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Abstract: The skill of robotic hand-eye coordination not only helps robots to deal with real time environment, but also affects the
fundamental framework of robotic cognition. A number of approaches have been developed in the literature for construction of the
robotic hand-eye coordination. However, several important features within infant developmental procedure have not been introduced
into such approaches. This paper proposes a new method for robotic hand-eye coordination by imitating the developmental progress of
human infants. The work employs a brain-like neural network system inspired by infant brain structure to learn hand-eye coordination,
and adopts a developmental mechanism from psychology to drive the robot. The entire learning procedure is driven by developmental
constraint: The robot starts to act under fully constrained conditions, when the robot learning system becomes stable, a new constraint
is assigned to the robot. After that, the robot needs to act with this new condition again. When all the contained conditions have
been overcome, the robot is able to obtain hand-eye coordination ability. The work is supported by experimental evaluation, which
shows that the new approach is able to drive the robot to learn autonomously, and make the robot also exhibit developmental progress
similar to human infants.
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1 Introduction

Robots supported by artificial intelligent algorithms have
been able to execute highly complicated missions. How-
ever, if the robots are placed in completely unknown work-
ing environments, the robots often find itself difficult to
perform properly. This is because the internal representa-
tions of the robot are foreknown and designed for expected
environments[1]. It is a crucial issue that robots should be
able to create their own internal representations. This prob-
lem has been solved in cognitive biological systems through
processes of structured growth known as “development”.
Robotic scientists apply this idea to produce a novel re-
search topic “developmental robotics”. In the field of devel-
opmental robotics, it is assumed that a robot system is not
programmed for specific and fixed tasks. The robot is pro-
grammed to develop and learn new behavioral and cognitive
competence and skills autonomously[2]. This also means
that a robot should be able to create its own internal repre-
sentations through developmental learning. Developmental
learning is concerned with not just the ability to learn and
gain mastery at a given task but more importantly with how
learning may progress and grow to achieve competence over
a series of new tasks as they are encountered[3].

Developmental robotic draws inspiration from various as-
pects of developmental psychology and developmental neu-
roscience, e.g., sensory-motor coordinations, emergent be-
haviors, and social interactions[4]. In particular, very early
development such as growth of sensory-motor control and
skills plays an important role in both human infant and
robotic cognition. Because early experiences and struc-
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tures are likely to underpin all subsequent growth in ways
that may be crucial. This agrees with the suggestion that
sensory-motor coordination is likely to be a significant gen-
eral principle of cognition[4]. Robotic hand-eye coordina-
tion belongs to the sensory-motor coordination. In this
case, this paper emphasizes that it is very important to
design learning algorithms of a robotic hand-eye system to
achieve mastery of its local, egocentric space and to per-
form reaching task. This is because if we can understand
the implementation of low level sensory motor, we might
also apply those guidelines to build complex cognitive tasks
in robotics.

From the viewpoint of developmental robotics, features
from human development are required to be involved within
robot training schema. In terms of this perspective, a num-
ber of models on robotic reaching and robotic hand-eye
coordination have been proposed recently. Various types
of constructive neural networks were proposed to build
the mapping systems[5−7], in which visual perceptions are
transformed into hand motor values. In other studies, in-
cremental learning models were applied to learn such kind
of mapping[8, 9]. Several other developmental robotic hand-
eye coordination systems used different neural networks to
simulate a part of brain working loops[10−12]. Such research
indicates that introducing brain inspired structures into de-
velopmental robotics is regarded as an effective solution to
robotic cognition[2]. However, compared with psychologi-
cal theories and results, the aforementioned work merely
adopted a few pieces of development features. In fact, there
exists a large gap between our psychological theories of de-
velopment and our ability to implement working develop-
mental algorithms in autonomous agents.

In order to improve the current implementations, an in-
tegration of both a brain inspired computational structure
and a significant developmental learning algorithm is appli-
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ed to guide an autonomous robotic system to learn its hand-
eye coordination. Adopting a brain inspired structure is re-
alized as a key fact by reviewing aforementioned researches.
By mimicking the mechanisms of the brain system, we
would be able to learn important design principles for
autonomous robotic systems, and bring higher autonomy
into developmental robotics. Furthermore, implementing a
brain inspired structure may support our robot to approach
the complexity of cognition and adaptive behavior that we
associate with biological organisms and may find their way
into practical applications. This work, therefore, proposes a
novel computational structure with two neural networks to
map visual space to the robotic hand motor system. On the
other hand, we believe that features of infant development
can be used to guide our robot to develop. Therefore, “lift-
ing constraints, act and saturate (LCAS)” algorithm is in-
troduced to control the robot to gradually gain its hand-eye
coordination ability. The algorithm works by removing sev-
eral types of developmental constraints, which are summa-
rized by psychological literatures[13]. LCAS algorithm was
applied in several developmental models successfully[14−18].
This approach, combining the brain inspired structure and
LCAS algorithm, will considerably widen the scope of psy-
chological inspirations for developmental robotics, deepen
the research on robotic reaching and hand-eye coordina-
tion, and bring more psychological and biological ideas into
the developmental robotics.

