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Abstract: This paper proposes a new two-phase approach to robust text detection by integrating the visual appearance and the

geometric reasoning rules. In the first phase, geometric rules are used to achieve a higher recall rate. Specifically, a robust stroke

width transform (RSWT) feature is proposed to better recover the stroke width by additionally considering the cross of two strokes

and the continuousness of the letter border. In the second phase, a classification scheme based on visual appearance features is used

to reject the false alarms while keeping the recall rate. To learn a better classifier from multiple visual appearance features, a novel

classification method called double soft multiple kernel learning (DS-MKL) is proposed. DS-MKL is motivated by a novel kernel margin

perspective for multiple kernel learning and can effectively suppress the influence of noisy base kernels. Comprehensive experiments on

the benchmark ICDAR2005 competition dataset demonstrate the effectiveness of the proposed two-phase text detection approach over

the state-of-the-art approaches by a performance gain up to 4.4% in terms of F-measure.

Keywords: Text detection, geometric rule, stroke width transform (SWT), support vector machine (SVM), multiple kernel learning

(MKL).

1 Introduction

Detecting texts in natural scenes is the first step for un-

derstanding the texts or sentences in natural images. It is

always a key module for the consumer electronic products,

such as car plate recognition based garage door automatic

opening system, TV′s subtitle detection, shot boundary de-

tection system aided with detected texts or aiding-device of

bind people navigation system. The major challenges for

detecting texts mainly come from two aspects: the diver-

sity of the texts and the cluttered backgrounds. Especially,

the texts in natural images may be written in different lan-

guages, fonts, colors, scales, orientations, etc.

In the past several decades, a large number of methods

have been proposed to address the challenging text detec-

tion problem[1−8]. Among them, the most popular stream

focuses on how to build a text model which can robustly

take advantage of the text geometries, such as the letter

size, the aspect ratio of letter, the distance/size/layout re-

lationship in the letters when forming a word, etc. In this

kind of works, a representative one is the recent work of [2]

which takes advantage of these geometric properties based

on the extracted stroke width. It has been shown that the

text detection can achieve the state-of-the-art classification

result by this way. In spite of the achievement made by this

kind of methods based on text geometries, we argue in this

paper that only utilizing some kinds of geometric properties

with simple statistics is not enough, it may fail to capture

the very delicate details due to the largely varying visual

Regular paper
Special Issue on Massive Visual Computing
Manuscript received January 15, 2014; accepted June 20, 2014
This work was supported by National Natural Science Foundation

of China (Nos. 61300163, 61125106 and 61300162) and Jiangsu Key
Laboratory of Big Data Analysis Technology.

text appearance in natural scenes. Fig. 1 shows some typ-

ical false alarms from the text detection system based on

the work of [2]. One can observe that the falsely detected

texts and the true texts differ considerably in terms of vi-

sual appearance.

We propose a new two-phase approach to integrate both

the text geometry and the visual appearance in this paper.

In the first phase of the proposed two-phase text detection

approach, geometric rules based on stroke width extraction

are used as in [2] to detect the possible text regions. Specif-

ically, an enhanced stroke width transform (SWT) called

robust SWT is proposed. The robust SWT takes extra

considerations on the cross of two strokes and the continu-

ousness of the letter border.

Fig. 1 Detection results from a text detection system based on

the work of [2]

In the second phase, classification is performed on the

regions passing the first phase′s justification based on ge-

ometric rules to further verify the text image region. And

the classifier used in this phase is based on the visual ap-

pearance features. To learn a more robust classifier, a novel

learning method called double soft multiple kernel learning

(DS-MKL) is proposed to learn from multiple visual ap-
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pearance features. The proposed DS-MKL can model the

influence of the noisy base kernels and thus learn a more ro-

bust classifier. A block-wise coordinate descent algorithm

with an analytical solution is designed to obtain the kernel

combination coefficients.

Extensive experiments are conducted on the broadly

recognized benchmark ICDAR2005 competition dataset[9].

