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Abstract: A high-precision fuzzy controller, based on a state observer, is developed for a class of nonlinear single-input-single-output
(SISO) systems with system uncertainties and external disturbances. The state observer is introduced to resolve the problem of the
unavailability of state variables. Assisted by the observer, a variable universe fuzzy system is designed to approximate the ideal control
law. Being auxiliary components, a robust control term and a state feedback control term are designed to suppress the influence of the
lumped uncertainties and remove the observation error, respectively. Different from the existing results, no additional dynamic order
is required for the control design. All the adaptive laws and the control law are built based on the Lyapunov synthesis approach, and
the signals involved in the closed-loop system are guaranteed to be uniformly ultimately bounded. Simulation results performed on
Duffing forced oscillation demonstrate the advantages of the proposed control scheme.

Keywords: Variable universe fuzzy system, observer, strictly positive real (SPR) condition, dynamic order, σ-modification, adaptive
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1 Introduction

In recent decades, fuzzy control has been a hot research
topic in the nonlinear control field. The main reason lies
in the facts that fuzzy systems own the universal approxi-
mation property and they can convert the human linguis-
tic concepts into automatic control strategies[1]. A great
deal of work has demonstrated their advantage and feasi-
bility for modeling and control of uncertain complex non-
linear systems[2−7]. However, everything has two sides. A
fuzzy controller is essentially an interpolator[8]. The fuzzy
controller derived from human experts, which has a lim-
ited number of control rules, is subject to lower controlling
precision[8, 9]. This disadvantage often makes fuzzy con-
trol difficult to meet the need of engineering practice[7, 10].
Subsequently, several approaches are proposed to improve
the control precision of fuzzy control such as PID-based
fuzzy control schemes[11], optimizing membership function
parameters[12, 13], small error interpolation[14], etc.

Among various high-precision fuzzy control schemes, the
variable universe adaptive fuzzy control (VUAFC) works
in the most possible intuitive manner. According to the
interpolation mechanism[8], achieving high controlling pre-
cision inevitably requires a large number of fuzzy rules. Yet
the simple increase in the number of fuzzy rules by adding
the domain division points may cause the so-called “dimen-
sion curse” problem. In fact, control is essentially a local
problem since the control purpose is generally to ensure
the tracking error asymptotically converging to a neighbor-
hood of zero. To achieve high-precision control, we only
need to ensure enough fuzzy rules around zero. Based on
this methodology, Li[15] first presented an adaptive fuzzy
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control scheme with variable universe. The idea behind the
scheme is that the universe of discourse adaptively contracts
with the error decreasing. Under the same rule number, the
universe contraction means that the number of fuzzy rules
around zero increases. Consequently, VUAFC relatively in-
creases the number of fuzzy rules and improves the control
precision. At present, VUAFC has been widely used in
the inverted pendulum[16, 17], aerospace vehicle[18], chaotic
system[19−21], near space vehicle[22], etc.

A common assumption for these schemes[16−22] is that
the state vector is assumed to be available for measurement.
Unfortunately, in engineering practice, due to size and cost,
the physical state variables may be partially or fully unavail-
able for measurement. The problem was solved in [23−26]
by introducing a state or tracking error observer in their
adaptive fuzzy control schemes. To use the Meyer-Kalmom-
Yacubovich (MKY) lemma, in these schemes, the strictly
positive real (SPR) condition on the observation error dy-
namics must be satisfied. The need for SPR condition re-
sults in the filtering of the fuzzy basis function (FBF), which
makes the dynamic order of the observer-controller very
large[27]. In addition, as stated in [28, 29], these observer-
based fuzzy adaptive controllers have not been derived rig-
orously in mathematics. Aiming at these disadvantages, the
authors in [27, 29, 30] employed the state variable filters or
the tracking error filter to design the update law and the
robust control term. In their solutions, no SPR condition is
needed and the filtering of FBF can be effectively avoided.
However, to some degree, additional dynamic order is still
required in their design schemes. The need increases the
design difficulty of the controller-observer. In the present
study, we try to solve these disadvantages based on the
variable universe adaptive fuzzy output feedback control.
To the best of our knowledge, there are a few results on
variable universe adaptive fuzzy control for nonlinear sys-
tem with immeasurable states. In [31], an observer-based
robust variable universe adaptive fuzzy controller was de-
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veloped for a chaotic system. However, due to the absence
of the SPR condition, the parameter adaptive laws and the
control laws in the control design cannot be implemented.