The rest of this paper is structured as follows. Sec-
tion 2 reviews the background and related work of robotic
hand-eye coordination, reaching and developmental learn-
ing. Section 3 describes the computational brain inspired
learning system of the robotic system and the development
constraint driven approach in detail. Section 4 gives the ex-
perimental procedure and results. The discussions of those
results and the comparison with other robotic hand-eye co-
ordination models are mentioned in Section 5. Section 6
concludes the paper and points out important future re-
search.

2 Background and related work

The core technique of the robotic reaching ability is to
implement the hand-eye coordination, which is the mapping
from robotic visual sensors to robotic actuators[17]. Mostly,
the traditional robotic hand-eye coordination systems are
calibrated by human engineers. However, this paper will
not build this kind of work again, because this traditional
method can work very precisely[19−21]. The paper empha-
sises that robots themselves are able to learn the mapping
by self-calibration.

Fig. 1 shows a diagram of the typical robotic hand-eye
mapping problem. The system obtains the location of a
target within an image captured by a visual sensor, this
information is then converted to the eye-centered coor-
dinate system. After that, the eye-centered information
is mapped to the hand space through a hand-eye trans-
formation mechanism. Then, the difference between the
current hand position and the desired position is used to
drive the hand motors. This architecture of decompos-
ing sensory-motor transformation into sub-transformations
is supported by findings in human brains during the per-

formance of visually guided reaching. In the architec-
ture, the position of the target is re-mapped into vari-
ous intermediate frames of reference, such as eye-centered
and hand-centered. The hand-eye transformation prob-
lem is thus formulated as finding the relationship between
the eye motor space and the arm joint space, i.e., find
the mapping: f : (m1, m2, · · · , mk) → (j1, j2, · · · , jn),
where mi is the i-th eye motor value, jl stands for l-th
arm joint motor value, k is the number of motors to drive
the eye movements, and n is the number of the arm joints.

Fig. 1 A typical robotic hand-eye coordination diagram

Hand-eye coordination in developmental robotics is an
important topic. Therefore, a number of robotic reaching or
robotic hand-eye coordination models have been proposed
recently. However, those works have limitations due to var-
ious facts: 1) Most of the robotic hand-eye coordination
systems only use one camera as the robotic vision system,
merely carry out 2 dimensional experiments which might
simplify their systems learning complexity[8, 9, 22]. 2) The
training phase ignores imitating the developmental progress
of human infants reaching objects[23, 24]. Khamassi et al.[12]

inspired us that we can build a computational model to sim-
ulate part of brain working loop. However, they only focus
on building a complex system, rather than let a system de-
velop to be complex. Nori et al.[25] attempted to make their
robot autonomously build an “eye-to-hand” Jacobian ma-
trix to implement their reaching ability. This approach is
able to deal with the kinematic redundancy of the robot.
Nevertheless, developmental behaviors are not shown in the
research. Jamone et al.[26] designed two types of reaching
maps to build the hand-eye coordination: One map esti-
mated whether an object can be reached, and another map
supplied enough information for reaching. However, this
work is merely done in simulated environment. Our pre-
vious work is similar to [27, 28], where we applied neural
networks to control our robot to learn reaching.

It is important to note that the hand-eye mapping is
highly nonlinear. The nonlinear approximation ability of
the artificial neural network supports the implementations
of the hand-eye mapping very well. In particular, [10, 12]
used radial basis function (RBF) networks to simulate V6A
cortex in the human brain. Self-organizing map networks
and Jacobian matrices are able to deal with the kinematic
redundancy of the robot[11, 29]. Furthermore, scientists of
developmental robotics focus on bringing more developmen-
tal features into their researches, therefore an enhanced
model of minimal resource allocation network is proposed to
build a mapping system[5, 6], the network topological struc-
ture grows while the network is being trained. The growing
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structure feature fits psychological findings properly. Zhou
et al.[7] also modified a self-organization map network to
gain the incremental structure feature. Meng and Lee[30]

used active learning algorithm to drive their robot to use
more training to learn the difficult subspace of their robot
arm and use lesser training to learn the simple subspace.

Human infants are a successful learning model for
hand-eye coordination. Therefore, in order to build the
development-driven approach, it is necessary to under-
stand human infant development procedure, and it is cru-
cial to abstract the significant developmental features from
the procedure. Therefore, the following subsections intro-
duce the infant development model and developmental con-
straint, respectively.

