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Abstract: In this paper, a fire-new general integral control, named general convex integral control, is proposed. It is derived by
defining a nonlinear function set to form the integral control action and educe a new convex function gain integrator, introducing the
partial derivative of Lyapunov function into the integrator and resorting to a general strategy to transform ordinary control into general
integral control. By using Lyapunov method along with the LaSalle′s invariance principle, the theorem to ensure regionally as well
as semi-globally asymptotic stability is established only by some bounded information. Moreover, the lemma to ensure the integrator
output to be bounded in the time domain is proposed. The highlight point of this integral control strategy is that the integral control
action seems to be infinity, but it factually is finite in the time domain. Therefore, a simple and ingenious method to design the general
integral control is founded. Simulation results showed that under the normal and perturbed cases, the optimum response in the whole
control domain of interest can all be achieved by a set of control gains, even under the case that the payload is changed abruptly.
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1 Introduction

Integral control[1] plays an important role in control sys-
tem design because it ensures asymptotic tracking and dis-
turbance rejection. In the presence of the parametric un-
certainties and unknown constant disturbances, the integral
control can still preserve the stability of the closed-loop sys-
tem and create an equilibrium point at which the tracking
error is zero. The main task of the integral controller is to
stabilize this point, which is challenging because it depends
on uncertain parameters and unknown disturbances.

1.1 Classical integral control

The simplest controllers that achieve integral action are
of the proportional integral derivative (PID) form that in-
troduces integral action by integrating the error. It is well
known that integral-action controllers with this class of in-
tegrators often suffer a serious loss of performance due to
integrator windup, which occurs when the actuators in the
control loop saturate. Actuator saturation not only dete-
riorates the control performance, causing large overshoot
and long settling time, but also leads to instability, since
the feedback loop is broken for such saturation. To disguise
this drawback, various anti-windup schemes have been pro-
posed to deal with integrator windup or to improve tran-
sient performance. These schemes are classified into three
different approaches: 1) conditional integration and/or in-
tegrator limiting[2−7] , in which the integrator value is frozen
or restricted when certain conditions are verified; 2) back-
calculation[8−10] , in which the difference between the con-
troller output and the actual plant input is fed back to the
integrator; and 3) a nonlinear integrator[11−15] , whose out-
put is shaped by a nonlinear error function before it enters
the controller. Some conditional integration and/or inte-
grator limiting may not guarantee a zero steady error and
could result in an oscillatory system for the step-referent
input when an estimated limitation is embedded in the con-
troller. In the back-calculation approach, the compensation
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for integrators is active whenever actuators are saturated;
integrator windup can not be completely avoided. For non-
linear integrators, the output still goes to infinity and in-
tegrator windup may occur. In addition, the universal in-
tegral continuous sliding mode control first reported in [1]
has the same problem as a PID controller because it applies
the same integrator. An improved version was proposed in
[7], in which the integrator is modified to provide integral
action only inside the boundary layer and the derivative of
the error is introduced into the integrator. All these inte-
grators, except for the one proposed in [7], were designed
by using the error as the indispensable element. So, all of
them is called classical integral control.

1.2 General integral control

In 2009, general integral control, which uses all avail-
able state variables to design the integrator, was proposed
in [16], which presented a unified framework on general
integral control, some general integrators and controllers,
the necessary conditions and basic principles for designing
a general integrator. However, their justification was not
verified by strictly mathematical analysis. In 2012, based
on linear system theory, we presented a systematic design
method for the general integral control[17] with a linear in-
tegrator on the state of dynamics. The results, however,
were local. The regionally as well as semi-globally results
were proposed in [18], where a nonlinear integrator shaped
by sliding mode manifold was presented, and the general
integral control design was achieved by using sliding mode
technique and linear system theory. In 2013, based on feed-
back linearization technique, a class of nonlinear integra-
tors, which is shaped by a linear combination of the diffeo-
morphism, and a systematic method to design general in-
tegral control were presented in [19] and the conditions to
ensure regionally as well as semi-globally asymptotic sta-
bility were provided. The general concave integral control
was proposed in [20], in which the bounded integral control
action and the concave function gain integrator were nor-
malized, the partial derivative of Lyapunov function was
introduced into the integrator design, a general strategy to
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transform ordinary control into general integral control was
proposed, and the conditions on the control parameters to
ensure regionally as well as semi-globally asymptotic stabil-
ity were provided.