In this paper, a novel fuzzy output feedback controller is
developed for a class of single input single output (SISO)
nonlinear systems with function uncertainties and external
disturbances. A state observer is designed to estimate the
tracking error. Based on the observer, a variable universe
adaptive fuzzy system is used to approximate the unknown
ideal control law. Contrast to the work in [23−26], two
amendments are made to deal with the two disadvantages
above. One amendment is to amend the ideal control law
to the form of (7). This amendment, which is described
in Remark 2, makes the design of the observer-controller
more vigorous in mathematics. The other is that a robust
adaptive control term is augmented to eliminate the effect
of the lump uncertainties including the filtering of FBF and
other functions. Consequently, there is no increase in the
dynamic order of the observer-controller. Based on the
SPR-Lyapunov design approach, the proposed controller
can guarantee that tracking error converges to the small
neighborhood of zero and the involved signals are all uni-
formly ultimately bounded. Simulation results also demon-
strate the superior properties of the proposed scheme over
the counterpart of fuzzy control.

The remainder of the paper is organized as follows: in
Sections 2 and 3, brief statements about the control system
and variable universe adaptive fuzzy system are provided,
respectively. We develop an observer-based variable uni-
verse adaptive fuzzy controller for a class of SISO nonlinear
systems with unmeasurable states in Section 4. Simula-
tion results for the proposed controller are illustrated in
Section 5. Section 6 concludes this paper.

2 Problem formulation

In this paper, we consider the nonlinear system as follows:

x(n) = f(x, ẋ, · · · , x(n−1)) + bu + d

y = x. (1)

Or equivalently, system (1) can be rewritten into the fol-
lowing form:

ẋxx = Axxx + B
[
f(xxx) + bu + d

]

y = CTxxx (2)

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0
...

0

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

0
...

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

xxx = (x1, x2, · · · , xn)T � (x, ẋ, · · · , x(n−1))T is the state
vector of the system which is not available for measure-
ment, and u ∈ R and y ∈ R are the input and the output
of the system, respectively. f(xxx) is an unknown contin-
uous function with upper bound f̄ and b is an unknown
constant with lower bound bL, that is, |f(xxx)| � f̄ and

b � bL > 0. d(t) is a bounded external disturbance and

|d(t)| � D. yyyr = (yr, ẏr, · · · , y
(n−1)
r )T is a desired trajec-

tory vector which is supposed to be continuous, bounded
and available for measurement. The tracking error is de-
fined as eee = yyyr − xxx = (e1, e2, · · · , en)T. It is easy to verify
that the pair (A, B) is controllable and the pair (CT, A) is
observable.

The control task is to design a control law such that the
system output y follows a specified desired trajectory yr

and the signals involved in the closed-loop system remain
uniformly ultimately bounded.

3 Variable universe adaptive fuzzy sys-
tem

The variable universe idea was firstly developed in [15].
Further, in [32] several kinds of variable universe adaptive
fuzzy control methods were investigated in detail, which has
laid a theoretical foundation for the application of VUAFC.
Facts have proved that VUAFC can be well applied to con-
trol of a wide class of uncertain nonlinear systems. In par-
ticular, it has shown several excellent control qualities such
as fast dynamic response, high controlling-precision, almost
no overshoot, etc.[16, 18, 20, 33, 34] The basic structure of vari-
able universe adaptive fuzzy control is briefly introduced in
this section.