2.1 Inspirations from infant development

Literatures from developmental psychology show the
developmental procedure of human infants. The proce-
dure demonstrates that the reaching movement starts from
coarse reaching movements to precise[31, 32]. After birth,
human infants have a few visuo-motor ability, and can
perform directed hand movements toward visual targets.
These “pre-reaching” movements are not successful in
making contact with targets. However, infants perform vi-
sually directed actions to reach the “hemifield”, in which a
target appears. It is clear that early reaching is based on
vision of the target and on proprioceptive signals from the
arm. Later, during the last months of completing the age
of one year, infants use the distance between the hand and
the target to adjust the hand position and orientation, so as
to touch target object[31, 33]. This type of movements is like
corrections of failed reaching movements. Therefore, our
robotic system can follow the infant′s pattern: A reaching
movement consists of the pre-reaching movements and the
correction movements.

On the other hand, from the aspect of neural pro-
cessing modules, human infants′ reaching is the result of
the cerebral cortex, basal ganglia, and cerebellum work-
ing in parallel to generate and control[34]. At the age
of 15 weeks, the basal ganglia-cerebral cortex loops select
a rough action that might need correction during execution.
In adults, these actions would be refined through the ac-
tion of the cerebellar loops. However, this type of action is
limited in young infants because of their limited develop-
ment of the cerebellum. With repeated experiences, the
basal ganglia loops become better at selecting actions for
particular contexts using reinforcement learning. As time
passes during the first year and the cerebellar network be-
comes more mature, the cerebellar cortical loops should
gradually exert influence on the approximate commands
selected by the basal ganglia loops[32]. In terms of these
findings, we consider the robot will contain two different
control mechanisms to handle the two distinct movement
patterns.

2.2 Developmental constraints and LCAS
algorithm

The above findings clearly show the infant devel-
opmental procedure during 0–12 months after birth.
However, it is also important to identify what is

the internal force that drives infant to develop from behav-
ing coarse reaching movements to accurate ones. A robotic
developmental driving mechanism is required to mimic
the similar developmental procedure, so our robotic
system can use the driving mechanism to determine when
to develop new abilities. Developmental psychology shows
evidences that lifting constraint can lead infants to develop
from one competence to a new, and even more complicated
competence. This is because each developmental step es-
tablishes the boundary conditions for the next one. A par-
ticular ability cannot emerge if any of the capacities it en-
tails is lacking[1]. In addition, our previous work[13] pro-
posed the LCAS algorithm, which deals with discrete de-
velopmental stages, whose maturation level increases, de-
pending on a notion of saturation linked to the estimation
of novelty. Therefore, we apply the LCAS algo-
rithm to implement a developmental mechanism: Let
the robot act under a constraint. When a con-
straint has been saturated, a new constraint is released
into the system. To further ease the understanding
of LCAS, Algorithm 1 shows an outline of the con-
straint lifting procedure in pseudo code. The value
of sat(x, ∆, n) indicates whether the learning system is
stable.

Algorithm 1. LCAS algorithm
1) while not all constraints are released do
2) for i = 0 to n do
3) if sat(x, ∆, n) then
4) quit this for-loop and release a new constraint
5) else
6) repeat doing the learning process within this
for-loop (from Line 2)–8))
7) end if
8) end for
9) end while

Inspired by the two types of movements and the two ar-
eas of brain cortices mentioned above, this work proposes
to design a robotic learning system with two constructive
neural networks. Upon this setup, one neural network is
trained to control our robot′s large amplitude of arm move-
ments around the objects. The network is to produce
the early infant pre-reaching, and imitate basal ganglia-
cerebral cortex loops performing rough actions. Another
neural network is designed to behave in accordance with
small amplitude arm movements to make correct reach-
ing movements. Thus, the second network generates the
later movement of infant reaching. Also, a developmental
mechanism guides the robot when to develop from the first
network to the second based on its learning status. Note
that, our work simply simulates the basic functions of the
basal ganglia loops, rather than simulates every function in
detail.

3 Methods

The experiment aims to achieve the goal that the robotic
arm can learn to capture target objects behavior through
the robot′s spontaneous movements. This section describes
the two neural networks architecture, the learning algo-
rithms for training the robotic learning system, and the
robotic system configuration.
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3.1 Brain inspired network structure

The entire robotic learning system proposed in this paper
consists of two neural networks. The first network N1 sim-
ulating the basal ganglia cortex is able to generate rough
reaching movements, and the second network N2 simulat-
ing the cerebellum can make correction movements after a
rough reaching has been made. These two networks are
not used in parallel. We set up a threshold δ to choose
which network to be used. Hence, we calculate the distance
between the target position and the hand position within
the images captured by the two cameras. If the distance is
greater or equal to the threshold, N1 is active; else, N2 is ac-
tive. Because N2 can give more accurate motor commands
to the arm, the structures of N1 and N2 are not identical.
In the training phase, there is no target object appearing
within the robotic vision′s view, the robot can only detect
the position of the fingertip. The whole structure can be di-
vided into three sub modules: the image processing module,
the hand sensory-motor module, and the network control
module. The following sections describe this brain inspired
network structure and those sub-modules in detail.