In consideration of the twinning of the concave and con-
vex concepts, this paper addresses general convex integral
control. Compared with the general concave integral con-
trol proposed in [20], the main opposite points are as fol-
lows: 1) In terms of the integral control actions, the concave
one is formed by the bounded nonlinear function and the
convex one is shaped by the unbounded nonlinear function.
2) In terms of the gain functions of the integrators, the con-
cave one is unbounded and the convex one is bounded. 3) In
terms of the integrator outputs, the concave one could tend
to infinity and the convex one is bounded in time domain.
As a result, the main contributions of this paper are as
follows: 1) An unbounded nonlinear function set, which is
used to form the integral control action and educe the con-
vex function gain integrator, is defined. 2) A fire-new con-
vex function gain integrator, with output bound in the time
domain, is proposed. 3) The lemma to ensure the integra-
tor output to be bounded in the time domain is proposed.
4) By using Lyapunov method along with the LaSalle′s in-
variance principle, the theorem to ensure regionally as well
as semi-globally asymptotic stability is established only by
some bounded information. Moreover, the highlight point
of this integral control strategy is that the integral control
action seems to be infinity but it factually is finite in the
time domain. Therefore, a simple and ingenious method to
design general integral control is founded.

Throughout this paper, we use λm(A) and λM (A) to in-
dicate the smallest and largest eigenvalues, respectively, of
a symmetric positive define bounded matrix A(x), for any
x ∈ Rn. The norm of vector x is defined as ‖x‖ =

√
xTx,

and that of matrix A is defined as the corresponding in-
duced norm ‖A‖ =

√
λM (ATA).

The remainder of the paper is organized as follows: Sec-
tion 2 describes the system under consideration, assump-
tion, definition and lemma. Section 3 addresses the control
design. Example and simulation are provided in Section 4.
Conclusions are presented in Section 5.

2 Problem formulation

Consider the following nonlinear system

{
ẋ = f(x,w) + g(x,w)u

y = h(x,w)
(1)

where x ∈ Rn is the state, u ∈ Rm is the control input,
y ∈ Rm is the controlled output, and w ∈ Rl is a vector of
unknown constant parameter and disturbance. Functions
f(x, w), g(x, w) and h(x, w) are continuous in (x, w, u)
on the control domain Dx × Du × Dw ⊂ Rn × Rm × Rl.
In this study, function f(x, w) does not necessarily vanish
at the origin; i.e., f(0, w) �= 0. Let r ∈ Dr ⊂ Rm be
a vector of constant reference. Set v ≡ (r, w) ∈ Dv and
Dv ≡ Dr × Dw. We want to design a feedback control law
u such that y(t) → r as t → ∞.

Assumption 1. For each v ∈ Dv, there is a unique pair
(x0, u0) that depends continuously on v and satisfies the

equations

{
0 = f(x0, w) + g(x0, w)u0

y = r = h(x0, w)
(2)

so that x0 is the desired equilibrium point, and u0 is the
steady-state control that is needed to maintain equilibrium
at x0, where y = r.

Without loss of generality, we state all definitions, as-
sumptions and theorems for the case when the equilibrium
point is at the origin of Rn, that is, x0 = 0.

Assumption 2. Without loss of generality, suppose that
function g(x,w) satisfies the following inequalities

g(x,w) > g0 > 0 ∀ w ∈ Dw, ∀ x ∈ Dx (3)

‖g(x,w) − g(0, w)‖ � lxg‖x‖ ∀ w ∈ Dw, ∀ x ∈ Dx (4)

where lxg is a positive constant.
Assumption 3. Suppose that there is a control law

ux(x) such that x = 0 is an exponentially stable equilibrium
point of the system:

ẋ = f(x, w) − f(0, w) + g(x,w)ux(x) (5)

and there exists a Lyapunov function Vx(x) that satisfies

c1‖x‖2 � Vx(x) � c2‖x‖2 (6)

∂Vx(x)

∂x
(f(x,w) − f(0, w) + g(x,w)ux(x)) � −c3‖x‖2 (7)

∥
∥
∥∥

∂Vx(x)

∂x

∥
∥
∥∥ � c4‖x‖ (8)

for all x ∈ Dx and w ∈ Dw, where c1, c2, c3 and c4 are all
positive constants.