Let Xi = [−Ei, Ei] be the universe of input variable
zi(i = 1, 2, · · · , m) and Y = [−U, U ] the universe of out-
put variable uo. Ai = {Aij} (j = 1, 2, · · · , N) is defined as
a fuzzy partition on Xi and B = {Bj} (j = 1, 2, · · · , N) a
fuzzy partition on Y , where Aij ∈ F(Xi) and Bj ∈ F(Y )
are termed as the base, and aij and bj are the peak points
of Aij and Bj , respectively. Ai(i = 1, 2, · · · , m) and B are
regarded as linguistic variables, so that a group of fuzzy
inference rules are formed as follows:

If zi is A1j , z2 is A2j , · · · , and zm is Amj ,
then uo is Bj(j = 1, 2, · · · , N)

where N represents the number of the rules. Singleton
fuzzifier, triangle membership function (overlap law is 0.5),
product inference engine, and center average defuzzifier are
used in this fuzzy system. The derived output of the fuzzy
system is

ûo(z) = ξ(z)Tθ (3)

where θ = [b1, b2, · · · , bN ]T denotes the parameter vector
and ξ(z) = [ξ1(z), ξ2(z), · · · , ξN (z)]T denotes the fuzzy base
function vector with ξj(z) =

∏m
i=1 Aij(zi) (j = 1, 2, · · · , N).

The so-called variable universe means that some uni-
verses, for example Xi and Y , respectively, can change along
with changing of variables zi and uo. In this case, the vari-
able universes are denoted by

Xi(zi) = [−αi(zi)Ei, αi(zi)Ei]

and

Y (uo) = [−β(uo)U, β(uo)U ]

where αi(zi) and β(uo) are, respectively, called contraction-
expansion factors of the universes Xi and Y . Being rela-
tive to the variable universes, the original universes Xi and
Y are naturally called initial universes. After the above
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changes, the output of variable universe fuzzy system be-
comes

ûo(z|β) = βζ(z)Tθ (4)

where ζ(z) = [ζ1(z), ζ2(z), · · · , ζN(z)]T denotes the fuzzy
base function vector with ζj(z) =

∏m
i=1 Aij(

zi
αi(zi)

) (j =

1, 2, · · · , N).
Remark 1. Only one parameter, rather than a param-

eter vector, is needed to be updated online in VUAFC.
Therefore, VUAFC scheme reduces the computational bur-
den of adaptive fuzzy control. On the other hand, the de-
sign of variable universe fuzzy controller hardly needs smart
expert knowledge in the realm, but the rough tendency of
rules only[15]. From this point, it reduces the design diffi-
culty.

4 Observer-based variable universe
adaptive fuzzy control design

Based on the feedback linearization approach, when the
function f(xxx) and the control gain b in (1) are known, and
assuming that d = 0, the so-called ideal controller can be
easily designed as follows:

u∗ =
1

b
(−f(xxx) + y(n)

r + KT
c eee) (5)

where the feedback gain vector Kc = [kc,1, kc,2, · · · , kc,n]T

is chosen such that the characteristic polynomial A−BKT
c

is Hurwitz because (A,B) is controllable.
Substituting (5) into system (1) and using e = yr − x

yields

e(n) + KT
c eee = e(n) + kc,ne(n−1) + · · · + kc,1e = 0. (6)

Thus, the control objective can be achieved. However,
since the function f(xxx) and constant b are all unknown and
the state vector xxx is unmeasured, the ideal control law u∗

can not be implemented. In this situation, we must design
a state observer and a control law to solve this problem.

Since the state vector xxx is unavailable for measurement,
motivated by [35], we modify the ideal control law u∗ in (5)
as follows:

u∗ =
1

b
(−f(x̂xx) + y(n)

r + KT
c êee). (7)

And we design the control law as follows:

u = ûc(êee|β) + ur + ua (8)

where ûc(êee|β) is a variable universe adaptive fuzzy system,
as shown in (4), which is employed to approximate the mod-
ified control law u∗ in (7). ur denotes a compensation term
to remove the effect of fuzzy approximation error (FAE)
and the external disturbances. ua expresses the observer
error feedback control term. They will be designed below.

Remark 2. As stated in [28], the ideal control in [23, 26]

u∗ =
1

b
(−f(xxx) + y(n)

r + KT
c êee). (9)

is questionable. In fact, if substituting (9) into the system
equation (1), we find the following dynamics e(n)+KT

c êee = 0.

From these dynamics, the conclusion that the convergence
of the tracking error to zero does not hold true.