3.1.1 Image capture and image processing mod-
ules

In order to detect the fingertip in the images captured
by the two cameras, we first need to convert the image
from the RGB color space to the HSV color space. Then
we use the foreground generation method to generate the
histogram of finger. In the system, if Hue value of a pixel
falls into the range: Hue [245, 253], we set this pixel as a
candidate target pixel. Then we assign 255 to this pixel;
otherwise, we assign 0. An orange ball is used as the target
to be captured, its color range is Hue [29, 42]. After the
color conversion, a binary image is generated. The candi-
date target pixels are further grouped into several regions,
and the largest region is regarded as the fingertip against
the background of our experimental system. The center of
the region is used as the fingertip position (xa, ya) of each
image. The image processing result is shown in Fig. 7. In
addition, if the object is very close to the fingertip, the arm
can touch it without more movements, we consider this as
a touchable state.

3.1.2 Hand sensory-motor module

This module can handle the movement of each joint and
feedback its position. θ1, θ2, and θ3 stand for the posi-
tions of the three motors, respectively. Each joint has its
working range: θ1 is [0◦, 60◦], θ2 is [30◦, 120◦], and θ3 is
[40◦, 110◦]. This module only receives relative movement
values (∆θ1−3) and converts them to the corresponding mo-
tor values that are sent to the hardware controller.

3.1.3 Network control module

When robotic arm has owned the reaching ability, a tar-
get object is placed within the arm workspace. The robotic
vision system can sense the target position (xo1, yo1) in
Camera 1, and (xo2, yo2) in Camera 2, and similar for
the fingertip position (xa1, ya1) and (xa2, ya2). d is the
Euclidean distance between the object and the fingertip.
If d is greater or equal to δ, N1 is applied to generate
∆θ1−3 for the motors. Otherwise, the target position
and the difference between the target and the fingertip
(∆xo−a1, ∆yo−a1, ∆xo−a2, ∆yo−a2) are sent to N2 to gen-

erate ∆θ1−3. Then, ∆θ1−3 are sent to the motors. The
procedure is illustrated in Fig. 2.

Fig. 2 The control procedure of the robotic system

3.2 Network training phase

The robot needs to generate a number of spontaneous
movements to learn to handle its arm. The spontaneous
movements mean the arm moves randomly. Before each
movement, both the cameras calculate the fingertip posi-
tion, (x1, y1) indicates the fingertip position in Camera 1,
(x2, y2) gives the position in Camera 2. Meanwhile, the
joint values (θ1, θ2, θ3) of the robotic motors are acquired
from the hand sensory-motor module. After one move-
ment, both the fingertip position and the joint values are
changed. We use (x′1, y

′
1), (x

′
2, y

′
2) and θ′1, θ

′
2, θ

′
3 to identify

the new values. Note that the Euclidean distance d between
(x1, y1), (x2, y2) and (x′1, y

′
1), (x

′
2, y

′
2). d can be calculated

by (1). ∆θ1−3 are the different values between θ1−3 and
θ′1−3.

d =

√√√√
2∑

n=1

(xn − x′n)2 + (yn − y′n)2 (1)

where (xn, yn) are the hand position within the images cap-
tured by Camera n before a movement, and (x′n, y′n) mean
the hand position after the movement.

The threshold δ can be used to determine which network
is trained or used to control the arm. In the experiment, δ
is set to 16. If d is larger than or equal to δ, N1 network is
selected. This is because if d is large, the movement scope
of the arm is large, only N1 can handle this large move-
ment in the architecture. (x′1, y

′
1), (x

′
2, y

′
2) are the inputs of

N1, and ∆θ′1−3 are the network′s expected outputs. N1 is
trained by using (x′1, y

′
1), (x

′
2, y

′
2) and θ′1−3 as the training

pattern. If d is less than δ, N2 is trained, its inputs contain
(x1, y1), (x2, y2) and (∆x1, ∆y1), (∆x2, ∆y2), its expected
outputs have ∆θ1−3. The training procedure is shown in
Fig. 3.
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Fig. 3 The training schema of a brain inspired network archi-

tecture

3.2.1 Constructive neural network implementa-
tion

We use a type of constructive neural network to build
the robot learning system, because psychologists indicate
that constructive learning occurs not only in infancy but
also in mature brains[35]. The constructive learning means
learning system can grow up automatically during learning
phase. The network used in this paper is called minimal re-
source allocating network (MRAN). MRAN network starts
with no hidden units, and with each learning step, i.e., after
an action, the network grows or shrinks when necessary or
adjusts the network parameters accordingly.