The experimental results demonstrate the effectiveness of

the proposed method, which outperforms the state-of-the-

art in all evaluation criteria.

2 Related works

There have been a large number of methods dealing with

text detection in natural images and videos[1−8]. Two com-

prehensive surveys can be found in [10, 11]. The existing

approaches to text detection can be roughly divided into

two categories: rule based methods and machine learning

methods. The rule based method[2−3,12] first takes advan-

tage of the letter-specific distribution rules, such as color

uniformity, gradient heap, stroke width, to extract the can-

didate letter areas. Then the properties of candidate letter

size, aspect ratio, variance and so on are used to remove

the false candidate letter areas. Finally, the rules based

on spatial layout of multiple candidate letters, size differ-

ences between letters, and similarities between letters are

utilized to remove the false text areas. The machine learn-

ing method[7,13−15] treats text as one category and non-

text as another category. Based on the classifier learned

from text sample images and non-text sample images with

some features, such as local intensities, filter responses and

wavelet coefficients, classification is performed on the input

image to detect the text areas. This kind of methods needs

to scan all the windows of different locations and scales to

find the text areas. Our method is different from all these

methods. In the proposed two-phase text detection method,

we take the rule based method as a pre-filter, and take the

machine learning method for further verification. More im-

portantly, we provide a robust stroke width transform op-

erator which can enhance the previous stroke width trans-

form in [2]. And we also propose a novel learning method of

DS-MKL.

The proposed DS-MKL is most related to multiple kernel

learning. The pioneering work for kernel learning was pro-

posed by [16] to train the support vector machine (SVM)

classifier and learn the kernel matrix simultaneously, which

is known as multiple kernel learning (MKL). Since the ob-

jective function proposed in [16] has a simplex constraint for

the kernel coefficients, it is also known as �1-MKL. While

the development of efficient algorithms for �1-MKL is a ma-

jor research topic in the literature[16−19] , Cortes et al.[20, 21]

recently pointed out that �1-MKL cannot even achieve bet-

ter prediction performance compared with simple baselines

for some real world applications. To address this problem, a

non-sparse MKL[20, 21] was proposed. In [20], the �2–norm

constraint was proposed to replace the simplex constraint,

and it was further extended to the �p-norm constraint[21]. A

soft margin regularization framework has been introduced

to incorporate and explain the different types of regulariza-

tion terms for MKL[22]. In our work, starting from a novel

kernel margin perspective to �p-MKL and motivated by the

soft margin MKL framework[22], we propose a novel DS-

MKL formulation by considering the regularization from

kernel slack variables. In this way, we can tackle the noisy

base kernels and learn a more robust model than the exist-

ing �p-MKL for fusing multiple visual appearance features.

The kernel slack variables make the key difference of the

proposed formulation from others.

3 Overview of the two-phase text de-

tection approach

The flowchart of the proposed two-phase text detection

approach is shown in Fig. 2. The upper part shows the four

main steps in the first phase. The lower part shows the

three main steps in the second phase. In the following, the

steps are described sequentially as in Fig. 1.

Fig. 2 The flowchart of the proposed two-phase text detection

approach

3.1 The first phase

The first phase contains four steps. In the first step,

an operator called robust stroke width transform (robust

SWT) is conducted on the input image. And this proce-

dure outputs the stroke width image for the input image.

For the stroke width image, each pixel value is set to the

width of the stroke passing it. The stroke width of the

pixel without a stroke on it is set to be infinite. The de-

tailed description of the robust SWT is described in Section

4.

In the second step, components (letter candidates) are

found by grouping together the neighboring pixels which

have similar stroke widths. A component is composed of a

group of pixels that forms a connected area. Two neighbor-

ing pixels are grouped together if they have similar stroke

widths (In this work, the stroke width ratio of two pixels is

restricted to be within the range of [ 1
3
, 3]).