However, by using the modified ideal control law (7), we
can obtain the corresponding tracking-error equation

e(n) + KT
c eee = (KT

c eee − KT
c êee) + (f(x̂xx) − f(xxx))+

b(u∗ − ûc(êee|β)) − bur − bua.

From the above equation, we can see that the value of
e(n)+KT

c êee is subjected to the effect of the observation error
and FAE. The most common solution is that a compensa-
tion term ur is augmented to eliminate these uncertainties.
Obviously, if there is no observation error or FAE between
ûc and u∗, then e(n) + KT

c eee = 0 and in turn limt→∞ e = 0
can be derived.

According to the universal approximation theorem[1], the
ideal control law u∗ in (7) can be approximated as follows:

u∗ = ûc(êee|β∗) + ε (10)

where ε denotes FAE and β∗ = arg min
β∈Ωβ

{ sup
x̂xx∈Ωx̂xx

|ûc(êee|β) −
u∗|} denotes the optimal contraction-expansion factor with
Ωx̂xx and Ωβ expressing the constraint set of state vector x̂xx
and parameter β, respectively.

Assumption 1. FAE ε is bounded by an unknown con-
stant c1.

Assumption 2. The optimal contraction-expansion fac-
tor β∗ is bounded by an unknown constant Mβ .

Substituting (7) into (1) and doing some straightforward
manipulation, we obtain the tracking error equation

e(n) = − KT
c êee + (f(x̂xx) − f(xxx)) − d+

b
(
β̃ζ(êee, α)Tθ + ε − ur − ua

)

or equivalently

ėee = Aeee − BKT
c êee + B

[
b(β̃ζ(êee, α)Tθ + ε1 − ur − ua)

]

e1 = CTeee (11)

where β̃ � β∗ − β and ε1 = ε + 1
b
(f(x̂xx) − f(xxx) − d).

Design the observer as follows:

˙̂eee = Aêee − BKT
c êee + Ko(e1 − ê1)

ê1 = CTêee (12)

where Ko = [ko,1 ko,2 · · · ko,n]T is the observer gain vector
to guarantee the characteristic polynomial of (A−KoC

T) to
be Hurwitz because (C, A) is observable. If the observation
error is defined as ẽee = eee − êee, subtracting (12) from (11)
yields

˙̃eee = (A − KoC
T)ẽee + B

[
b(β̃ζ(êee, α)Tθ + ε1 − ur − ua)

]

ẽ1 = CTẽee. (13)

Since only the observation output ẽ1 in (13) is measur-
able, we use the SPR-Lyapunov design approach to analyze
the stability of the observation error dynamics (13) and
generate the adaptive law for parameter β.

The observation error dynamics (13) can be expressed as

ẽ1 = H(s)
[
b(β̃ζ(êee, α)Tθ + ε1 − ur − ua)

]
(14)
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where

H(s) = CT(sI − (A − KoC
T))−1B =

1

sn + ko,1sn−1 + · · · + ko,n
.

In general, the observation error dynamics are not SPR.
In order to use SPR-Lyapunov design approach, here we
introduce an SPR filter L(s). Equation (14) can be written
as

ẽ1 = H(s)L(s)
[
b(β̃ζ(êee, α)Tθ + ε2 − ur − ua)

]
(15)

where ε2 = −β̃ζ(êee, α)Tθ + ur + ua + L−1(s)
[
β̃ζ(êee, α)Tθ +

ε1 − ur − ua

]
denotes lumped uncertainties including FAE,

external disturbances, and some control terms to be de-
sign. Filter L(s) is chosen so that L−1(s) is a proper stable
transfer function and H(s)L(s) is a proper SPR transfer
function. Let

L(s) = sm + b1s
m−1 + · · · + bm, (m = n − 1).

The state-space realization of (14) can be written as

˙̃eees = Asẽees + Bs

[
b(β̃ζ(êee, α)Tθ + ε2 − ur − ua)

]

ẽ1 = CT
s ẽees (16)

where As = A − KoC
T, Bs = [1 b1 · · · bm]T, Cs = C.