A typical MRAN network is expressed as

f(x) = α0 +

N∑

k=1

αkφk(x) (2)

φk(x) = e
− 1

σ2
k

‖x−µk‖2
(3)

where αk is the weight vector from the hidden unit φk(x),
N is the number of radial basis function units (N of
N1 is 15, N of N2 is 30), and µk and σk are the k-
th hidden unit′s center and width, respectively. f(x) =
(f1(x), f2(x), · · · , fNO (x))T is the network output vectors,
where NO is the number of the MRAN network outputs,
and x is the network input. In the brain inspired struc-
ture, N1 network setup is addressed as follows: f(x) =
{∆θ1, ∆θ2, ∆θ3}T is the vector of the arm joint angles,
and x = {x1, y1, x2, y2}T is the vector of the target po-
sitions within both Camera 1 and Camera 2. N2 net-
work configuration is f(x) = {∆θ1, ∆θ2, ∆θ3}T, and x =
{θ1, θ2, θ3, ∆x1, ∆y1, ∆x2, ∆y2}T.

The network growth criteria are based on the novelty of
the observations, which are: Whether the current network
prediction error for the current learning observation is larger
than a threshold, and whether the node to be added is far
enough from the existing nodes in the network, as shown
in (4) and (6). The criterion in (5) is to check the predic-
tion error within a sliding window to ensure that growth is

smooth, m is the length of the sliding window.

‖e(t)‖ = ‖y(t)− f(x(t))‖ > e1 (4)
√√√√

t∑

j=t−(m−1)

‖e(j)‖2
m

> e2 (5)

‖x(t)− µr(t)‖ > e3 (6)

where x(t), y(t) are the t-th learning data, m is the sliding
window size, and µr(t) is the centre vector of the nearest
node to x(t), e1, e2 and e3 are the three thresholds. If the
above three conditions are not met, the extended Kalman
filter is applied to modify the weights of the network, so
as to decrease the network error, and a node is inserted to
the network. In the experimentation, e1 = 0.05, e2 = 0.005,
e3 = max{0.4× 0.999i, 0.07}, and i is the learning step.
3.2.2 Spontaneous movement module

The spontaneous movement module provides random
motor values to the robot system. This setup is to fol-
low the feature that human infants always apply this type
of spontaneous movements to build their hand-eye coordi-
nation ability. The following equation is used to implement
this module.

Mi = rand((M i
MAX −M i

min) + SR (7)

where i is the i-th joint, Mmin is the position which can-
not be small, MMAX is the position which cannot be large,
and SR is a safety parameter, which is to drive the arm
not to move to the largest or the smallest position. Other-
wise, moving into those positions may damage the motors.
MMIN is the constraint applied in this paper, which has a
larger value when the system starts to act, and changes to
a smaller value afterwards.

M i
min = M i

MIN × e−β (8)

where β is a parameter to control the decreasing speed of
the arm′s moving range, and β ∈ {0.6, 1.0}.
3.3 Developmental mechanism

In this paper, only one constraint is raised or relaxed to
drive the development of the whole robotic learning sys-
tem. The constraint is the movement amplitude of robotic
arm. There are five types of developmental constraints:
1) Anatomical, 2) sensory-motor, 3) cognitive, 4) matura-
tional, and 5) external constraints[13]. The movement am-
plitude belongs to the sensory-motor type. The constraint-
lifting procedure can be described as follows: At the be-
ginning, the arm can only wave with large amplitude, the
robotic system uses these rough movements to train the
network N1. As the change of the constraint, the robotic
arm starts to train the other network N2 to refine reach-
ing movements until the arm could make correct reaching
movements. Then, the whole system becomes stable and
mature.
3.3.1 LCAS algorithm with the brain inspired ar-

chitecture

Our approach of shaping similarly discovers the structure
of competence possibilities under a given constraint regime.
This consists of implementing the cycle, lift-constraint, act
and saturate (LCAS). First, we identify all possible and
available constraints and decide which should be initially
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applied to the system. Next, we execute the motor action
algorithm described below. This uses motor babbling to
discover any irregularities in the sensory-motor modalities
and stores these in explicit schemas. Eventually, the motor
babbling will not produce any new space, as indicated by
very low global excitation, and then we consider the system
to be saturated. At this point, a constraint can be eased
or lifted and the cycle starts again. The constraints can
be scheduled according to infant maturational data, but we
have also experimented with automatic schemes where the
selection of constraints varies as an emergent process.