The third step utilizes some geometric reasoning rules

designed based on letter geometry and some simple statis-

tics to filter out the illegal components. The aspect ratio of

each component′s bounding box should be in a reasonable

range, which is [0.1, 10] in our experiment. The height of

the connected component should be greater than 10 pixels

and less than 300 pixels. By this way, we remove those very

large and very small letter candidates which normally do
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not appear in natural scenes. The stroke width variance of

each component is also restricted, which is restricted to be

less than 5.9 in this work.

The final step is to agglomerate the components into legal

chains (a line of text) based on text geometry and some

simple statistics. To group the components, legal letter

pairs are generated following some rules from all possible

pairs. Two components in a legal pair should have similar

stoke widths and color variances. The distance between

two components in a legal pair should not be greater than

3 times the maximum of the bounding box width of the

two components. The legal pairs are then aggregated into

chains in a recursive fashion. At first, all legal pairs form

the original set of chains. Then two chains sharing the

same component are considered to be combined. Finally,

the components in the final chain are required to have a

near liner form. A simple method as in [9] is used to realize

these two targets.

The four steps in the first phase are performed two times

to handle both the bright text on dark background and dark

text on bright background, one along the gradient direction

and the other along the inverse direction. The results of

the two passes are fused to form the first-phase detection

results.

3.2 The second phase

In the second phase, images are divided into two cat-

egories: positive sample images with texts and negative

sample images without texts. A classifier is learned to clas-

sify these sample images. Then binary classification is per-

formed on the false alarm images survived from the first

phase to make the final decision. The second phase can be

divided into three steps.

The first step is to prepare the images for classification.

All the images for classification are required to have a uni-

form height of 70 pixels. Each detected rectangle from the

first phase is used to generate a final image for classification.

First, the detected rectangle from the first phase is enlarged

with a fixed center position to include some background.

Then the image patch containing in the enlarged rectangle

is extracted and re-scaled to generate the image for clas-

sification with a height of 70 pixels. In the experimental

section, we will describe the preparation of these samples

in detail. By resizing, the classification avoids dealing with

multi-scale texts.

The second step in the second phase extracts image fea-

tures of visual appearance. In this paper, we use appear-

ance features which perform well in scene classification,

texture classification and object recognition. To be exact,

GIST[23], local binary pattern (LBP) histogram[24], bag of

words (BoW) feature of scale-invariant feature transform

(SIFT)[25] and bag of words feature of structural similarity

(SSIM)[26] are used.

In the last step of the second phase, an SVM classifier

learned with DS-MKL is applied with visual appearance

features to classify the images. The DS-MKL is described

in detail in Section 5.

Finally, the detected text region may be composed of

several visual words. To separating these words, a word

breaking method is provided. The method is realized as

following: First, the distance of two components is calcu-

lated. Then the text region is broken into word candidates

by the saliency of the distance differences between two ad-

jacent component pairs.

4 Robust stroke width transform

Before introducing the proposed robust SWT, we first

give a brief introduction to SWT[2]. SWT takes advan-

tage of the consistent stroke width in the letters to recover

regions that are likely to contain letters. To extract stroke

width, edges are first extracted from the input image. Then

SWT searches for edge pixel pairs which have nearly oppo-

site directions to recover the stroke pixels. To be exact,

for each edge pixel p, the SWT operator tries to find an

associated stroke by searching along the ray of the gradient

direction (r = p+n×dp, n > 0) until another edge pixel q is

found. The gradient direction of q is required to be roughly

opposite to dp. In the work of SWT[2], dp is required to be

in the range of dq ± π
6
. Then stroke width for each pixel on

the ray of [p, q] is assigned the value of ||p− q||. If the pixel

already has a stroke width, the smaller value between the

new one and the old one is selected.

