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Abstract: The problem of robust global stabilization of a spacecraft circular orbit rendezvous system with input saturation and input-

additive uncertainties is studied in this paper. The relative models with saturation nonlinearity are established based on Clohessey-

Wiltshire equation. Considering the advantages of the recently developed parametric Lyapunov equation-based low gain feedback design

method and an existing high gain scheduling technique, a new robust gain scheduling controller is proposed to solve the robust global

stabilization problem. To apply the proposed gain scheduling approaches, only a scalar nonlinear equation is required to be solved.

Different from the controller design, simulations have been carried out directly on the nonlinear model of the spacecraft rendezvous

operation instead of a linearized one. The effectiveness of the proposed approach is shown.
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1 Introduction

Spacecraft rendezvous is an important technology for

present and future space missions. Successful rendezvous is

the precondition of many astronautic missions, such as re-

pairing, intercepting, docking, saving, large-scale structure

assembling and satellite networking[1]. Considering a tar-

get spacecraft in a circular orbit and another chaser space-

craft in its neighborhood, the relative motion between the

two neighboring spacecraft can be described by autonomous

nonlinear differential equations. If the distance between

them is much smaller than the orbit radius, the relative dy-

namics is closely approximated by C-W equation, derived

by Clohessey and Wiltshire in 1960[2]. During the last few

decades, the spacecraft rendezvous has been actively stud-

ied and many results in control theory and technologies have

been developed. Many advanced methods have been used

to solve the rendezvous control problem. For example, the

model predictive control approach was developed for space-

craft rendezvous[3−7]; adaption control theory was applied

to the rendezvous and docking problem[8]; in [9] the prob-

lem of rendezvous was cast into a stabilization problem

analyzed by Lyapunov theory; the neural-network-based

controller was proposed for rendezvous maneuvers[10]; in

[11], an adaptive backstepping control law was designed for

spacecraft in proximity operation missions and a paramet-

ric Lyapunov differential equation approach to solve ren-

dezvous with control constraints[12].

For astronautic missions, the control input constraint is

an important issue we must pay attention to. In practical

engineering, the orbital control input force is limited due to
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the constraints of the thrust equipment, the limited quality

of fuel and the power the engine provided, etc. Among the

constraints, the constraint from the thrust provided by the

thrust equipment is very important. So far, there are some

results for this problem. For instance, [13] and [14] stud-

ied the lowest energy controller with fixed time. Because of

using the optimal control theory, in order to realize the pro-

posed controller, the association state differential equation

need to be solved online. The spacecraft rendezvous sys-

tem with chance-constrained and disturbance was studied

by model predictive control in [7]. For more information in

both theory and practice, see the references cited therein.

In addition, the possible mass variation or the errors of

the thrusters may bring the inaccuracy to the control in-

put, which can be regarded as the uncertainty of the input.

These uncertainties may degrade the precision, the stability

or even the safety of the rendezvous missions. Recent years,

there have been many studies on the systems with input-

additive uncertainties[15, 16]. However, the input-additive

uncertainties have not attracted enough attentions in the

existing studies on spacecraft rendezvous control problems.

This leads to our desire to take these uncertainties into con-

sideration.

The gain-scheduling approach is perhaps one of the most

popular non-linear control design approaches which has

been widely applied in the fields of aerospace. It employs

powerful linear design tools on difficult nonlinear problems.