Remark 3. According to the work in [27, 28, 36], in the
control design, the filtered signals of FBF vector, ur, and
ua are all included in the lumped uncertainty ε2. The filter
L−1(s) appearing in the lumped uncertainty ε2 is just for
analysis purpose. Thus, the filtering of the FBF vector can
be avoided. Therefore, the use of SPR condition in our
proposed scheme does not result in an additional increment
of the dynamic order of the observer-controller.

Assumption 3. P1 and P2 are the positive define solu-
tions satisfying the following Riccati equation

(A − BKT
c )TP1 + P1(A − BKT

c ) + Q1 = 0 (17)
{

AT
s P2 + P2As + Q2 = 0

P2Bs = Cs.
(18)

Since the observer output error ẽ1 is available, the pa-
rameter update law and the state feedback control ua can
be designed as follows:

β̇ = γ1(ẽ1ζ(êee)Tθ − σ(β − β0)), (19)

ua = KT
o P1êee (20)

where γ1 > 0, σ > 0 and β0 are design constants.
As indicated in [37], the traditional adaptive laws in the

literature may lead to the update parameters unbounded
due to the presence of uncertainties in the error equation.
The uncertainties include the observation error, FAE, ex-
ternal disturbances, etc. One way to counteract the effect of
the uncertainties is to modify the adaptive law using leak-
age, dead zone, projection, etc. Here, we modify the tra-
ditional adaptive law using the fixed σ-modification. The
parameter β0 denotes an educated guess of β. It may derive
from the experience of human experts.

Assumption 4. The lumped uncertainty ε2 is bounded,
that is, |ε2| � c2|β̃| + c3, where c2 and c3 are unknown
positive constants.

The adaptive law with σ modification in (19) guarantees
the boundedness of parameter β. Together with Assump-
tion 2, i.e., |β∗| � Mβ , then β̃ is bounded. Further, combin-
ing Assumption 4, we can choose constant ε∗ as the optimal
upper bound of ε2. Due to the unknown parameter ε∗, we
estimate it with ε. Then the robust control term ur can be
designed as

ur = εsgn(ẽ1) (21)

where the adaptive laws of parameter ε is designed as fol-
lows

ε̇ = γ2(|ẽ1| − σ(ε − ε0)) (22)

where γ2 > 0 and ε0 are design constants.
Theorem 1. Consider the nonlinear system (1) with

the control law (8), where ûc(êee|β)), ur, and ua are given
as (4), (21), and (20), respectively. The adaptive laws are
chosen as (19) and (22). If Assumptions 1–4 hold, then the
signals involved in the closed-loop system and the adaptive
parameters are all uniformly ultimately bounded.

Proof. Noting that β̃ = β∗−β and ε̃ = ε∗−ε, we choose
Lyapunov function as follows:

V =
1

2
êeeTP1êee +

1

2b
ẽeeT

s P2ẽees +
1

2γ1
β̃2 +

1

2γ2
ε̃2. (23)

By using (12), (16)–(18), the derivative of V with respect
to time yields

V̇ =
1

2
˙̂eee
T
P1êee +

1

2
êeeTP1

˙̂eee +
1

2b
˙̃eee
T

s P2ẽees+

1

2b
ẽeeT

s P2
˙̃eees − 1

γ1
β̃β̇ − 1

γ2
ε̃ε̇ =

1

2
êeeT

[
(A − BKT

c )TP1 + P1(A − BKT
c )

]
êee+

êeeTP1KoC
Tẽees − 1

γ1
β̃β̇ − 1

γ2
ε̃ε̇

1

2b
ẽeeT

s

[
(A − KoC

T)TP2 + P2(A − KoC
T)

]
ẽees+

ẽ1

[
ε2 + β̃ζ(êee, α)Tθ − ur − ua

]
=

− 1

2
êeeTQ1êee − 1

2b
ẽeeT

s Q2ẽees + (êeeTP1KoC
Tẽees − ẽ1ua)+

1

γ1
β̃(γ1ẽ1ζ(êee, α)Tθ − β̇) + (ẽ1(ε − ur) − 1

γ2
ε̃ε̇).

