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Abstract: In compressive sensing (CS) based inverse synthetic aperture radar (ISAR) imaging approaches, the quality of final image
significantly depends on the number of measurements and the noise level. In this paper, we propose an improved version of CS-
based method for inverse synthetic aperture radar (ISAR) imaging. Different from the traditional I; norm based CS ISAR imaging
method, our method explores the use of Gini index to measure the sparsity of ISAR images to improve the imaging quality. Instead
of simultaneous perturbation stochastic approximation (SPSA), we use weighted l; norm as the surrogate functional and successfully
develop an iteratively re-weighted algorithm to reconstruct ISAR images from compressed echo samples. Experimental results show
that our approach significantly reduces the number of measurements needed for exact reconstruction and effectively suppresses the
noise. Both the peak sidelobe ratio (PSLR) and the reconstruction relative error (RE) indicate that the proposed method outperforms

the I; norm based method.
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1 Introduction

Inverse synthetic aperture radar (ISAR) has been proven
to be a powerful signal processing technique for imag-
ing moving targets in range and cross-range domain un-
der all-weather circumstances!* 3. ISAR imagery plays an
important role in military and civilian applications such
as target identification, recognition and classification. In
these applications, a critical requirement of the ISAR im-
age is to achieve high resolution in both range and cross-
range domains. In conventional ISAR imaging frame-
work, ISAR images are usually obtained using the range-
doppler (RD) algorithm which is based on the 2D Fourier
transformation . Under this imaging framework, range
resolution is proportional to the bandwidth of transmitted
signal, and cross-range resolution is dependent on both the
coherent processing interval (CPI) as well as the target ro-
tational motion from variation of radar viewing angles!®).
To obtain a considerably high range and cross range resolu-
tion targets’ image through RD algorithm, the bandwidth
of radar transmitted signal must be sufficiently large and
the targets’ observation duration must be long enough.

However, there are several constraints in real ISAR imag-
ing system to acquire a very high range and cross range reso-
lution targets images: 1) Due to system limitations, it is im-
practical to obtain higher and higher range resolution ISAR
images by continually increasing the system bandwidth.
2) Long duration targets observation may be unachievable
since targets are usually non-cooperative and maneuvering,
and it brings difficulty for the real-time tracker to produce
a well-focused image. 3) A large bandwidth and long obser-
vation duration produce huge amount of data, and often the
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data handling is the most crucial matter of radar design.

To overcome those constraints, the recently developed
theory of compressive sensing (CS)[678] presents a novel
way to deal with those problems. CS theory suggests that
it is possible to reconstruct a sparse or compressible sig-
nal from a small number of compressed measurements with
an appropriate nonlinear reconstruction procedure. Unlike
Nyquist-Shannon sampling theorem based signal sampling
way, CS performs compressed sampling using the sparsity
of the signal, which permits signals to be sampled at the
sub-Nyquist rate and reconstructed from the limited com-
pressed measurements. In the context of radar signal pro-
cessing, especially in ISAR signal processing, CS has at-
tracted more and more attentions since one can obtain bet-
ter performance and easier data acquisition and storage
schemes® 4. In 2009, Ender*” presented several generic
system architectures of CS based radar and put forth some
major open questions related with the application of CS to
SAR and ISAR imaging. In [11], a CS-based ISAR imag-
ing algorithm is proposed to estimate locations of scattering
centers from very limited measurements. And in [12], the
algorithm is improved to overcome strong noise and clut-
ter by combining coherent projectors and weighting with
the CS optimization for ISAR image generation. In 2012,
Zhao et al.['4] proposed a novel reconstruction model called
MCS model deduced from Meridian prior, and with the de-
crease of the number of pulses and signal-to-noise ratio MCS
model exhibits better performance in terms of resolution
and amplitude error than that of the Laplace-prior-based
CS model.