In terms of the above considerations, our developmen-
tal mechanism is implemented to drive the constraints to
change. As the times of arm movements increase, the sys-
tem tends to become more saturated. When the saturation
value is stabilized and is less than a fixed value ψ, we could
regard the robotic system as saturated. Therefore, we in-
crease the robotic movement range to acquire new training
data to retrain the robotic learning system, until the satu-
ration value of the whole system is stabilized and the value
is less than the fixed value ψ. The mechanism can be sum-
marized as the following equation:

for t = ϕ, · · · , n

sat(y(t), t) =





true, if |y(t)− y(t− ϕ)| < ε

and y(t) < ψ

false, otherwise

(9)

where in the experiment, ϕ, ψ and ε are set to 0.1, 0.02 and
5, respectively.

Equation (9) gives the saturation rule: t means the
number of training epoches, y(t) means the global excita-
tion value of the system at epoch t, ψ is the fixed value. If
y(t) is less than ϕ for a certain period of time ϕ, we will
regard this as the saturated situation, the constraint then
lifts. In short, (9) means if the learning system remains sta-
ble for a fixed term, a new constraint is assigned into the
system.

It is very important to define y(t) carefully.
The network output error values are not used in y(t) di-
rectly. Instead, we apply a habitation equation to define
y(t). At each stage of learning, novelty and habituation
play an important role in driving the learning process.
Novelty refers to new or particularly salient sensory space,
while habituation is defined as a decrease in the strength
of a behavioral response to repeated stimulations. A ha-
bituated stimulus may be able to evoke a further response
after the presentation of an intervening novel stimulus.
Novelty and habituation mechanisms can help a system
to explore new places/events while monitoring the current
status. Therefore, the system can glean experience over its
entire environment. In our system, we used a biologically
plausible habituation model which was created in our pre-
vious work[36, 37] describing how excitation, y, varies with
time

y(t + 1) = y(t) +
α

τ
[y0 − y(t)]− S

τ
(10)

where y0 is the original value of y, τ and α are time con-
stants governing the rate of habituation and recovery. In
the experiment, we set τ , α and y0 to be 5, 0.9 and 1.1,
respectively. S indicates the system is in habituation or the

novelty model. If the network output error oe keeps de-
creasing in the training process, we regard the system to be
in the habituation model S = 0. Otherwise, if oe suddenly
increases during the decreasing trend, we consider the in-
creasing as a novel stimulus, thus, S = 1. If sat(y(t), t) in
(9) is true, the learning process of N2 starts, but N1 stops.
If sat(y(t), t) is false, the training still occurs in N1.

3.4 Training method

We also set a short-term memory system to hold training
data, which are obtained from the robot learning phase.
After each hand movement, the visual data and the hand
joints data are inserted to the memory. Then, the robot
uses the data in the memory to train N1 or N2. The net-
work will keep training itself until it gets convergence. Note
that the memory format of N1 is different from that of N2,
since the two networks contain diverse inputs. The memory
has a capacity: The oldest data will be discarded when new
data are inserted.

4 Experimentation

In this section, the results of a number of experiments
are reported to demonstrate the capabilities of the proposed
approach.

4.1 Hardware

Fig. 4 illustrates the experimental robotic system,
which is an “InnoStar” robotic arm including 6 degrees of
freedom (DOF). The arm is mounted on a workspace, 3
DOF of the arm are used in this paper to finish reaching
movements. There is a gripper with two fingers mounted on
the top of the arm. This setup can support the robotic arm
to move and capture objects in 3-dimensional environment.
Each rotational joint of the robot arms has a motor driver
and also an encoder which senses the joint angle, thus pro-
viding a proprioceptive sensor reading. The upper limb and
the lower limb are labeled as L1 and L2, respectively. The
length of L1 is 14mm, L2 is 20mm.

Fig. 4 The experimental hardware

Two RGB cameras are applied to build the robotic
vision system in this work. Because one camera can-
not supply enough information for 3-dimensional reaching
movements, a camera (“Camera 1” in Fig. 4) is mounted
on a frame placed next to the arm, and another cam-
era (“Camera 2” in Fig. 4) is mounted above and looks
down on the work space. The robotic fingertip and the
object are marked with different colors so as to be detected
easily.
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Fig. 5 demonstrates the robotic control system which is
divided into two parts: An AVR controller and a host com-
puter. Both motor and sensor systems controllers are in-
stalled on the AVR controller. A program including RSC-
232 socket and integrating the controllers driver programs
have been built for communications between the host com-
puter and the AVR controller. The program also simpli-
fies the command language of the controller to remotely
invoked functions so that the controllers can be called by
other on-line host computers on conveniently. Therefore,
any computer running the developmental algorithms can
control the robot arm via the AVR computer. In fact, the
AVR computer is like an interface between the laboratory
robot and the outside world. Therefore, the high level ap-
plication program on the host computer will never consider
the underlying controllers drivers, but merely concentrate
on the developmental learning algorithms.