This first problem with SWT is: Searching from one pixel

of p on one border of the stroke, another pixel of q on an-

other border of the stroke may miss to be found. The ac-

count for this is that the opposition constraint of p and q

is too strict (dq − π
6

< dq < dq + π
6
). And this makes the

recovering of stroke in some special area fail, such as the

sharing area between two crossing strokes. In the upper

part of Fig. 3 (a), three areas with badly recovered stroke

width by SWT are shown. The three areas are marked

with three rectangles. So a reasonably large range of dq ± π
2

is proposed. In the lower part of Fig. 3 (a), the stroke width

extraction results by the robust SWT of the same letter

are shown. As we can see, the sharing areas are recovered

with stroke width successfully with the modified version of

SWT. The second problem with SWT is that during the

searching along the ray, the search sometimes arrives at a

wrong point because of the breaking of the boundary edge.

One real example of this case is shown in Fig. 3 (b) with

an edge image. The failure happens on the edge pixel of

p. p is on the stroke boundary of a printed arrow. The

search from p is illustrated with the red arrowed line. One

can see that the red arrowed line goes beyond the stroke

boundary on another side of the printed arrow (the rect-

angle area in Fig. 3 (b)), and lands on a wrong edge point

of q which is not supposed to land on. So we propose to

connect the small local broken edge points. Specifically, a

non-edge pixel is set to be an edge pixel if another 2 edge

pixels can be found in its neighboring 3 × 3 area. Consid-

ering noisy edge points, the newly generated edge points

are only used to end a search and they are not used to

start a search. The third problem with SWT is that it only

searches one time for each edge pixel p, while the gradient

of pixel p is always affected by noise in real application. As



S. Y. Yan et al. / Robust Text Detection in Natural Scenes Using Text Geometry and Visual Appearance 483

a result, the pointed direction of p is disturbed. So mul-

tiple times of searches in the neighboring direction of p is

tried in the robust SWT. In our experiments, the direc-

tions within the range of dp ± π
2

are all used for searching

q.

5 Double soft multiple kernel learning

In the following, we denote ||ddd||p = (
∑M

m=1 dp
m)

1
p as the

�p–norm of the M dimensional vector ddd. We also use the

superscript “′” to indicate the transpose of a vector, and

denote the element-wise product of two vectors ααα and yyy as

ααα � yyy = [α1y1, · · · , αlyl]
′. Moreover, 1 ∈ Rl denotes an

l dimensional vector with all elements of 1, and inequality

such as ddd = [d1, · · · , dM ]′ � 0 signifies that dm � 0 for

m = 1, · · · , M . To simplify notation, we use ∀ i and ∀m to

mean the value of i from 1 to l and the value of m from 1

to M , respectively.

Fig. 3 The upper row and the lower row of (a) show the stoke

width extracted by SWT and the proposed robust SWT, respec-

tively; (b) Left: One failure case of SWT in which the search

(the arrowed red line) goes beyond the correct border edge point

due to broken edge line (red rectangle); (b) Right: The close-up

view of the image around the red rectangle in (b) left.

5.1 A hard kernel margin perspective to
multiple kernel learning

Let us denote the training samples as {xxxi|li=1} and the

corresponding labels as {yyyi|li=1} with yyyi ∈ {−1, +1}. The

multiple kernel learning[16] was proposed to learn the kernel

matrix and the SVM classifier from a set of M pre-defined

base kernels {KKK1, · · · ,KKKM}, KKKm(xxxi,xxxj) = ϕm(xxxi)
′ϕm(xxxj)

is a kernel constructed by using mapping ϕm(·) from the

extracted features. Given the input sample xxx, the de-

cision function f(xxx) of the classifier can be defined as

f(xxx) =
∑M

m=1 www′
mϕm(xxx) + b, where wwwm is the hyperplane

and b is the bias term. The primal objective function for

�p-MKL[21] has been proposed as the structural risk mini-

mization problem as

min
ddd∈M,wwwm,ξi,b

1

2

M∑

m=1

‖wwwm‖2

dm
+ C

l∑

i=1

ξi

s.t. yi

(
M∑

m=1

www′
mϕm(xxxi) + b

)

� 1 − ξi, ξi � 0, ∀i (1)

where MMM = {ddd|ddd � 0, (
∑M

m=1 dp
m)

1
p � 1} is the domain

for the kernel combination coefficients ddd = [d1, · · · , dM ]′,
ξi is the slack variable for each sample and C is the SVM

regularization parameter.