In most of current literature on CS based ISAR imaging
approaches, sparsity of ISAR image is commonly measured
by I3 norm, and ISAR images are reconstructed by solving
a |1 minimization problem. However, in the case of real
situation, /1 norm may not be practical due to following
observations. 1) Intuitively, a signal is sparse if its energy
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is concentrated in a small number of its coefficients. For
instance, we consider the two signals 1 = (7,1,1,0) and
x2 = (3,3,3,0). Intuitively, the sparsity of @1 should be
more than x2 , since most of the signal energy in x; is con-
centrated in just one element. But in the sense of /1 norm,
the sparsities of 1 and @2 are the same (||z1||1 = ||z2|1 =
9). So, a sparsity measure should depend on the relative
distribution of energy among the coefficients. But it should
not be calculated solely by the absolute value of each coef-
ficient. 2) A good sparsity measure should be a weighted
sum of coefficients of signal representation, based on the im-
portance of a particular coefficient in the overall sparsity.
As a consequence, any slight change in the value of a coeffi-
cient will affect sparsity only relative to the weight of that
coefficient, which is a desirable property. The above two
observations raise the question of whether we can improve
upon [; norm based sparsity measure and /1 minimization
and design a new CS ISAR imaging algorithm to achieve
robustness and stability against strong noise.

In this paper, we consider one such alternative. Using
the Gini index!'> 1 as a measure of sparsity, we introduce
an enhancing sparse recovery model to reconstruct high res-
olution ISAR image from compressed echo measurements.
In contrast to other compressive ISAR related model, this
paper, which is an extension of our previous WOI‘k[17], ex-
plores the use of Gini index instead of [1 nrom to measure
the sparsity of ISAR images.

The main contribution of this paper is twofold: 1) By us-
ing the Gini index as a measure of sparsity, we propose an
enhancing sparse recovery model to construct high resolu-
tion ISAR images from compressed echo measurements. 2)
An efficient CS imaging algorithm is developed using a novel
iteratively reweighed scheme. The results show that our ap-
proach significantly reduces the number of measurements
needed for exact reconstruction and effectively suppresses
the noise, and both the PSLR and RE values indicate that
the proposed method outperforms /13 norm based method.

The rest of paper is organized as follows. In Section
2, we present the ISAR system signal model and review
current CS based imaging formation. Section 3 introduces
Gini index based ISAR imaging model and algorithm. Ex-
perimental results and performance comparison of proposed
approach and other current approaches are given in Section
4. Finally, Section 5 concludes the paper.

2 ISAR signal model and imaging via
CS

In this section, we present the ISAR system signal
model with stepped frequency continuous wave (SFCW)
and briefly review the {3 norm based CS ISAR imaging for-
mation.

2.1 ISAR observation model

We assume that the translational motion has been com-
pensated by conventional methods®~2% and the transmit-
ted signal of radar system is the stepped frequency con-
tinuous wave (SFCW) with m bursts of n pulses. Each
frequency component in the burst is fi = fo +iAf, i =
0,1,2,--- ,n — 1, where fo is the initial frequency and A f

is the frequency step in the burst. The total frequency
bandwidth B can be readily calculated as

B= fan1— fo+ Af =nAf. (1)

Let us consider the geometry shown in Fig.1 where the
target is rotating with a rotational velocity of w. The ori-
gin of the geometry is Ro away from the radar. Assuming
that the target is at the far field of the radar, the received
signals of the i-th scattering center located at P(z;,y;) on
the target have the form of!!l

2
—J'27T<7f> R(z;,y;,t)
E*(f.t) = aze +n (2)

where «; is the complex magnitude of the i-th scattering
center, c is the speed of light, f = (fo, f1, -+, fn—1) is the
frequency vector, 7 is the additional noise, and R(x;,y:,t)
is the instantaneous distance from point scatterer to radar
and can be written as

R(xi,yi, t) =

V/(Ro + ; cos wt — y; sinwt)? + (z; sin wt + y; cos wt)2.

Radar

Fig.1 Geometry for ISAR imaging of a rotating target

Let us assume that the target in Fig. 1 contains p point
scatterers located at (x;,y;) where ¢ runs from 1 to p. Then,
the received signal can be formulated as

p —j2m | — | R(z;,yi,t)
E*(f,t) = Zale ( c> + 1. (4)

We should point out that the received echo signal E°(f,t)
is complex data, and we assume the noise 7 is Gaussian
distributed complex noise.

Now, we split the imaging scene by N grids denoted by
{(#x, 9k)}r_,, and define a dense dictionary as

‘I’:{Sﬁla<ﬂ27"' 790N}
2
*J’27r<7f> R(Zk, gk t) ’
on(ft)=e

Then the received signal expressed in (4) can be rewritten
as

k=1,2,--- ,N. (5)

N
—jor(2£)R(,
S(f.t) :Z i2r(2L)R(z “yz,t)_|_77 (6)

and it can further be represented as

E*(f,t)=%¥a+n (7)
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where ¥ € CM*V¥ is a dense dictionary, a =
[@1,d2,- -+ ,an]T is redefined as the vector whose nonzero
components correspond to the complex amplitudes of the p
strong scatterers.