Gain scheduling does not require severe structural assump-

tions on the plant model and the approach can be used in

the absence of complete, analytical plant models. Design

by gain scheduling may preserve well-understood linear in-

tuition and is carried out using the physical variables in

the plant model[17, 18]. In recent years, some results have

been reported to deal with the control problem of space-

craft rendezvous; see [19] and the references therein. There

are basically three kinds of scheduling approaches, namely
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the continuous static scheduling approach, the continuous

dynamic scheduling approach, and the discrete scheduling

approach. In the continuous static scheduling approach, the

feedback gains are scheduled continuously according to so-

lutions to some algebraic equations or inequalities in terms

of the state vectors. The continuous eigenvalue assignment

approach[20], the gain scheduling approach in [21] (see also

[15]), and the gain scheduling approach proposed in [22]

fall into this category. The main difficulty existing in this

class of approaches is that some complex nonlinear equa-

tions should be solved online for each time instant t. In

the continuous dynamic scheduling approach, the feedback

gains are scheduled continuously according to solutions to

some differential equations in terms of the state vectors. Ex-

amples of this class of scheduling approaches can be found

in [23−25] and the references therein. Different from the

continuous scheduling scheme, the discrete scheduling ap-

proach changes the feedback gains in some discrete times.

This approach is also known as piecewise-linear feedback.

Examples can be found in [26–28]. Such approaches are

easy to implement. However, the resulting controller is dis-

continuous and may cause some practical problem[22].

In this paper, we develop an effective nonlinear contin-

uous static gain scheduling controller to solve the global

stabilization problem of the circular orbit rendezvous sys-

tem subject to input saturation and input-additive uncer-

tainties. With independent continuous control accelerations

used as the control signals to C-W equations, we estab-

lish the relative motion equation with input saturation and

input-additive uncertainties. By using the parametric Lya-

punov equation-based low gain feedback design method and

an existing high gain scheduling technique, a new robust

gain scheduling controller is proposed for the orbit ren-

dezvous system.

The rest of this paper is organized as follows. Section 2

presents the dynamic model of spacecraft rendezvous, and

formulates the robust global stabilization problem. In Sec-

tion 3, the robust gain scheduling controller is proposed

to solve the global control problem for the spacecraft ren-

dezvous system. Then, the numerical simulation is given

to illustrate the applicability of the presented approach in

Section 4. Finally, Section 5 concludes the paper.

Notations. Throughout the paper, the notation used

is fairly standard. We use AT, tr(A), λ (A), λmax (A)

and λmin (A) to denote the transpose, the trace, the set

of eigenvalues, the maximal eigenvalue and the minimal

eigenvalue of matrix A, respectively. diag{·} stands for a

block-diagonal matrix. I denotes the identity matrix with

compatible dimensions. For a real symmetric matrix P , the

notation P > 0 (P < 0) is used to denote its positive (nega-

tive) definiteness. The function sgn is defined as sgn(y) = 1

if y � 0 and sgn(y) = −1 if y < 0. The saturation function

in this paper is

satα(u) =

⎧
⎪⎨

⎪⎩

−α, u < −α

u, |u| � α

α, u > α

(1)

where α > 0 is the saturation level and standard satura-

tion function sat1(u) will be denoted by sat(u) for short.

When u is a vector, with slight abuse of notation, the ab-

solute value is applied element-wise. Finally, for a vector

x ∈ Rm, we denote ‖x‖∞ = max1�i�m |xi| , where xi is

the i-th element of x.

2 Dynamic model and problem formu-

lation

In this section, the relative motion dynamics is analyzed

based on the C-W equation[2]. By using input accelerations

in the three directions as control input, we establish the rel-

ative model for orbit rendezvous system with input satura-

tion and input-additive uncertainties. Finally, the control

problems which are concerned in this paper are presented.

2.1 Description of relative motion

The spacecraft rendezvous system is illustrated in Fig. 1.

We assume that the two spacecraft (the target and chaser)

are adjacent, and that the target spacecraft is in a circu-

lar orbit whose radius is R. Assume that the vector from

the target spacecraft to the chaser spacecraft is denoted by

r. The right-handed coordinate system (rotating coordinate

system) O−XY Z is fixed at the center of mass of the tar-

get with X axis along the radial direction, Y axis along

the flight direction of the target, and Z axis out of the or-

bit plane, respectively. Denote the gravitational parameter

μ = GM , where M is the mass of the center planet and

G is the gravitational constant. Then the orbit rate of the

target orbit is given by n = μ
1
2 /R

3
2 .