This primal objective function for �p-MKL has been com-

monly discussed in the [20, 21]. However, the Lagrangian

dual has not been studied yet. In this part, we first give its

Lagrangian dual form as

min
ααα,λλλ,γ

−
n∑

i=1

αi + γ

s.t.
1

2
(ααα � yyy)′KKKm(ααα � yyy) = λm, ∀m,

0 � ααα � C, yyy′ααα = 0,

(
M∑

m=1

λλλ
p

p−1
m

) p−1
p

= γ (2)

where yyy = [yyy1, · · · ,yyyn]′ is the label vector, ααα = [α1, · · · , αn]′

is the SVM dual variable vector, and λλλ = [λ1, · · · , λM ]′.
Different from the primal form, the Lagrangian dual for-

mulation in (2) can be easily interpreted from a kernel

margin perspective for the essential property of the mul-

tiple kernel learning. If we regard the quadratic term
1
2
(ααα�yyy)′KKKm(ααα�yyy) as the “kernel margin”, we can observe

that each kernel margin term is associated with a “kernel

margin variable” λm, which further forms the global kernel

margin γ in an �q–norm manner with q = p
p−1

. We can

observe that the quadratic term strictly equals to λm, and

there is no error allowance from each of the base kernels,

thus we regard the formulation in (2) as a hard kernel mar-

gin perspective for multiple kernel learning. In this way, we

conjecture that this formulation may be sensitive to noisy

base kernels.

5.2 Double soft multiple kernel learning

The slack variable has been successfully introduced for

each sample in soft margin SVM[27] to tackle the noisy data

which is not considered in hard margin SVM[28]. Similarly,

to overcome the hard kernel margin defect, we propose a

new objective function called double soft multiple kernel

learning to learn a robust classifier by introducing the so-

called kernel slack variables for the base kernels. Specifi-

cally, we can introduce one slack variable ςm which models

the kernel margin error for each of the base kernels. And

with the hinge loss for these kernel slack variables, we pro-

pose the new double soft MKL as

min
ααα,λλλ,ς,γ

−
n∑

i=1

αi + γ + θ
M∑

m=1

ςm

s.t.
1

2
(ααα � yyy)′KKKm(ααα � yyy) � λm + ςm, ςm � 0, ∀m,

0 � ααα � C, yyy′ααα = 0,

(
M∑

m=1

λ
p

p−1
m

) p−1
p

= γ (3)

where γ is the global margin, ς = [ς1, · · · , ςM ]′ is the kernel

slack variable vector, and θ is the regularization parameter
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for the loss from each of the base kernels.

This kind of improvement is analogous to the change from

the hard margin SVM[28] to hinge loss soft margin SVM[27]

in terms of introducing slack variables. The soft margin

SVM introduces one slack variable ξi for each training in-

stance, while our proposed DS-MKL introduces one slack

variable ςm for each of the base kernels. Thus, our new

model will be more robust to tackle the noisy base kernels

and learn a classifier with better generalization ability when

compared with the �p-MKL. And it will be demonstrated

in the experimental part.

5.3 Solution to DS-MKL

5.3.1 An equivalent form of DS-MKL

The problem in (3) is difficult to optimize due to its

quadratic constraints. Fortunately, we can have its equiva-

lent form as shown in the following proposition.