Substituting (19) and (22) into the above equation yields

V̇ � − 1

2
êeeTQ1êee − 1

2b
ẽeeT

s Q2ẽees +
1

γ1
β̃(γ1ẽ1ζ(êee, α)Tθ − β̇)+

(|ẽ1|ε∗ − |ẽ1|ε − 1

γ2
ε̃ε̇) =

− 1

2
êeeTQ1êee − 1

2b
ẽeeT

s Q2ẽees + σβ̃(β − β0) + σε̃(ε − ε0).

Using β̃(β − β0) � − 1
2
β̃2 + 1

2
(β∗ − β0)2 and ε̃(ε − ε0) �

− 1
2
ε̃2 + 1

2
(ε∗ − ε0)2, we have

V̇ � − 1

2
êeeTQ1êee − 1

2b
ẽeeT

s Q2ẽees − 1

2
σ(β̃2 + ε̃2)+

1

2
σ((β∗ − β0)2 + (ε∗ − ε0)2). (24)



422 International Journal of Automation and Computing 11(4), August 2014

Let μ = σ((β∗ − β0)2 + (ε∗ − ε0)2). One can guarantee
that V̇ is negative as long as êee is outside the compact set
Ωêee that is defined as

Ωêee =
{
êee|‖êee‖ �

√
μ

λmin(Q1)

}
. (25)

According to standard Lyapunov theorem[37], we con-
clude that êee is bounded and will converge to Ωêee. More-
over, the radius of set Ωêee can be made arbitrarily small by
choosing the smallest eigenvalue of Q1 and designing β0 and
ε0. Similarly, signal ẽee is bounded and will converge to Ωẽee

defined as

Ωẽee =
{
ẽee|‖ẽee‖ �

√
μ

λmin(Q2)

}
(26)

whose radius can be made also arbitrarily small by perform-
ing similar operations. The parameter errors β̃ and ε̃ are
bounded and will converge to sets Ωβ̃ and Ωε̃, respectively.
They are defined as

Ωβ̃ =
{

β̃||β̃| �
√

(β∗ − β0)2 + (ε∗ − ε0)2
}

(27)

Ωε̃ =
{

ε̃||ε̃| �
√

(β∗ − β0)2 + (ε∗ − ε0)2
}

. (28)

Hence, the radii of sets Ωβ̃ and Ωε̃ can be determined by

the design parameters θ0 and ε0. By Assumption 2 and ε∗

being an unknown constant, the boundedness of β and ε
can be guaranteed. From (8), together with (4), (20), and
(21), we derive the boundedness of control law u. �

Remark 4. The parameters update laws (19) and
(22) consist of a gradient algorithm along with the σ-
modification term. The addition of this term eliminates the
assumption of the persistent excitation and ensures that no
parameters drift takes place[28]. The design constants β0 in
(19) and ε0 in (22) may be viewed as “the best guesses” of
β∗ and ε∗, respectively. At the initial stage, the best guesses
can make the adaptive parameters fast convergence. Unfor-
tunately, when ẽ1 becomes small, the change of β (or ε) is
dominated by the σ modification term. This causes β (or
ε) to be driven toward β0 (or ε0). If β0 (or ε0) is not a good
guess of the ideal parameter β (or ε), then the tracking er-
ror e may start to increase. To overcome this problem with
the σ modification, it is possible to modify the update law
as[37]: σ = 0, if ‖ê1‖ � E0; σ = σ0, otherwise, where E0

and σ0 are design positive constants.

5 Simulation example

In this section, numerical simulations are used to illus-
trate the efficiency of the proposed method. Consider the
Duffing forced oscillation system described as

ẋ1 = x2

ẋ2 = −0.1x2 − x3
1 + 12 cos t + u + d (29)

where the external disturbance d is a square wave with am-
plitude ±1 and period π. Obviously, if u = 0, this system
is chaotic. We now employ our proposed method to design
the control law and force the system output y to track the
desired reference trajectory yr = sin t. In the phase plane,
this reference trajectory is a unit circle y2

r + ẏr
2 = 1.