Definition 1. Fβ(aβ, cβ , x) with aβ > 0, cβ > 0 and x ∈
Rn denotes the set of all continuous differential increasing
functions:

φ(x) = [φ1(x1) φ2(x2) · · · φn(xn)]T such that

φ(0) = 0

0 <

(
dφi(xi)

dxi

)−1

< cβ , i = 1, 2, · · · , n

and given any ε > 0, there exists a positive constant aβ

such that

(
dφi(xi)

dxi

)−1

< ε, ∀xi ∈ R : |xi| > aβ

where | · | stands for the absolute value.
Fig. 1 describes an example curve (dashed line) and the

region for the derivative reciprocal of one component of the
functions belonging to the function set Fβ. For instance,

functions x + x3, x+x5

3.0
, sinh(x) with x ∈ R and so on, all

belong to the function set Fβ .
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Fig. 1 Example curve and the region for the derivative recipro-

cal of the functions belonging to the function set Fβ

Lemma 1. Let β(y) =
(

dφ(y)
dy

)−1

with y ∈ R and

φ(y) ∈ Fβ . Then the function

y(t) =

∫ t

0

β(y(τ ))dτ, ∀t ∈ [0,∞)

is a positive define bounded increasing function, that is,
0 < y(t) � c∞ for all t ∈ [0,∞), where c∞ is the limit of
y(t) as t → ∞.

Proof. By Definition 1, it is easy to know that y(t) is
a strictly monotone positive define increasing function, and
given any ε > 0, there exists T0 which is large enough such
that β(y(t)) < ε holds for all t > T0. Thus, given any ε∗ > 0
(ε∗ < ε), there exists T2 > T1 > T0 such that

∫ T2

T1

β(y(τ ))dτ � ε(T2 − T1) = ε∗

holds. By invoking Cauchy theorem and the monotony of
y(t), we conclude that the limit of y(t) exists, that is, c∞ =
limt→∞ y(t). Consequently, 0 < y(t) � c∞ for all t ∈ [0,∞).

�

3 Control design

For achieving asymptotic regulation and disturbance re-
jection, we need to include “integral action” in the control
law. Therefore, the general integral controller can be given
as

⎧
⎪⎨

⎪⎩

u = ux(x) − Kσφ(σ)

σ̇T =

(
dφ(σ)

dσ

)−1
∂Vx(x)

∂x

(9)

where σ̇T
i =

(
dφi(σi)

dσi

)−1
∂Vx(x)

∂xi
, i = 1, 2, · · · , m, where Kσ

is a positive define diagonal m × m matrix; φ(·) belongs to
the function set Fβ.

Thus, substituting (9) into (1), we obtain
⎧
⎨

⎩

ẋ = f(x, w) + g(x,w)ux(x) − g(x,w)Kσφ(σ)

φ̇T(σ) =
∂Vx(x)

∂x
.

(10)

By Assumption 1 and Definition 1, and choosing Kσ to
be nonsingular and large enough, and then setting ẋ = 0
and x = 0 of the closed-loop system (10), we obtain

g(0, w)Kσφ(σ0) = f(0, w). (11)

Therefore, we ensure that there is a unique solution σ0, and
then (0, σ0) is the unique equilibrium point of the closed-
loop system (10) in the domain of interest. At the equilib-
rium point, y = r, irrespective of the value of w.

Now, the design task is to provide the conditions on the
controller parameters so that (0, σ0) is an asymptotically
stable equilibrium point of the closed-loop system (10) in
the control domain of interest. This is established in the
following theorem.

Theorem 1. Under Assumptions 1–3, if there exists a
positive define diagonal matrix Kσ such that

λm(g0Kσφ(aβ)) � ‖f(0, w)‖ (12)

c3 > c4l
x
gcσ

√
m‖Kσ‖ (13)

hold, then (0, σ0) is an exponentially stable equilibrium
point of the closed-loop system (10). Moreover, if all as-
sumptions hold globally, then it is globally exponentially
stable.

Proof. To carry out the stability analysis, we consider
the following Lyapunov function candidate:

V (x, φ(σ) − φ(σ0)) = Vx(x)+

(φ(σ) − φ(σ0))
Tg(0, w)Kσ

φ(σ) − φ(σ0)

2
. (14)

Obviously, the Lyapunov function candidate (14) is pos-
itive define. Therefore, our task is to show that its time
derivative along the trajectories of the closed-loop system
(10) is negative define, which is given by

V̇ (x,φ(σ) − φ(σ0)) =

∂Vx(x)

∂x
(f(x, w) + g(x,w)ux(x) − g(x,w)Kσφ(σ))+

∂Vx(x)

∂x
g(0, w)Kσ(φ(σ) − φ(σ0)). (15)

Substituting (11) into (15), we obtain

V̇ (x,φ(σ) − φ(σ0)) =

∂Vx(x)

∂x
(f(x, w) − f(0, w) + g(x,w)ux(x))−

∂Vx(x)

∂x
(g(x,w) − g(0, w))Kσφ(σ). (16)

Now, using (8) and Lemma 1, we have

σi(t) =

∫ t

0

(
dφi(σi)

dσi

)−1
∂Vx(x)