Fig. 5 The computer control system

Fig. 6 shows the output of image processing module.
Figs. 6 (a) and (c) are the images captured by Camera 1
and Camera 2, respectively. Fig. 6 (c) highlights the finger-
tip from Fig. 6 (a), and the fingertip within Fig. 6 (c) is also
highlighted in Fig. 6 (d). The image processing module can
detect the fingertip positions within both Figs. 6 (b) and
(d).

4.2 Experimental results

The experimental procedure can be designed as follows:
Mark the hand of the robotic arm and the target by us-
ing a particular color. Firstly, no object is put into the
workspace. The learning system only generates sponta-
neous movements so that the learning patterns can be gen-
erated by capturing and calculating these movements. Ac-
cording to the saturation of the brain inspired learning sys-
tem, the robot arm hardly performs small range of move-
ments at the beginning, but will change to generate more
small range of movements in the middle term of the ex-
periment. After the learning phase has been completed, a
static object is put into the workspace, and then, the robot
attempts to touch the object.

Fig. 6 The output of the image processing module

Fig. 7 demonstrates the movement variation of the en-
tire learning phase: The curve labeled “Movements for N1”
shows how many movements are used to train N1 network
during the experiment, and the curve labeled “Movements
for N2” stands for the number of the random movements
used to train N2 network. Because the small range of move-
ments are ignored during the beginning period of the exper-
iment, N2 network has no chance to get trained. Only the
large range of movements are accepted by N1 network. Af-
ter about 90 movements, according to (9), the robot begins
to have several small range of movements by using (7) and
(8), N2 network starts to learn those movements. Note
that the large range of movements are still generated by
the robot after about the 90th movement. However, those
movements are not used to train N1 any more. From this
figure, the robotic behavior pattern is to learn coarse move-
ments first and learn precise movements later. This setup
successfully simulates infant developmental feature, which
is infant′s movement starting from coarse to precise ones.

Fig. 7 The movement types during the learning procedure

Fig. 8 shows that the saturation of the robot system dur-
ing the overall training phase. The global excitation value,
which is calculated by (10), is used to indicate whether the
learning system is stable. The curve before the “N2 starts
to work” label is generated by N1 network. The global ex-
citation value keeps oscillating until after about 100 move-
ments, and then it falls down. When the global excitation
value satisfies (9), the curve mainly reflects N2 network sat-
uration, because the training only occurs in N2 network.
The rest curve returns to oscillate, and it becomes stable
again at around 280th training. At this moment, the robotic
learning is completed, and the robot has owned the abil-
ity to make reaching movements. All these situations are
caused by the changing of the constraint that we set in the
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robotic system. Therefore, the developmental procedure of
the entire robotic system is driven by the constraint. In
addition, Fig. 8 also indicates that the convergence speeds
for both N1 and N2 are fast.

Fig. 8 The saturation during the training phase

The two network output errors within the entire training
procedure are shown in Figs. 9 and 10, respectively. N1 net-
work requires about 120 trainings to achieve convergence,
and N2 network needs nearly 170 times to converge. This
difference indicates that the network system is able to learn
the large range of movements more easily than to learn the
small range of movements. Furthermore, Figs. 9 and 10 also
imply that development constraint divides one task to sev-
eral sub-tasks. The robot completes each sub-task one by
one, and the robot starts to learn the easier part first. Thus,
difficulty of the entire task is reduced. Note that the results
of network output errors are for the entire workspace, rather
than a fixed position. Therefore, after the robot completes
its training, no matter where the object is placed, the robot
is able to generate precise reaching behaviors.

Fig. 9 N1 network output error

Fig. 10 N2 network output error

Fig. 11 shows the arm positions before and after a reach-
ing movement. An orange pingpong ball used as a target
was hung into the robot workspace, then the arm prepares
to move from a position (which is far from the target) to-
wards the target. The left picture shows the start posi-
tion, and the right picture shows that the target is already
within the robotic gripper. Thus, Fig. 11 illustrates that our
robot has been able to exhibit successful reaching move-
ments. However, the movement details are not shown in
the figures. In this case, Figs. 12 and 13 demonstrate the
movement trajectories.

Fig. 11 A reaching movement

Both Figs. 12 and 13 show the robotic arm trajectories
of a successful reaching movement. The x axes of Figs. 12
and 13 are labeled by the horizontal pixel number of the
images capture by Cameras 1 and 2, and the y axes are
the vertical pixel number of the images. Fig. 12 gives the
fingertip trajectories after each movement from Camera 1,
and Fig. 13 shows the trajectories from Camera 2. This suc-
cessful reaching contains 3 movements which are drawn as
3 arrows and labeled as “1”, “2” and “3” according to the
movement sequence. We can obverse that the range of the
first movement is very large. However, this movement can-
not reach the object. Then, two correct movements lead the
hand touch the object. Compared to the first movement,
the second and the third movements are relatively short.