Inspired by the CS theory, a sensing matrix & € CM*¥N
is applied to decrease the data rate, and we then have the
following ISAR signal observation model:

E=®%a+n (8)

where E € CM is the compressed echo measurements.

The ISAR imaging problem is how to reconstruct the re-
flectivity @ from (8). Given E with a low dimension, exact
reconstruction of a is challenging as one has fewer equations
than unknowns in (8).

2.2 l; norm based CS ISAR imaging

Firstly, we give a brief introduction to the concept of
compressed sensing. A good overview can be found in [8].
Suppose & € CV is K-sparse in a basis or more generally
a dictionary ¥, so that € = Yo, with ||zollo = K < N,
where ||Zo||o is the number of nonzero components of xg.
In the case when « is compressible in ¥, it can be well
approximated by the best K-term representation. Con-
sider an M Xx N sensing matrix ® with M < N and
assume that M linear measurements are made such that
y = P = ®¥xy = Oxp. Given y and the matrix O,
the general problem is to recover xo. Since M < N, this
leads to the problem of solving an underdetermined system
of linear equations. A successful way to estimate ¢ in this
situation is to find the sparsest solution, which can be done
by solving the following optimization problem:

min ||zollo  s.t. y = BOzo. 9)
x0

Unfortunately, the above minimization problem is NP-
hard and is computationally difficult to solve. The approach
taken in CS theory is to solve a relaxed version of (9)

min ||zol|1  s.t. Yy = Oxo (10)
o

where || - || denotes /1 norm. The optimization problem (10)
is often known as basis pursuit (BP) which can be solved
by linear programming methods. It has been shown that
under certain conditions on © and the sparsity of xo, the
solutions to both (9) and (10) are the same!® 7.

In the case of noisy observations of the following form:

y=0xzo+v (11)

where v is the noise term, ||[v]|2 < €, the basis pursuit de-
noising model can be used to approximate the original sig-
nal:

min [|zofl1 s.t. ||y — Ozl <. (12)
o

Based on CS theory and ISAR signal observation model
(8), given compressed echo samples E and sensing matrix ®,
l1 norm based CS ISAR imaging model can be formulated
as

|E —®Wal2 <€ (13)

min |lal|: s.t.
ecnN

where a is the complex-valued amplitude estimator with
respect to dictionary ¥ and ¢ = ||n||2 is the noise level. The
usage of /1 norm imposes that most elements of a are small
with a few large ones, in accordance with the sparsity of the
ISAR signal in the RD plane. The l2 norm inequality con-
straint preserves the data fidelity of the solution with noise
suppression under level €. This optimization problem can
be efficiently solved by YALL1?Y Spgl11??l and NESTA 23,

3 Gini index based CS ISAR imaging

Different from the common /1 norm based CS ISAR imag-
ing approaches, we propose an improved CS framework for
ISAR imaging using a new sparsity measure named Gini
index.

3.1 Gini index

Given a vector @ = [a1, a2, - -+ ,an], we order from small-
est to largest, ap) < ajg) < -+ < apn), where [1],[2],---[N]
are the new indices after the sorting operation. The Gini
index of signal a is defined as

N
\a[i]\ N—-i+05
G =1-2 E . 14
(a) i ||aH1 N ( )

It is clear that Gini index will increase as the sparsity
of the signal increases. Furthermore, there are some impor-
tant advantages of Gini index over the conventional /1 norm
measures.

1) It is normalized: for any signal a, we have G(a) €
[0,1]. We have G(a) = 0 for the least sparse signal with
all the coefficients having an equal amount of energy; and
G(a) = 1 for the sparsest one which has all the energy
concentrated in just one coefficient.

2) It is independent of the size of the signal, thereby
enabling us to compare the sparsity of signals of different
sizes.

3) It is scale-invariant and independent of the total en-
ergy of the signal: G(a) = G(ca), Vc € RT, and thus it
is ideally suited for comparing the sparsity of a signal in
different transform domains.

4) Tt depends on the relative distribution of energy among
the coefficients, as a fraction of the total energy, and not
be calculated based solely on the absolute value of each
coefficient.