∂xi
dτ �

γi
x

∫ t

0

(
dφi(σi)

dσi

)−1

dτ � ci
∞γi

x

and obtain

‖Kσφ(σ)‖ � cσ

√
m||Kσ‖ (17)

where

γi
x = max

x∈Dx

(∥
∥∥
∥

∂Vx(x)

∂xi

∥
∥∥
∥

)

ci
∞ = lim

t→∞

∫ t

0

(
dφi(σi)

dσi

)−1

dτ

cσ = max
i∈m

(φi(c
i
∞γi

x)), i = 1, 2, · · · , m.
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Inserting (4), (7), (8) and (17) into (16), we obtain

V̇ (x, φ(σ) − φ(σ0)) �
− c3‖x‖2 + c4l

x
gcσ

√
m||Kσ‖ ‖x‖2 =

− (c3 − c4l
x
gcσ

√
m‖Kσ‖)‖x‖2. (18)

Using the fact that the Lyapunov function (14) is a pos-
itive define function and its time derivative is a negative
define function if inequalities (12) and (13) hold, we con-
clude that the closed-loop system (10) is stable. In fact,
V̇ = 0 means x = 0 and σ = σ0. By invoking the LaSalle′s
invariance principle[21], it is easy to know that the closed-
loop system (10) is exponentially stable.

Corollary 1. If function g(x,w) is equal to a con-

stant, then the integrator can be taken as σ̇T = ∂Vx(x)
∂x

or

σ̇T =
(

dφ(σ)
dσ

)−1
∂Vx(x)

∂x
. Thus, under Assumptions 1 and

3, we only need to choose the gain matrix Kσ to be non-
singular and large enough such that inequality (12) holds,
then (0, σ0) is an exponentially stable equilibrium point of
the closed-loop system (10). Moreover, if all assumptions
hold globally, then it is globally exponentially stable. The
proof can follow the similar argument and procedure. It is
omitted because of the limited space.

Discussion 1. Although Theorem 1 is proved by resort-
ing to a stabilizing controller ux(x) along with a Lyapunov
function Vx(x), the rationality of the general convex integral
control still can be verified because the stabilizing controller
can be designed by using the linear system theory, feedback
linearization technique, sliding mode technique and so on.
As a result, there is great freedom in the choice of ux(x)
and Vx(x) such that the control engineers can choose the
most appropriate control input ux(x) in hand to design their
own general integral controller. This is one reason that why
our integral control is called the “general” one. Moreover,
it is clear that the conditions of (12) and (13) are mutual
restrictions, therefore some compromises between them are
needed in practice. Otherwise, we need to redesign the con-
trol law ux(x) such that the conditions of (12) and (13) all
hold by adjusting the values of c3 and c4.

Discussion 2. The proof of Theorem 1 seems to be very
simple, but the fact is there are two troubles that have been
concealed in the stability analysis. One is that integral con-
trol action must be bounded, another is how to cancel the
terms on φ(σ) − φ(σ0) in the time derivative of Lyapunov
function. Therefore, an ingenious method is proposed as

follows: The integrator is taken as σ̇T =
(

dφ(σ)
dσ

)−1
∂Vx(x)

∂x
,

which is obtained by differentiating function φ(σ) and us-

ing the partial derivative of Lyapunov function ∂Vx(x)
∂x

as
the indispensable component of the integrator, and we get
φ̇T(σ) = ∂Vx(x)

∂x
. Thus, we not only obtain a bounded in-

tegral control action Kσφ(σ) but also cancel the terms on
φ(σ) − φ(σ0) in the time derivative of Lyapunov function,
then Theorem 1 can be established. Moreover, this results

in a new integrator with a convex function gain
(

dφ(σ)
dσ

)−1

;

see Fig. 2. This is why the control law (9) is called the
general convex integral control.

Fig. 2 The convex function gain curve

Discussion 3. Compared with the general concave in-
tegral control proposed in [20], the main differences are as
follows: 1) In terms of the integral control actions, the con-
cave one is formed by the bounded nonlinear function and
the convex one is shaped by the unbounded nonlinear func-
tion. 2) In terms of the gain functions of the integrators, the
concave one is unbounded and the convex one is bounded.
3) In terms of the integrator outputs, the concave one could
tend to infinity and the convex one is bounded in the time
domain.

Remark 1. From the control law (9) and the analysis
procedure above, it is easy to see that the highlight point
of this integral control strategy is that the integral con-
trol action seems to be infinity but it factually is finite in
the time domain because the integrator output is bounded
in the time domain. This means that this kind of integral
control can devote its mind to counteract the unknown con-
stant uncertainties and filter out the other action, and then
the stability analysis is easy to be achieved in theory and
actuator saturation is easy to be removed in practice.