Fig. 1 Circular orbit and coordinate system

Considering the input constraint and input-additive un-

certainties, the relative motion between the target and

chaser can be governed by Newton′s equations[29]

⎧
⎪⎨

⎪⎩

ẍ = 2nẏ + n2(R + x) − ρμ(R + x) + satαX (ax + g1)

ÿ = −2nẋ + n2y − ρμy + satαY (ay + g2)

z̈ = −ρμz + satαZ (az + g3)

(2)

where ρ = ((R+x)2 +y2 + z2)−
3
2 ; ax, ay and az are respec-

tively the control input accelerations in the three directions;
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αX , αY and αZ are respectively the maximal accelerations

that the thrusts can generate in the three directions; g1, g2

and g3 are respectively the input uncertainties in the three

directions.

By linearizing (2) around the center of mass of the target,

we obtain
⎧
⎪⎨

⎪⎩

ẍ = 2nẏ + 3n2x + satαX (ax + g1)

ÿ = −2nẋ + satαY (ay + g2)

z̈ = −n2z + satαZ (az + g3)

(3)

which is known as the Hill′s equation or Clohessy-Wiltshire

equation[2].

Notice that we denote D = diag{αX , αY , αZ},

a =
[

ax ay az

]T

and

g∗ =
[

g1 g2 g3

]T

where a is the acceleration vector due to thrust forces on

the chaser, and g∗ is the input uncertainties vector.

We set

u′(t) �
[

satαX (ax) satαY (ay) satαZ (az)
]T

=

D
[

sat( ax
αX

) sat(
ay

αY
) sat( az

αZ
)

]T

=

Dsat(D−1a).

By choosing the state vector

x =
[

x y z ẋ ẏ ż
]T

the relative motion equation with input uncertainties can

be described as

ẋ = Ax + Bsat(u + g(x, t)) (4)

where u = D−1a, g(x, t) = D−1g∗(x, t)

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

D (5)

and g∗(x, t) is the input uncertainties vector, sat : R3 →
R3 is a standard saturation function. The saturation func-

tion is defined in [16] and recalled as follows.

Definition 1. Function σ : Rm → Rm is called a satu-

ration function, if

1) σ (u) is decentralized, i.e.,

σ (u) = [σ1 (u1) , · · · , σm (um)]T for each i = 1 to m;

2) σi is locally Lipschitz;

3) sσi(s) > 0 whenever s �= 0;

4) min {lims→0+(σi (s) /s), lims→0− (σi (s) /s)} > 0;

5) lim inf |s|→∞ |σi (s)| > 0.

Remark 1. It follows from Definition 1 that the stan-

dard saturation function sat (s) = sgn (s)min {|s| , 1} is a

saturation function. So, it has the properties of the satura-

tion function.

Proposition 1. The matrix pair (A, B) is control-

lable and all the eigenvalues of A are on the imaginary

axis, namely, (A, B) is asymptotically null controllable with

bounded controls (ANCBC).

Roughly speaking, ANCBC means that any fixed

bounded initial state can be steered to the origin with

bounded controls.

Regarding the uncertain vector, we only require knowing

an upper bound on the norm of g∗.
Assumption 1.[15] The uncertain vector is piecewise

continuous in t, locally Lipschitz in x and its norm is

bounded by a known function:

‖g∗ (x, t)‖ � g0

(‖x‖∞
)
, ∀ (x, t) ∈ Rn × R+ (6)

where function g0 : R+ → R+ is known and is locally Lip-

schitz with g0 (0) = 0. Without loss of generality, we also

assume that g0 is nondecreasing.