Here, we reconsider the example given in Section 1 to
demonstrate that Gini index is more general and consis-
tent than /1 norm. The two signals given in Section 1 are
z1 = (7,1,1,0) and z2 = (3,3,3,0). If we use [; norm as
the sparsity measure, we find that the sparsity of those two
signals is the same (||z1]|1 = ||z2]|1 = 9). But, if we use the
Gini index as the sparsity measure, we have G(z1) = 0.4394,
G(z2) = 0.25, and it clearly shows that signal z1 is sparser
than signal x2. More examples can be found in [15].

The above observations serve as motivations of why we
use the Gini index as a sparsity measure in our CS ISAR
imaging model. We formulate proposed CS ISAR imaging
model as follows.
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3.2 Proposed model

Given ISAR signal observation model (8), Gini index
based CS ISAR imaging model can be expressed as

max G(a) s.t.
acCN

|E— ®Pal: < e (15)

where G(+) is the Gini index defined in (14), E is the com-
pressed measurements, ® € CM*¥ is the sensing matrix,
W is the dictionary defined in (5), a is the scene vector, and
¢ is dependent on the noise level.

3.3 [Iteratively reweighted algorithm

To solve this maximization problem, simultaneous per-
turbation stochastic approximation (SPSA)% 24 was used
to seek the solution due to the nonlinearity of Gini index.
The essential feature of SPSA, which provides its power
and relative ease of use in difficult multivariate optimization
problems, is the underlying gradient approximation that re-
quires only two objective function measurements per itera-
tion regardless of the dimension of the optimization prob-
lem. However, we find SPSA is usually time-consuming in
dealing with the Gini index based ISAR-CS model. To over-
come this problem, we find that the Gini index based CS
ISAR imaging model can be reformulated into a reweighted
l1 minimizing framework, thus the fast iterative shrinkage
thresholding method®®! can be used to seek the optimal
solution without stochastic approximation.

Substituting (14) into (15), the problem (15) is equiva-
lent to the following minimization problem:

min
acCN =

N . 1
N—Z-‘rg)
—— 2 ay| st ||E—®Pal <e.
1(N|a||1 8
(16)

In order to solve the problem efficiently, we rewrite the
prior term in (16) in an inner product form:

lapy|
N-1+1 N-2+1 N-N+11] lonl
Nlalli * Nlal: * " Nlal:

lajn |

(17)

and it can be viewed as a new weighted li-norm which is
defined by

lapy|
N-Li+i N-L+1 N—In+37] laal |
Nlalx 7 Nlal: * 7 Nlalx
|agw|
(W (a)al: (18)
where I; is the index of element a; in vector
lapys az), - -+ 5 apny], and the weight vector is defined by
Nen+tf Nop+l NeoIn+i
WT(a)—[ ! "2 D!
Nllally Nllalx Nllally

(19)

Using (16), (17), (18) and (19), the maximization prob-
lem (15) can be converted to the following minimization
problem:

min [W'(a)a|; s.t.
acCN

|E—®WTaly <e.  (20)

Problem (20) is not the same as general weighted [;-
norm minimization problem because the weight W7 (a) is
related to independent variable a and the objective func-
tion |W7T(a)a|: is nonlinear, so we need to design a new
algorithm to find the solution.

In this paper, we propose an iteratively reweighted algo-
rithm that alternates between the solution estimation and
the weights redefinition. The algorithm is described as fol-
lows:

Step 1. Initialize @ = ao, ¢ (which depends on noise
level) and W = W™ (ay).

Step 2. Solve the following minimization problem with
the current solution & and the current weight W7 using fast
iterative shrinkage thresholding method (FIST)[2%):

a” = arg rg(ljr}v [Wali st. ||E—®P¥al:<ec.
a

Step 3. Update:

a) Update the weights: W «— W7 (a*), where WT(a*)
is defined by (19);

b) Update the current solution: a < a*.

Step 4. Terminate on convergence or the number of it-
erations attains a given maximum value. Otherwise, go to
Step 2.

Here are three comments about the algorithm: 1) It has
been shown in [16] that Gini index defined in (14) is quasi-
convex in |a|. To the best of our knowledge, theoretical
analysis of Gini index based reconstruction model is defi-
cient and existence and uniqueness of solution to this model
is unknown. We would like to carry out a separate research
on this topic in our future work. 2) Because the objective
function in (20) is nonlinear and non-convex, it is very hard
to give a theoretical guarantee on the convergence of the it-
erative reweighted algorithm. However, to demonstrate the
effectiveness and stability of our iteratively reweighted al-
gorithm, we have tested our algorithm on various data sets,
and the results indicated that proposed algorithm is very
stable and reliable. 3) In this paper, we terminate our al-
gorithm when relative change of two consecutive iterations
becomes small:

@ —a|l2

21
e ~° @)

where ¢ > 0 is a tolerance. In our experiments we choose
—4
o=10"".