Based on these statements above, it is not hard to know
that all of them constitute a simple and ingenious method
to design general integral control.

4 Example and simulation

Consider the pendulum system[21] described by

θ̈ = −a sin θ − bθ̇ + cT

where a = g
l

> 0, b = k
m

> 0, c = 1
ml2

> 0, θ is the
angle subtended by the rod and the vertical axis, and T is
the torque applied to the pendulum. View T as the control
input and suppose we want to regulate θ to δ. Taking x1 =
θ − δ, x2 = θ̇ and u = T , the pendulum system can be
written as

{
ẋ1 = x2

ẋ2 = −a sin(x1 + δ) − bx2 + cu.
(19)

It can be verified that the desired equilibrium point is
x0 = [0 0]T and u0 = a sin(δ)

c
is the steady-state control

that is needed to maintain equilibrium at x0. Thus, the
control law in Assumption 3 can be taken as

ux(x) = −k1x1 − k2x2

where k1 and k2 are all positive constants.
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Substituting ux(x) into (19) and removing the constant
term −a sin(δ) and linearization of the system about the
origin obtains

ẋ = Ax (20)

where

A =

[
0 1

−(a cos(δ) + ck1) −(b + ck2)

]

.

Now, using the linear system theory, the choice of k1 >
− a cos(δ)

c
and k2 > 0 ensures that matrix A is Hurwitz for

all the parameter perturbations on a > 0, b > 0, c > 0
and δ ∈ [−π, π], and then x = 0 is an exponentially sta-
ble equilibrium point of system (20). Consequently, for any
given positive define symmetric matrix Q there is a positive
define symmetric matrix P that satisfies Lyapunov equa-
tion PA + ATP = −Q, and then the Lyapunov function
in Assumption 3 can be taken as Vx(x) = xTPx. Thus,
taking φ(σ) = σ + σ5, aβ = 2, and choosing kσ such
that ckσφ(aβ) > a sin(δ) holds for all a > 0, c > 0 and
δ ∈ [−π, π], we have a globally exponentially stable con-
troller

⎧
⎨

⎩

u(x, σ) = −k1x1 − k2x2 − kσ(σ + σ5)

σ̇ =
2(p12x1 + p22x2)

1 + 5σ4
.

Now, taking k1 = 8, k2 = 3, kσ = 10, a = 10, b = 1 and
c = 10, and solving the Lyapunov equation PA + ATP =
−Q, we obtain

P =

[
p11 p12

p21 p22

]

=

[
38 1

1 0.1

]

where

Q =

[
140 0

0 4.2

]

, A = −
[

0 −1

70 31

]

.

In the simulation, the normal parameters are a = c = 10
and b = 1. In the perturbed case, b and c are reduced to
0.5 and 5, respectively, corresponding to doubling the mass.
Moreover, we consider an additive impulse-like disturbance
d(t) of magnitude 60 acting on the system input between
18 s and 19 s.

Fig. 3 shows the simulation results under the normal
(solid line) and perturbed (dashed line) parameters. The
following observations can be made: Under the normal and
perturbed cases, the optimum response in the whole do-
main of interest can all be achieved by a set of control gains,
even under the case that the payload is changed abruptly.
This demonstrates that general convex integral control has
strong robustness, fast convergence, and good flexibility and
can more effectively deal with unknown exogenous distur-
bances, nonlinearity, and uncertainties of dynamics.

Fig. 3 System output under the normal (solid line) and per-

turbed (dashed line) cases

5 Conclusions

This paper proposed a new general integral control,
named general convex integral control. The main contribu-
tions are as follows: 1) An unbounded nonlinear function
set is defined, which is used to form the integral control
action and educe the convex function gain integrator. 2) A
fire-new convex function gain integrator, whose output is
bounded in the time domain, is proposed. 3) The lemma
to ensure the integrator output to be bounded in the time
domain is proposed. 4) By using Lyapunov method along
with the LaSalle′s invariance principle, the theorem to en-
sure regionally as well as semi-globally asymptotic stability
is established only by some bounded information. More-
over, the highlight point of this integral control strategy is
that the integral control action seems to be infinity but it
factually is finite in the time domain. Therefore, a simple
and ingenious method to design the general integral control
is founded.

Simulation results not only confirmed the effectiveness of
the general convex integral control but also showed that it
has strong robustness, fast convergence, and good flexibil-
ity and can more effectively deal with unknown exogenous
disturbances, nonlinearity, and uncertainties of dynamics.
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