2.2 Problem formulation

The whole rendezvous process can be described by the

transformation of state vectors x(t) from nonzero initial

states x(t0) to the terminal states x(tf ) = 0, where tf is

the rendezvous time[12]. In this paper, we will propose a

nonlinear continuous static gain scheduled feedback law to

achieve the rendezvous mission in the presence of actuator

saturation and input uncertainty.

Problem 1. Design a nonlinear gain scheduling con-

troller u(x) for system (4), with Proposition 1, g(x, t) sat-

isfying Assumption 1, such that the closed-loop system is

globally asymptotically stable.

3 Controller design

In this section, we construct a continuous static gain

scheduled feedback law that solves Problem 1 as formu-

lated in the previous section. The construct of the gain

scheduled feedback law is based on the low-and-high gain

design[30]. There are three methods to design low gain feed-

back: eigenstructure assignment based algorithm[31] , alge-

braic Riccati equation (ARE) based approach[32, 33] and a

parametric Lyapunov equation based method[34]. The para-

metric Lyapunov equation based approach possesses the ad-

vantages of both the eigenstructure assignment approach

and the ARE-based approach[34]. Firstly, the parametric

Lyapunov equation is conceptually appealing and directly

results in a quadratic Lyapunov function for the closed-loop

system. Secondly, it avoids the numerical stiffness encoun-

tered in the solution of an ARE with a small value of the

low gain parameter and the structural decomposition of the
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open loop system required for the eigenstructure assign-

ment. In this paper, we choose the parametric Lyapunov-

based method to design the gain scheduled feedback law.

For the parametric Lyapunov-based approach, matrix P (γ)

is the unique positive definite solution to the following para-

metric ARE

PA + ATP − PBBTP = −γP (7)

where γ > 0 is the design parameter, and all the eigenvalues

of A are assumed to be on the imaginary axis.

Properties of solutions to the ARE (7) are summarized

in Lemma 1 below.

Lemma 1[34]. Assume that (A, B) is controllable and A

has all its eigenvalues on the imaginary axis. Then,

1) there exists a unique matrix P (γ) > 0 which solves

the ARE (7), P (γ) = W−1(γ), where W (γ) is the unique

positive-definite solution to the following Lyapunov matrix

equation

W (A +
γ

2
I)T + (A +

γ

2
I)W = BBT; (8)

2) matrix A − BBTP (γ) is Hurwitz;

3) limr→0 P (γ) = 0;

4) P (γ) is continuously differentiable and strictly increas-

ing with respect to γ, i.e., dP (γ) /dγ > 0;

5) tr
(
BTP (γ) B

)
= nγ, where n is the dimension of the

system matrix A.

Before giving the main results, we define two invariant

ellipsoid sets:

E =
{

x ∈ R6 : 6γ(x)xTP (γ(x))x � 1, γ(x) = γ∗
}

(9)

L =
{

x ∈ R6 : 6γ(x)xTP (γ(x))x � 1, γ(x) ∈ (0, γ∗)
}

.

(10)

Theorem 1. Let Assumption 1 hold, P (γ(x)) be the

unique positive definite solution to the ARE (7). Then the

gain scheduled state feedback controller

u(x) =

{
−(1 + η(x))BTP (γ (x))x, if x ∈ L

−(1 + η(x))BTP (γ∗)x, if x ∈ E
(11)

solves Problem 1, where

γ(x)=max{γ ∈ (0, γ∗] :
(
xTP (γ)x

)
tr

(
BTP (γ)B

)
�1}
(12)

η (x) =
η0

(
g′ (‖x‖∞

)2
+ 0.1

)
ϕ

(
2g0

(‖x‖∞
)

+ 1
)

γ(x)
(13)

in which η0 > 12 is a design parameter whose value is to

be tuned according to the set of data admissible for state

feedback; g′ : R+ → R+ is any locally Lipschitz function

that satisfies g′(s) � g0(s)/s, ∀s > 0; ϕ : R+ → R+ is

locally Lipschiz and nondecreasing; the ellipsoid E and L
are defined by (9) and (10), respectively.