4 Experimental results

In order to evaluate the performance of the Gini index
based CS ISAR imaging method, several simulated experi-
ments are presented at different SNR level and normalized
measurements number % in this section. The processing
is also implemented for conventional RD algorithm and [y
norm based CS ISAR imaging method, and the results are

compared with those three methods in terms of two indica-
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tors: the peak sidelobe ratio (PSLR) and the reconstruction
relative error (RE)[29.

PSLR is defined as the ratio of peak intensity of the most
prominent sidelobe and the peak intensity of the mainlobe:

max  a*(z,y)

|z <pz,|yl<py
2
a*(z,y)

PSLR = 10log;,

max
pz<|z|<5pa,py <|y|<5py

where a(z,y) is the focused image of point-scatter, p, and
py are the half width of mainlobe in range and cross range,
respectively.

Relative error of reconstructed image is defined as

St S (@i g) —alif)?
RE=| = — (23)
5 3 (i)

where a(i,j) denotes the ground truth image of scattering
coefficients for illuminated scene, and a(i,j) is the recon-
structed imaging. Obviously, the lower relative error is, the
better reconstructed performance will be.

Assume that the target is 4km away from the radar
and rotates with a rotational velocity of 0.0209 rad/s. The
starting frequency of transmit signal is fo = 9 GHz and the
bandwidth of transmit signal is B = 125 MHz, pulse repe-
tition frequency (PRF) is 35 kHz, the number of pulses and
the number of bursts are m = 128 and n = 128. We list the
detailed target and radar parameters in Table 1.

Table 1 Target and radar parameters

Parameter name Symbol Value
Target’s initial position in range Ry 4 km
Target’s rotational velocity w 0.0209 rad/s
Starting frequency fo 9 GHz
Frequency bandwidth B 125 MHz
Pulse repetition frequency F, 35 kHz
Pulse duration T, 1.016 us
Number of pulses m 128
Number of bursts n 128
CPI T 0.468 s

In our experiments, the simulations of two scenes are
tested, one is a very simple scene of some point targets
shown in Fig.2 (a), and another is a complex scene of an
airplane shown in Fig.2(b). To analyze the influence of
noise, in our simulation, the echo signals are added by com-
plex Gaussian white noise with different signal noise ratio
(SNR) level.

Fig. 3 shows the imaging results of point targets scene us-
ing RD algorithm, /1 norm based CS ISAR imaging method
and Gini index based CS ISAR imaging method with differ-
ent SNR level (SNR = 10dB, 20dB, 30dB and noise free).
Fig. 3 (a) shows the result of RD algorithm, and Fig. 3 (b)
and Fig. 3 (c) show the imaging results of {; norm based
method and the Gini index based method using 10% echo
samples, respectively.
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Fig.2 The original simulated scenes. (a) Point targets; (b) An
airplane image

10dB

20 dB

30dB

Noise

free

(a) RD algorithm

(b) /, norm based  (c) Gini index based

method method

Fig.3 Images reconstructed by different approaches versus SNR

It can be seen from Fig. 3 (a) that there are serious side-
lobes in the results of RD algorithm at all SNR levels. Some
details of positions and amplitudes of the targets are missing
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or indistinct as the distance between adjacent targets are
too close. However, even at very low SNR, RD algorithm
obtains almost the same results as at high SNR because
match filtering processing can suppress noise effectively.

At high SNR level (SNR > 10dB), it is observed that the
actual target positions and amplitudes are clearly recon-
structed by both l; norm based method and our method,
and the sidelobe in those two methods is far small than
that in RD method. Comparing the results in Figs. 3 (b)
and (c), we note that the images obtained by our method
are cleaner than ones obtained by [1 norm based method.
Even at low SNR level (SNR = 10dB), our method still
offers good performance, while the result of /1 norm based
method are contaminated by noise and false points (high-
lighted by the white rectangle in first image in Figs. 3 (a)
and (b). Those results indicate that our method is more
robust to SNR and succeeds in providing image with high
quality under low SNR.

To characterize the performance quantitatively, we com-
pute the PSLR value of one point target in Fig. 2 (a) located
at range 12m and cross range —17m, and show the results
in Fig. 4. As shown in Fig. 4, the PSLR value of traditional
ISAR images is about 18dB, while the PSLR value of [y
norm based method and our method is much larger when
SNR > 10. Also, it is clear that our method outperforms I;
norm based method in terms of PSLR.