Proposition 1. The problem in (3) is equivalent to the

optimization problem as

min
dm,wwwm,ξi,b

1

2

M∑

m=1

‖wwwm‖2

dm
+ C

l∑

i=1

ξi

s.t. yi

(
M∑

m=1

www′
mϕm(xi) + b

)

� 1 − ξi, ξi � 0, ∀i,

(
M∑

m=1

dp
m

) 1
p

� 1,

0 � dm � θ,∀m. (4)

A global solution for (4) is guaranteed due to the con-

vex objective function as well as the convex constraints. To

solve this problem, we follow the block-wise coordinate de-

scent procedure for �p-MKL[21, 29], composite kernel learn-

ing (CKL)[30] and soft margin MKL[22], and optimize two

subproblems with respective to the two sets of variables

{wwwm, ξi, b} and {ddd} alternately. Note that, due to the addi-

tional box constraints introduced from soft margin regular-

ization for the base kernels, the subproblem for updating ddd

becomes much more difficult than the ones in [21, 29, 30].

5.3.2 Updating SVM variables with fixed ddd

With a fixed ddd, we write the dual of (4) by introducing

the non-negative Lagrangian multipliers αi(1 < i < l) as

max
ααα∈A

l∑

i=1

αi − 1

2

M∑

m=1

dm(ααα � yyy)′KKKm(ααα � yyy) (5)

which is a quadratic programming (QP) problem with A =

{ααα|0 � ααα � C, y′ααα = 0}, and can be efficiently solved by any

prevailing QP solver. Then, the primal variables {wwwm, ξi, b}
can be recovered accordingly. For instance, the �2–norm for

wwwm can be expressed as

||wwwm|| = dm

√
(ααα � yyy)′KKKm(ααα � yyy). (6)

5.3.3 Updating ddd with fixed SVM variables

For updating ddd with fixed SVM variables, the subproblem

can be formulated as

min
ddd

1

2

M∑

m=1

||wwwm||2
dm

(

M∑

m=1

dp
m)

1
p � 1, 0 � dm � θ, ∀m. (7)

Due to the additional upper bound θ, the existing opti-

mization techniques[21, 29, 30] cannot be directly utilized. In-

spired by [31] for simplex projection, the problem in (7) can

be solved analytically. Before introducing our solution, let

us denote ω as the number of elements, whose value strictly

equals to θ in the optimal solution for ddd. The closed-form

solution for (7) is obtained as in the following proposition.

Proposition 2. If wwwm are sorted such that ||www1|| �
||www2|| � · · · � ||wwwM ||, then the optimal solution for sub-

problem (7) is given as

dm =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ, if m � ω

(1−ωθp)||wwwm||
2

p+1
⎛

⎜
⎜
⎝

M∑

s=ω+1

||wwws||
2p

p+1

⎞

⎟
⎟
⎠

1
p

, if m > ω. (8)

The proof can be done by using the Lagrangian method

and is omitted due to the space limitation. The number

of elements whose values strictly equal to θ in the optimal

solution for ddd can be obtained by the following lemma.

Lemma 3. Let ddd∗ be the optimal solution to problem

(7), and suppose that ||www1|| � ||www2|| � · · · � ||wwwM ||. Then,

ω, the number of elements whose value strictly equals to θ

in ddd∗ is

min
{

s ∈ {0, 1, · · · , M − 1}
∣
∣
∣
||ws+1||

2
p+1 (1 − sθp)

(∑M
m=s+1 ||ws||

2p
p+1

) 1
p

< θ
}

.

The proof can be done by using contradiction and is omit-

ted here. This lemma shows that ω can be obtained from a

sorting algorithm, and then the optimum solution for ddd can

be obtained analytically according to (8).

5.3.4 The whole optimization procedure

According to the above derivations, we can easily develop

the optimization procedure for the DS-MKL as shown in

Algorithm 1. With the optimized ddd, ααα and b, the final

decision function is obtained as

f(χ) =

M∑

m=1

dm

l∑

i=1

αiyiKKKm(xxx,xxxi) + b. (9)

Algorithm 1. Procedure of the block-wise coordinate

descent algorithm for solving DS-MKL.

1) Initialize ddd1.

2) t = 1.

3) While stop criteria are not reached do

4) Get αααt by solving subproblem (5) using standard

QP solver with dddt.