Fig. 12 The trajectories of the arm taken by Camera 1

Fig. 13 The trajectories of the arm taken by Camera 2
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In this case, the robotic system has to apply two differ-
ent types of movements to finish one reaching movement.
Thus, this movement pattern is, similar to human infants,
or even adult′s reaching movement pattern.

5 Discussions

The experimental results described above have demon-
strated how the robot learns to map from its visual stimuli
to its hand, and how the brain inspired network structure
and the developmental learning mechanism cooperate to-
gether to drive the learning process. In order to specify the
advantages of our approach, a comparison with other de-
velopmental approaches is given in Table 1. We have not
compared our approach with every work mentioned in Sec-
tion 2, we only summarize features of those work. Based
on this point of view, the following features are compared:
1) The hand-eye transformation method, 2) the biological
plausibility, 3) the developmental stages, 4) the incremental
learning, the learning speed, and 5) the human-like move-
ment pattern.

In Table 1, we find many existing approaches prefer to ap-
ply the static neural networks to implement the eye-to-hand
nonlinear transformation. However, our approach is to han-
dle this transformation by using the constructive neural net-
work. This type of neural network contains an important
feature: The network topology and weights are changed si-
multaneously during its training phase. The feature fits
several important psychological theories on cognition[4].
Upon the biological plausibility factor, the regular methods
merely focus on the transformation implementation. Only
a few works report that they simulate some brain cortices
functions that are used to guide human reaching movement.
However, our approach is inspired by the control loop of the
cerebellum and the basal ganglia in human brain. There-
fore, our method has more biological plausibility. And those
existing works did not show much how their competencies
emerged gradually. They built every function together to
enable the systems to develop. By contrast, our approach
can make the robotic system built up from simple tasks
to highly complex tasks, which makes the system functions
became more and more proficient during its development.
In particular, the experiment demonstrates a situation of
staged behavior change, this is very similar to human in-
fant developmental process. Another significant advantage
is that both neural network topological structure and the
learning system are incremental, other than some existing

work did not own incremental learning. Also, because of the
two neural networks structure, the overall learning time of
the existing approaches and our work are totally different.
Some works connectionist implementations that adopted
single static neural network require thousands of cycles of
training epoches. However, our system, consequently, uses
less than 400 trials to achieve a matured level (see the two
curves in Figs. 10 and 11). Finally, the reaching movement
of the existing approaches is usually achieved by a single
movement, but our approach is able to use a combination
of coarse movements and correction movements to finish a
reaching movement.

6 Conclusions

This paper extends the recent work on robotic hand-eye
coordination and proposes a novel robotic learning system,
which can drive our robot to gradually gain reaching move-
ment ability. The method worked by first constructing a
brain inspired computational structure to simulate human
brain work loops via implementing two constructive neural
networks; and then creating a developmental mechanism
implemented by “lifting constraints, act and saturate al-
gorithm” to drive the robot gradually and autonomously
learn reaching ability. The observations from the exper-
iments display an increasing progression from initially be-
having large range of hand movements, and then to generat-
ing small range of movements. These indicate this approach
not only improves the current work which brings ideas of
developmental psychology and neuroscience into robotics,
but also has other three advantages: 1) Our robotic learning
progression is very similar to human infant′s development.
2) The approach incorporates incremental and cumulative
features in its learning. 3) It owns more autonomous and
psychological characteristics.

There is still room to improve the present work. In par-
ticular, the present work only uses two static cameras as the
robotic vision, and merely carries out experiments within a
settled workspace. But practically, variable environments
for the working of robots may be more useful. Thus, we
propose to use a motorized 2 DOF stereo vision to replace
the two static cameras in the system, which can increase our
robotic ability so as to work within more complicated envi-
ronment. Finally, this work does not look into the threshold
configuration. In the experiments, some thresholds’ values
are set manually. Further effort to investigating these issues
seem useful.

Table 1 Summary of the comparison with the existing approaches

Option Existing approaches Our approach

Hand-eye transformation method Artificial neural networks, and Jacobi- Constructive networks

an matrix

Biological plausibility Only few features reported[10] Basal ganglia-cerebral were simulated by dual networks

Developmental stages Few works supported Staged behavioral patterns and staged learning system

patterns

Incremental learning Few works supported Both neural network topological structure and the lear-

ning system are incremental

Learning speed Slow in several static neural network b- Faster than single network approach

ased approaches

Human-like movement pattern Directed movements A successful movement contains a coarse movement an-

d movement and several corrections
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