Regarding function γ (x), the following lemma was

proved in [21].

Lemma 2. γ (x) is a continuous function of x ∈ Rn

and is continuously differentiable in a neighborhood of any

point x such that 0 < γ(x) < γ∗. Moreover, function

BTP (γ(x)) x is globally Lipschitz.

Remark 2. The designed controller asymptotically

stabilizes system (4) in the following way: the nonlinear

controller steers the system trajectories to the neighbour-

hood of the origin E , then the linear controller −(1 +

η(x))BTP (γ∗)x will asymptotically take the state to the

origin. Such an idea was also used in the early literature

to design global stabilizing controllers[20, 21]. The proposed

approach in this paper can obtain analytical expression of

the controller and lead to good dynamic performance of the

closed-loop system.

Proof. For simplicity, we denote g(x, t) as g.

When x ∈ L , we have

u(x) = −(1 + η(x))BTP (γ (x))x.

We write the closed-loop system as

ẋ = Ax + Bsat(−(1 + η (x))BTP (γ (x))x + g) (14)

whose right-hand side, in view of Lemma 2, is locally Lips-

chitz in x and piecewise continuous in t. For the closed-loop

system, we choose the Lyapunov function

V = xTP (γ (x))x. (15)

By Definition 1, Remark 1, ARE (7) and

∥
∥
∥BTP (γ (x))x

∥
∥
∥

2

2
�

∥
∥
∥BTP

1
2 (γ (x))

∥
∥
∥

2

2

∥
∥
∥P

1
2 (γ(x)) x

∥
∥
∥

2

2
=

λmax

(
BTP (γ (x)) B

) (
xTP (γ (x)) x

)
� (16)

tr
(
BTP (γ (x)) B

) (
xTP (γ (x))x

)
� 1

the evaluation of V along the trajectories of system (14) is

V̇ =2xTP (γ (x))ẋ + xT dP (γ (x))

dt
x =

xT dP (γ (x))

dt
x + 2xTP (γ (x))

(
Ax + Bsat

(
−(1 + η (x))BTP (γ (x))x + g

))
=

xT
(
P (γ (x)) A + ATP (γ (x))

)
x + xT dP (γ (x))

dt
x+

2xTP (γ (x))Bsat
(
−(1 + η (x))BTP (γ (x))x + g

)
=

xT dP (γ (x))

dt
x + 2xTP (γ (x))B

(
sat (−(1 + η (x)) BTP (γ (x))x + g) + BTP (γ(x))x

)
−

xTγ (x) P (γ (x))x − xTP (γ (x))BBTP (γ (x))x.

Letting τ = −BTP (γ (x))x, where τ ∈ R3 and vi, gi

denote respectively the i-th element of τ , g, we have

V̇ � − λmin (γ (x)P (γ (x))) xTx−

2
3∑

i=1

τi (sat ((1 + η (x))τi + gi) − sat (τi)) +

xT dP (γ (x))

dt
x.
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According to the same procedure as used in [15, 16], it can

be verified that

− τi (sat ((1 + η (x))τi + gi) − sat (τi)) � 2 |gi|2 ϕ (2 |gi|)
η (x)

.

(17)

Hence, we conclude that

V̇ � − λmin (γ (x)P (γ (x))) xTx+

12g2
0

(‖x‖∞
)
ϕ

(
2g0

(‖x‖∞
))

η (x)
+ xT dP (γ (x))

dt
x �

− λmin (γ (x)P (γ (x)))

(

1 − 4m

η0

)

‖x‖2
∞ +

xT dP (γ (x))

dt
x. (18)

By choosing

η0 > 4m = 12 (19)

we have

V̇ < xT dP (γ (x))

dt
x. (20)

According to the arguments used in [21], in view of (12),

tr
(
BTP (γ)B

) (
xTP (γ)x

)
= 1, whenever γ(x) �= γ∗, i.e.,

whenever P (γ (x)) is not a constant locally. Therefore,

xT dP (γ(x))
dt

x and V̇ are either both zero or have opposite

signs. So, for all η0 satisfying (19), we have

V̇ < 0. (21)

We can see the controller u(x) drives all the points

x ∈ L to E .