5) Calculate ||wwwm|| by using (6) and update dddt+1 by
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using (8).

6) t = t + 1.

7) End while.

6 Experiments

6.1 Experimental setup

The proposed method is evaluated on the broadly rec-

ognized text detection ICDAR2005 robust reading com-

petition dataset[32]. The dataset has been used in two

text localization competitions: ICDAR2003[9] and ICDAR

2005[32]. It is still the most widely used benchmark for text

detection/localization in natural scene. Overall, the IC-

DAR2005 robust reading competition dataset contains two

subsets. One includes 250 images with 1156 annotated texts

for training. The other includes 249 images with 1107 an-

notated texts for testing. All the images from both subsets

are full-color images with a minimal size of 307 × 93 and

maximal size of 1280 × 960. The texts are annotated with

their corresponding bounding boxes. In our experiment, all

the 249 images for testing are used for evaluation as the

way they were used in [2, 32]. The evaluation protocol is

the same as the one described in [2, 32].

The positive training set for DS-MKL is totally generated

from the ICDAR2005 training set. The annotated bounding

boxes are used for generating the samples. Original bound-

ing boxes with different lengths of sentences or texts are

all included to generate the training set. Besides, sub-areas

from the overall bounding boxes are extracted to generate

more training samples because they are still text images.

The sub-areas are required to be with a width larger than

5 times the height. In total, 1312 text image regions are

collected.

For the negative training set, the false alarms survived

from the first phase are collected. To obtain more negative

training samples, extra negative samples are collected from

the University of Illinois at Urbana-Champaign (UIUC)

sports dataset[32], which contains 1586 images with vari-

ous scenes. Note that the UIUC sports dataset does not

contain common images with the ICDAR2005 test set. In

total, 6660 non-text images are collected.

The bounding boxes of the annotated texts and the col-

lected non-text image regions along with a certain margin

are resized to generate the final training samples. Some

background around the texts is included in the training

samples by the margins to capture the difference between

the text and the background. The height of the final train-

ing sample has 70 pixels. The bounding box is fitted in the

center position of the training sample with a height of 50

pixels. And the margins for four sides, i.e., the top side,

the bottom side, the left side, and the right side have all

10 pixels. Fig. 4 shows some typical positive and negative

training samples.

For the visual appearance features, GIST[23], LBP

histogram[24], bag of words features based on SIFT[25] and

bag of words features based on SSIM[26] are extracted to

capture the visual appearances of the texts. In BoW feature

extraction, K-means is employed for building dictionaries.

The dictionary size is set to 1024 empirically. Localized

soft assignment[33] is used for quantization. Max pooling is

applied on a two level spatial pyramid[22] of 1×1 and 2×2.

For learning, �p-MKL and DS-MKL are implemented us-

ing the libsvm package[34]. A total number of four linear

kernels are generated from the four types of features as the

base kernels. The SVM regularization parameter C is set

to 10 throughout the experiments. For both �p-MKL and

DS–MKL, p is fixed to be 1.25 empirically.

Fig. 4 Some typical positive and negative training samples

6.2 Investigation of the two-phase text de-
tection

Firstly, we evaluate the first phase text detection in its

ability to detect the texts. Because the recall rate accounts

for the ability to detect the text areas, we report the recall

rate to demonstrate the effectiveness of the first phase text

detection. Compared with the baseline method in [2] which

achieved a recall rate of 63%, the proposed first phase text

detection achieves a quite high recall rate of 70%, which is

7% higher.