-8- RD algorithm
-0~ [, norm based method
=¥~ Gini index based method

a8—

& —_—— 3

5 10 15 20 25 30 Noise free

SNR (dB)
Fig.4 PLSR values of various methods versus the SNR

Fig. 5 shows the imaging results of the airplane scene by
three methods mentioned before with different SNR level
(SNR =10dB, 20dB, 30dB and noise free). The original
airplane image is shown in Fig. 2 (b). Fig.5 (a) shows the
result of RD algorithm, and Figs.5 (b) and (c) show the
imaging results of {3 norm based method and the Gini in-
dex based method using 25% echo samples, respectively.

As shown in Fig. 5, we can see that: 1) Compared with
the traditional ISAR reconstruction results, the proposed
method reconstructs higher quality images with reduced
sidelobes at much lower sampling rate than Nyquist rate
when SNR > 10dB. 2) The imaging results of two CS meth-
ods are contaminated by noise when SNR = 10dB, and 3)
the comparison of the results of /1 norm based method and
our method manifests that our method is more stable and
reliable to noise, and more specifically, our method can sig-
nificantly improve the imaging quality when SNR is above
10dB.

Furthermore, to analyze the influence of noise quantita-
tively, imaging results of three methods with different SNR
are evaluated in terms of RE value. The detailed results
are shown in Fig. 6. It further demonstrates that the pre-
sented CS imaging method outperforms RD algorithm and

l1 norm based method when SNR is above 10dB.

10dB

20 dB

30dB

Noise

free

(a) RD algorithm

(b) /, norm based  (c) Gini index based
method method

Fig.5 Images reconstructed by different approaches versus SNR

-8 RD algorithm
-6~ [, norm based method
=¥ Gini index based method

—a 88— & €

5 10 15 20 25 30 35
SNR (dB)

40 Noise free
Fig.6 RE values of various methods versus the SNR

We should point out that the performance of compressive
sensing relies on the number of measurements. So in our ex-
periments, we compare the performance of three approaches
in the presence of noise versus normalized numbers of mea-
surements & (from 10% to 34%). We show the RE value of
the imaging results at SNR = 20dB and 30dB in Figs. 7 (a)
and (b), respectively. Black lines in each figure represent
the RE value of the imaging result of RD algorithm with
full echo samples.

As demonstrated by Fig. 7, we can see that: 1) The CS
method outperforms the RD algorithm when the normal-
ized number of the measurements is more than 0.18, but
the performance of our method begins to degrade markedly
when the normalized number of the measurements is less
than 0.18. 2) Gini index based method produces high-
quality images with lower RE values than [; norm based
method. 3) The proposed method needs fewer measure-
ments to implement ISAR imaging effectively, and the req-
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uisite number of measurements for exact reconstruction is
dropped from about 30% to about 22%.

The experimental results tell that Gini index based CS
ISAR imaging formations are suitable for the construction
of ISAR images with very limited number of pulses.

= — RD algorithm
% -9~ [, norm based method
o =¥ Gini index based method
B
o 1
~

0 , \

. 0.14 0.18 0.22 0.26 03 0.34
Normalized number of measurements %
(@)

4 — RD algorithm
g 3t -9~ [, norm based method
° 5 =¥ Gini index based method
Z T
=
o 1f
o

O 1 1

0.1 0.14 0.18 0.22 0.26 0‘.3 034_

Normalized number of measurements M
() N

Fig.7 RE values of various methods versus the number of mea-
surements at different SNR level. (a) SNR = 20dB; (b) SNR =
30dB

5 Conclusions

The performance of CS ISAR imaging is significantly
dependent on the number of measurements and the noise
level. This paper presents an enhanced sparse reconstruc-
tion method for CS ISAR imaging based on Gini index,
which can sustain strong clutter noise and provide high
quality images with extremely limited measurements. The
essence of our method is the utilization of Gini index as the
sparsity measure in CS imaging. An iteratively reweighted
algorithm is applied to solve the proposed model suppress-
ing noise. Our experiments show that the Gini index based
CS ISAR imaging approach achieves better performance
than other formulations, and it is very robust in the pres-
ence of noise. It is believed that its robustness to suppress
noise and light requirement of measurements make it useful
in real applications of ISAR imaging.
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