Given the positive definite matrices Q1 = diag{[1, 1]},
Q2 = diag{[10, 10]}, the feedback and observer gain vectors
are chosen as KT

c = [2, 1] and KT
o = [8, 20], respectively. By

virtue of the SPR-Lyapunov design approach, solving (17)
and (18), we can obtain positive definite matrices P1 and
P2. The initial values are chosen as x1(0) = x2(0) = 0.2,
x̂1(0) = −1.5, and x̂2(0) = 0.5. In the control design, the
initial parameter values β(0) = 10 and ε(0) = 8, the design
constants γ1 = γ2 = 1, and σ = 0.01, and the contraction-
expansion factors α1 = 1 − 0.97 exp(−e2) and α2 = 1 −
0.97 exp(−0.8e2 −0.2ė2). The parameters β0 and ε0 are set
to zero. That is, no a priori information about β and ε is
available.

For input variables ê and ˙̂e in ûc, we define seven tri-
angular membership functions such as NB, NM, NS, ZE,
PS, PM, and PB uniformly distributed on the intervals
[−2, 2] and [−8, 8], respectively, where “N” denotes “neg-
ative”, “B” denotes “big”, “M” denotes “medium”, and so
on. The used fuzzy rules are listed in Table 1. The sim-
ulation results for the proposed control scheme as shown
in Figs. 1–4. For a fair comparison, a state-observer based
adaptive fuzzy controller is considered, where the ideal con-
trol law is approximated by a fuzzy system in the form of
(3)[38]. For the same control parameters given above, the
corresponding simulation results are illustrated in Figs. 5–8.

Table 1 Fuzzy rule base of variable universe adaptive fuzzy

control term

˙̂e
ê

NB NM NS ZE PS PM PB

NB −3 −3 −3 −3 −2 0 0

NS −3 −3 −3 −3 −2 0 0

NM −2 −2 −2 −2 0 1 1

ZE −2 −2 −1 0 1 2 2
PS −1 −1 0 2 2 2 2

PM 0 0 2 3 3 3 3

PB 0 0 2 3 3 3 3

From the simulation results in Figs. 1–4, one can notice
that the good tracking performance can be achieved and
that the convergence of the system states (position and
velocity) to the desired trajectories can be guaranteed in

the presence of the unavailable states, function
uncertainties, and external disturbances. In addition, the

overall signals

Fig. 1 Tracking curves of states x1 and x2 using the proposed

controller
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in the closed loop system are bounded and the evolution
curves of the adaptive parameters are convergent. By us-
ing the σ modification technique, the parameter drift phe-
nomenon is avoided.

Fig. 2 Tracking error and estimated error curves

Fig. 3 Control signal curve

Fig. 4 Evolution curves of the adaptive parameters

Comparing the simulation results, demonstrated in
Figs. 5–8, of the state-observed based adaptive fuzzy con-
troller, we notice that the proposed approach yields a
smaller tracking error and a faster time response.

Fig. 5 Tracking curves of states x1 and x2 using the state-

observed based adaptive fuzzy controller

Fig. 6 Tracking error and estimated error curves

Fig. 7 Control signal curve

6 Conclusions

In this paper, an observer-based variable universe adap-
tive fuzzy control scheme is developed for a class of SISO
nonlinear systems with function uncertainties and external
disturbances. The scheme, as mentioned in [32, 39], belongs
to the direct category. The proposed control law consists
of a robust control term and a tracking-error observer. As-
sisted by the tracking-error observer, the state variables do
not need to be measurable and a variable universe adap-
tive fuzzy system is used to approximate the modified ideal
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control law. By virtue of the SPR-Lyapunov design ap-
proach, the parameter adaptive laws and the control law
are established to stabilize the closed-loop system in the
sense that all the involved signals are uniformly ultimately
bounded. Simulation results demonstrate the superior per-
formance of the proposed control scheme. The main con-
tributions of this paper are listed as follows: 1) A variable
universe adaptive fuzzy control based on the tracking er-
ror observer is developed for a class of uncertain nonlinear
system with unavailable states. 2) The proposed scheme
requires no additional dynamic order since the filtered sig-
nals of FBF vector and other control efforts are all included
in the lumped uncertainty. The future work may consider
nonlinear systems with dead-zone input[40−44].

Fig. 8 Evolution curves of the adaptive parameters
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