kang, T. T. Zhao. Effective virtual reality based building navigation using dynamic loading and path optimization. International Journal of Automation and Computing, vol. 6, no. 4, pp. 335–343, 2009.

    Article  Google Scholar 

  12. T. K. Wang, Q. Dang, P. Y. Pan. Path planning approach in unknown environment. International Journal of Automation and Computing, vol. 7, no. 3, pp. 310–316, 2010.

    Article  Google Scholar 

  13. N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, D. Vallejo. OBPRM: An obstacle-based PRM for 3D workspaces. In Proceedings of the 3rd Workshop on Algorithmic Foundations of Robotics, ACM, Natick, USA, pp. 155–168, 1998.

    Google Scholar 

  14. V. Boor, M. H. Overmars, A. F. van der Stappen. The Gaussian sampling strategy for probabilistic roadmap planners. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Detroit, USA, vol. 2, pp. 1018–1023, 1999.

    Google Scholar 

  15. D. Hsu, J. C. Latombe, R. Motwani. Path planning in expansive configuration spaces. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Albuquerque, USA, vol. 3, pp. 2719–2726, 1997.

    Google Scholar 

  16. S. A. Wilmarth, N. M. Amato, P. F. Stiller. MAPRM: A probabilistic roadmap planner with sampling on the medial axis of the free space. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Detroit, USA, vol. 2, pp. 1024–1031, 1999.

    Google Scholar 

  17. P. Jiménez, F. Thomas, C. Torras. Collision detection algorithms for motion planning. Robot Motion Planning and Control, J. P. Laumond, Ed., Berlin, Germany: Springer-Verlag, pp. 1–53, 1998.

    Google Scholar 

  18. T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to Algorithms, 2nd ed., Cambridge, MA, USA: MIT Press, 2001.

    MATH  Google Scholar 

  19. J. J. Kuffner. Effective sampling and distance metrics for 3D rigid body path planning. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, vol. 4, pp. 3993–3998, 2004.

    Google Scholar 

  20. K. Shoemake. Uniform random rotations. Graphics Gems III, D. Kirk, Ed., San Diego, CA, USA: Academic Press, pp. 124–132, 1992.

    Google Scholar 

  21. E. Larsen, S. Gottschalk, M. C. Lin, D. Manocha. Fast distance queries with rectangular swept sphere volumes. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, vol. 4, pp. 3719–3726, 2000.

    Google Scholar 

  22. S. A. Ehmann, M. C. Lin. Accurate and fast proximity queries between polyhedra using convex surface decomposition. Computer Graphics Forum, vol. 20, no. 3, pp. 500–511, 2001.

    Article  Google Scholar 

  23. G. van den Bergen. Efficient collision detection of complex deformable models using AABB trees. Journal of Graphics Tools, vol. 2, no. 4, pp. 1–13, 1997.

    Article  MATH  Google Scholar 

  24. G. van den Bergen. A fast and robust GJK implementation for collision detection of convex objects. Journal of Graphics Tools, vol. 4, no. 2, pp. 7–25, 1999.

    Article  MathSciNet  Google Scholar 

  25. B. Mirtich. V-Clip: Fast and robust polyhedral collision detection. ACM Transactions on Graphics, vol. 17, no. 3, pp. 177–208, 1998.

    Article  Google Scholar 

  26. T. C. Hudson, M. C. Lin, J. Cohen, S. Gottschalk, D. Manocha. V-COLLIDE: Accelerated collision detection for VRML. In Proceedings of the 2nd Symposium on Virtual Reality Modeling Language, ACM, Monterey, USA, pp. 117–124, 1997.

    Chapter  Google Scholar 

  27. D. Hsu, J. C. Latombe, H. Kurniawati. On the probabilistic foundations of probabilistic roadmap planning. International Journal of Robotics Research, vol. 25, no. 7, pp. 627–643, 2006.

    Article  Google Scholar 

  28. L. E. Kavraki. Random Networks in Configuration Space for Fast Path Planning, Ph. D. dissertation, Stanford University, USA, 1995.

    Google Scholar 

  29. N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, D. Vallejo. Choosing good distance metrics and local planners for probabilistic roadmap methods. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, vol. 1, pp. 630–637, 1998.

  30. D. B. Thomas, W. Luk, P. H. W. Leong, J. D. Villasenor. Gaussian random number generators. ACM Computing Surveys, vol. 39, no. 4, Article No. 11, 2007.

  31. C. S. Wallace. Fast pseudorandom generators for normal and exponential variates. ACM Transactions on Mathematical Software, vol. 22, no. 1, pp. 119–127, 1996.

    Article  MATH  Google Scholar 

  32. D. Hsu, T. Jiang, J. Reif, Z. Sun. The bridge test for sampling narrow passages with probabilistic roadmap planners. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, vol. 3, pp. 4420–4426, 2003.

    Google Scholar 

  33. S. M. LaValle, M. S. Branicky, S. R. Lindemann. On the relationship between classical grid search and probabilistic roadmaps. International Journal of Robotics Research, vol. 23, no. 7–8, pp. 673–692, 2004.

    Google Scholar 

  34. J. H. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numerische Mathematik, vol. 2, no. 1, pp. 84–90, 1960.

    Article  MathSciNet  Google Scholar 

  35. T. Siméon, J. P. Laumond, C. Nissoux. Visibility-based probabilistic roadmaps for motion planning. Advanced Robotics, vol. 14, no. 6, pp. 477–493, 2000.

    Article  Google Scholar 

  36. R. Geraerts, M. H. Overmars. Reachability-based analysis for probabilistic roadmap planners. Robotics and Autonomous Systems, vol. 55, no. 11, pp. 824–836, 2007.

    Article  Google Scholar 

  37. M. Matsumoto, T. Nishimura. Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation, vol. 8, no. 1, pp. 3–30, 1998.

    Article  MATH  Google Scholar 

  38. R. Geraerts, M. H. Overmars. Sampling and node adding in probabilistic roadmap planners. Robotics and Autonomous Systems, vol. 54, no. 2, pp. 165–173, 2006.

    Article  Google Scholar 

  39. R. Geraerts, M. H. Overmars. Creating high-quality paths for motion planning. International Journal of Robotics Research, vol. 26, no. 8, pp. 845–863, 2007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mika T. Rantanen.

Additional information

Mika T. Rantanen received the M. Sc. degree at the Department of Computer Sciences, University of Tampere, Finland in 2009, and now continues his research on robotics toward a Ph.D. degree.

His research interest includes probabilistic roadmap algorithms.

Martti Juhola received the M. Sc. and Ph.D. degrees in computer science from the University of Turku, Finland in the 1980 s, where he was an academic assistant, lecturer, and researcher, later becoming a professor at the University of Kuopio, Finland. Since 1997, he is a professor at the University of Tampere, Finland.

His research interests include medical informatics, signal analysis, pattern recognition, and information retrieval.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rantanen, M.T., Juhola, M. A configuration deactivation algorithm for boosting probabilistic roadmap planning of robots. Int. J. Autom. Comput. 9, 155–164 (2012). https://doi.org/10.1007/s11633-012-0628-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11633-012-0628-2

Keywords

Navigation