When x ∈ E , we have

u(x) = −(1 + η(x))BTP (γ∗)x. (22)

Considering system (4), we have the closed-loop system

ẋ = Ax − Bsat
(
(1 + η(x))BTP (γ∗) x + g

)
, ∀x ∈ E .

(23)

By choosing the Lyapunov function

V (x) = xTP (γ∗)x (24)

the time derivative of V (x) along the trajectories of system

(23) can be evaluated as

V̇ (x) = 2xTP (γ∗) ẋ �

2xTP (γ∗)
(
Ax + Bsat

(
−BTP (γ∗) x + g

))
�

− λmin (γ∗P (γ∗))
(

1 − 4m

η0

)

‖x‖2
∞ < 0,

∀x �= 0, η0 > 12. (25)

So, all the trajectories arriving at E are driven asymp-

totically to the origin.

According to Proposition 1 and Lemma 1, P (γ (x)) → 0

as γ (x) → 0. It follows that

L =
{

x ∈ R6 : 6γ (x) xTP (γ (x)) x � 1, γ (x) ∈ (0, γ∗)}

converges to the whole sets R6. So the controller (11) sta-

bilizes system (4) globally. �

4 Simulation results

In this section, we provide a numerical simulation to

demonstrate the effectiveness and advantage of the pro-

posed approach to the circular orbital rendezvous. Different

from the controller design, our simulation will be carried out

directly on the nonlinear plant described by (2). Thus, the

angular velocity n = 7.2722 × 10−5 rad/s. For simulation

purpose, we choose the initial condition in the target orbital

coordinate system as

x(0) =
(

1000 1000 800 5 3 −1
)T

namely, the distances between the target and the chaser

spacecraft in the three directions X, Y and Z are 1000 m,

1000 m, and 800 m, respectively. The relative velocity are

respectively 5m/s, 3m/s and −1m/s in the three direc-

tions. Assume that the maximal accelerations supplied

by the thrusts in the three directions satisfy |αX | � 0.5,

|αY | � 0.5 and |αZ | � 0.1, respectively. Let uncertainties

g(x, t) be such that |g (x, t)| � 0.01 ‖x‖∞ +0.01 ‖x‖2
∞ . So

Assumption 1 is satisfied. Following Proposition 1 and The-

orem 1, we can use the controller in (11) to stabilize system

(2). With the above parameters we can compute the unique

positive definite solution to the parametric ARE (7) as

P =

⎡

⎢
⎢
⎢
⎣

P11 0 P13 0

0 100(2n2 + γ2)γ 0 100γ2

PT
13 0 P33 0

0 100γ2 0 200γ

⎤

⎥
⎥
⎥
⎦

(26)

in which P11, P13 and P33 are respectively given in (28). By

choosing g′(s) = 0.01 ‖x‖∞ + 0.01, η(x) is given by

η(x) =
2η0((0.01 ‖x‖∞ + 0.01)2 + 0.1)

γ(x)
(27)

here, we set η0 = 20.