Secondly, we evaluate the proposed DS-MKL and the

overall two-phase text detection approach. As shown from

the constraint for the kernel coefficients in (4), one can ob-

serve that θ should be in the range of θ � ( 1
M

)
1
p . On one

hand, if θ = ( 1
M

)
1
p , the kernel combination coefficients are

enforced to be uniform, this corresponds to assigning equal

weights to the base kernels. On the other hand, if θ � 1,

DS-MKL reduces to �p-MKL, which does not consider the

kernel margin error for learning the kernel matrix. Thus,

to investigate the effectiveness of our proposed DS-MKL,

we can show the results of DS-MKL by varying the new

regularization parameter θ. The precisions at the same re-

call for different DS-MKL regularization parameters θ are

provided. The recall rate is set to 69% by adjusting the

threshold of the classifier. The differences between pre-

cisions of DS-MKL with different θ and the precision of

�p-MKL are shown in Fig. 5. We can see that DS-MKL

performs better than both the �p-MKL and the SVM with

uniform kernel weights. The maximal improvement over

�p-MKL is 1.6%. This demonstrates that by introducing
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the regularization from the kernel slack variables, our pro-

posed DS-MKL can learn a more robust classifier with bet-

ter generalization ability. One may notice that the highest

improvement is achieved at θ = 0.64. In the following, the

proposed method is compared with the state-of-the-art al-

gorithms based on this parameter setting.

The precision-recall curve by adjusting the threshold of

the classifier in the second phase is showed in Fig. 6. To

compare with the state-of-the-art results, Table 1 shows

two sets of our results in the precision-recall curve along

with the results from the previous methods. Note that F-

measure which is a combination of the recall and precision

is calculated as

F measure =
1

α
Recall

+ α
Precision

(10)

where α is set to be 0.5 as in [2, 32].

Fig. 5 The precision improvements at the same recall rate with

different values for the regularization parameter θ

Fig. 6 The precision-recall curve for parameter θ = 0.64

In Table 1, the best recall (67%), precision (73%), and F-

measure (67%) from the previous methods are underlined.

The two sets of our results are shown in the bottom of Table

1 and termed with “our result 1” and “our result 2”. “our

result 1” is characterized in that its recall is the same as the

best one from the previous methods. “our result 2” is char-

acterized in that its precision is the same as the best one

from the previous methods. By this way, the separate gains

of Table 1 and the precision can be seen more clearly. From

Table 1 (“our result 1”), one can see that at the same recall

as the best one from previous methods (0.67 from Becker et

al.[32]), the proposed method achieves a much better preci-

sion of 76.3%. The precision exceeds the previous best one

by 14.3%. And similarly (“our result 2”), at the same pre-

cision as the best one from the previous methods (Epshtein

et al.[2]), the proposed method achieves a better recall than

the best method with an improvement of 8.4%. For the

F-measure, the best F-measure from the previous methods

is 67% while the best F-measure of the proposed method is

71.4% (“our result 1”), which outperforms the best previous

one by 4.4%.

Table 1 Comparison with the state-of-the-art results on the

ICDAR2005 dataset

Algorithm Precision Recall F-measure

Yao et al.[4] 0.69 0.66 0.67

Epshtein et al.[2] 0.73 0.60 0.66

Yi and Tian[35] 0.71 0.62 0.62

Becker et al.[32] 0.62 0.67 0.62

Chen and Yuille[13] 0.60 0.60 0.58

Zhu et al.[32] 0.33 0.40 0.33

Kim et al.[32] 0.22 0.28 0.22

Ezaki et al.[32] 0.18 0.36 0.22

Our result 1 0.763 0.670 0.714

Our result 2 0.734 0.684 0.708

To get a direct sense on the text detection results, some

of the detected texts are shown in Fig. 7. In Fig. 7, the

detected texts regions are boxed with blue rectangles.

Fig. 7 Some examples of the detected texts

7 Conclusions

The paper proposes to incorporate geometric rules with

visual appearance for robust text detection in natural scene.

A two-phase approach is designed to take advantage of two
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kinds of information wisely. Two novel effective techniques

are proposed for stroke width extraction classifier learning

from multiple types of visual features. Extensive experi-

ments are conducted on broadly accepted benchmark. The

experimental results demonstrate the effectiveness of our

proposed method. Specifically, the proposed method out-

performs the state-of-the-art counterparts by an improve-

ment of 4.4% in terms of F-measure.
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