P11 =

⎡

⎢
⎢
⎢
⎣

4(2610n10 + 3073γ2n8 + 1060γ4n6 + 174γ6n4 + 10γ8n2 + γ10)

γ(n2 + γ2)(255n6 + 91γ2n4 + 11γ4n2 + γ6)

−24n3γ2(25n4 + 18γ2n2 + 5γ4)

255n6 + 91γ2n4 + 11γ4n2 + γ6

−24n3γ2(25n4 + 18γ2n2 + 5γ4)

255n6 + 91γ2n4 + 11γ4n2 + γ6

4γ3(25n4 + 14γ2n2 + γ4)(n2 + γ2)

255n6 + 91γ2n4 + 11γ4n2 + γ6

⎤

⎥
⎥
⎥
⎦
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P13 =

⎡

⎢
⎢
⎢
⎣

4γ2(γ2 + 3n2)(γ6 + 9γ4n2 + 159γ2n4 + 367γ6)

(n2 + γ2)(255n6 + 91γ2n4 + 11γ4n2 + γ6)

8n(720n8 + 613n6γ2 + 111γ4n4 + 3γ6n2 + γ8)

γ(n2 + γ2)(255n6 + 91γ2n4 + 11γ4n2 + γ6)

−8nγ3(55n4 + 20γ2n2 + γ4)

255n6 + 91γ2n4 + 11γ4n2 + γ6

−4γ2(75n6 − 7γ2n4 − 11γ4n2 − γ6)

255n6 + 91γ2n4 + 11γ4n2 + γ6

⎤

⎥
⎥
⎥
⎦

P33 =

⎡

⎢
⎢
⎢
⎣

8(45n8 + 388n6γ2 + 138γ4n4 + 12γ6n2 + γ8)

γ(n2 + γ2)(255n6 + 91γ2n4 + 11γ4n2 + γ6)

48n3(47n4 + 10γ2n2 − γ4)

γ2(n2 + γ2)(255n6 + 91γ2n4 + 11γ4n2 + γ6)

48n3(47n4 + 10γ2n2 − γ4)

γ2(n2 + γ2)(255n6 + 91γ2n4 + 11γ4n2 + γ6)

8(405n8 + 244n6γ2 + 66γ4n4 + 12γ6n2 + γ8)

γ(n2 + γ2)(255n6 + 91γ2n4 + 11γ4n2 + γ6)

⎤

⎥
⎥
⎥
⎦

. (28)

Fig. 2 Relative positions and velocities in X, Y and Z axes

Fig. 3 Relative distances and velocities under the two different

control methods, d =
√

x2 + y2 + z2 and v =
√

ẋ2 + ẏ2 + ż2

As we can see from Figs. 2 and 3, the closed-loop sys-

tem is asymptotically stable. Actually, the rendezvous mis-

sion is accomplished at about tf = 520 s. Fig. 4 gives the

curve of control accelerations, which shows that the control

input does not exceed the maximal acceleration supplied

by the thrusts. Fig. 5 shows the performance of the state

trajectories when using controller (11) and also illustrates

the ellipsoid boundary ∂E , in which the continuous con-

troller in (11) switches from a nonlinear feedback to a lin-

ear one. At E , the closed-loop system behaves as a linear

system. According to (12), parameter γ(x) is changed in

(0, γ∗](here γ∗ = 1), which can be verified by the history of

γ(x) recorded in Fig. 6. We also give the curve of η(x) in

Fig. 6.

We compare the proposed nonlinear continuous static

gain scheduling controller with the discrete gain scheduling

control established in [28]. Compared with the discrete gain

scheduling method, the simulation result in Fig. 3 shows the

proposed approach can save about 500 s for accomplishing

the rendezvous mission. The proposed method has a better

dynamic performance.

Fig. 4 Control accelerations

Fig. 5 State trajectory
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Fig. 6 γ(x) and η(x)

5 Conclusions

This paper has proposed a robust gain scheduling ap-

proach based on the parametric Lyapunov equation to

solve the global stabilization problem of the spacecraft ren-

dezvous system with input saturation and input-additive

uncertainties. The designed robust gain scheduling con-

troller is very easy to implement since only a scalar nonlin-

ear equation is required to be solved. Numerical simulations

of the nonlinear model of the spacecraft rendezvous oper-

ation instead of a linearized one show the proposed robust

gain scheduling method finishes the rendezvous mission suc-

cessfully.
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