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Abstract: This article describes a method of vehicle dynamics estimation for impending rollover detection. We estimate vehicle

dynamic states in presence of the road bank angle as a disturbance in the vehicle model using a robust observer. The estimated roll angle

and roll rate are used to compute the rollover index which is based on the prediction of the lateral load transfer. In order to anticipate

rollover detection, a new method is proposed to compute the time to rollover (TTR) using the load transfer ratio (LTR). The nonlinear

model, deduced from the vehicle lateral and roll dynamics, is represented by a Takagi-Sugeno (T-S) fuzzy model. This representation

is used to account for the nonlinearities of lateral cornering forces. The proposed T-S observer is designed with unmeasurable premise

variables to cater for non-availability of the slip angles measurement. The proposed approach is evaluated using CarSim simulator under

different driving scenarios. Simulation results show good efficiency of the proposed T-S observer and the rollover detection method.

Keywords: Vehicle rollover, vehicle dynamics, Takagi-Sugeno (T-S) fuzzy model, observer, uncertainties, Lyapunov method, linear

matrix inequalities (LMI).

1 Introduction

In recent years, most modern vehicles have been equipped

with driver assistance systems for improved driver and pas-

senger security, for example the anti-lock braking systems

(ABS) for better braking performance and electronic sta-

bility programs (ESP) to stabilize yaw motion. Safety and

driver assistance systems greatly reduce potential injury

risk during vehicle accidents. Today, airbags are integrated

in most of the vehicles. This has resulted in a decreased

number of serious injuries during vehicle crashes. In past

few years, new systems such as side and roof airbags have

been introduced which cover even more accidental situa-

tions rather than merely frontal crashes. However, vehicle

rollover still poses serious threat to occupant safety. While

rollover occurs only in 3% of all passenger car accidents,

they contribute to 33% of the number of fatal accidents

in the US[1]. These figures highlight the potential danger

to the passengers during rollover. The reduction of vehi-

cle rollover occurrence is an important part in providing

increased passenger safety.

Rollover can occur during typical driving situations, this

is covered above for vehicles as well as passengers. Exam-

ples include excessive speed while negotiating sharp turns,

sudden avoidance of obstacles and sharp lane change ma-

neuvers. In such cases, rollover occurs as a direct result

of the lateral wheel forces which are induced during these

maneuvers[2,3]. In earlier studies on the detection of vehi-

Regular paper
Manuscript received February 20, 2012; accepted October 21, 2013
This work was supported by the “Conseil Régional de Picardie” and

the European Regional Development Fund within the framework of
the project “SEDVAC”.
Recommended by Associate Editor Min Cheol Lee
c©Institute of Automation, Chinese Academy of Science and

Springer-Verlag Berlin Heidelberg 2015

cle rollover, the concept of a static rollover threshold was

used, but this is only useful at steady state. In [4−7],

time-to-rollover (TTR) is proposed to estimate the time

until rollover occurs and a direct yaw moment control us-

ing differential braking is performed. Hac et al. described

a rollover index using a model-based roll estimator in [8].

In [9], a rollover index (RI) combining the lateral dynamics

model-based estimator and vertical dynamics model-based

estimator is proposed. Traditionally, some estimation of the

vehicle load transfer ratio (LTR) has been used as a basis

for the design of rollover prevention systems[10]. The LTR

quantity can be simply defined as the difference between

the normal forces on the right and left hand sides of the

vehicle divided by their sum. Clearly, LTR varies within

[−1, 1], and for a perfectly symmetric and straightly driven

car, it is zero.

In this work, we use the dynamic load transfer ratio LTRd

as rollover index which is computed using the estimated roll

angle and roll rate. In order to anticipate the detection, the

LTRd rate is used to compute the time to rollover (TTR).

A model-based roll state estimator is designed in presence

of the road bank angle using the H∞ approach and taking

into account the unmeasurable premise variables[11, 12]. The

nonlinear model, as derived from three-degree-of-freedom

vehicle lateral dynamics, is represented by a Takagi-Sugeno

(T-S) fuzzy model[13] which is very efficient to represent

the lateral force nonlinearities[12, 14, 15]. This representation

has been widely used and studied in the past years (see for

example [15−22]).

The structure of the paper is as follows. Section 2 in-

troduces the used model represented by a T-S fuzzy model,

the parameter identification of the model and its validation

using the CarSim software. Section 3 presents a rollover

detection study, the LTRd and the TTR are discussed in
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presence of road bank angle. A T-S model-based roll state

estimator using the H∞ approach is designed in Section 4.

Section 5 contains simulation results and shows the rollover

index computed in two tests conducted using the CarSim

software.

2 Vehicle modeling and parameters

identification

The model used in this work describes vehicle lateral and

roll dynamics, which is obtained by considering the well

known single-track (bicycle) model with a roll degree of

freedom (Fig. 1). The three-dimensional model with road

bank angle and nonlinear tire characteristics of the four

wheeled vehicle behavior can be described by the following

differential equations[23−25]:

Fig. 1 Vehicle parameters description

⎧
⎪⎨

⎪⎩

m(vβ̇ + vψ̇ − φ̈vh) = 2Fyf + 2Fyr −mgφr

Izψ̈ = 2Fyf lf − 2Fyrlr

Ixφ̈v = msgh(φv + φr) +msayh−Kφφv − Cφφ̇v

(1)

with β denoting the sideslip angle, ψ, φv and φr the vehicle

yaw, the roll angle and the road bank angle, respectively;

Ff the cornering force of the two front tires and Fr the

cornering force of the two rear tires. For further description

of the parameters appearing in the vehicle dynamics model,

refer to Table 1.

Table 1 Vehicle parameter definitions

Parameter Description Unit

β Sideslip angle at center of gravity (CG) rad

ψ̇ Yaw rate rad/s

φv Roll angle rad

φ̇v Roll rate rad/s

δf Front steering angle rad

ms Sprung vehicle mass kg

m Vehicle mass kg

v Vehicle speed m/s

Ix Roll moment of inertia at CG kg·m2

Iz Yaw moment of inertia at CG kg·m2

lr Distance from CG to rear axle m

lf Distance from CG to front axle m

T Vehicle track width m

h CG height from roll axis m

Cφ Combined roll damping coefficient N·m·s/rad
kφ Combined roll stiffness coefficient N·m/rad

The Pacejka tire model[26] gives the cornering forces Fyf

and Fyr as a function of tire slip angles by the following

nonlinear expressions:

⎧
⎪⎨

⎪⎩

Fyf =Df sin[Cf tan−1Bf (1 −Ef )αf +Ef tan−1(Bfαf )]

Fyr = Dr sin[Crtan
−1Br(1 −Er)αr + Ertan

−1(Brαr)]

(2)

with

αf = δf − lf ψ̇

v
− β

αr =
lrψ̇

v
− β

(3)

with δ as the front steering angle, αf as the slip angle of the

front tires and αr is the slip angle of the rear tires (Fig. 1).

Coefficients Bi, Ci, Di and Ei (i = f, r) depend on the

tire characteristics, road adhesion coefficient and the vehicle

operational conditions. The above Pacejka model describes

such phenomena, but is hardly usable since it depends on

many nonlinearities and varying parameters that need to

be known.

Lateral forces are assumed in other studies to be propor-

tional to the slip angle, i.e.,
{

Fyf = Cfαf

Fyr = Crαr.
(4)

It is obvious that when the slip angles are very small, the

obtained linear model works very well (Fig. 2). However,

in case of it is a bit ambiguous slip angles, the nonlinear

model must be considered[27].

Fig. 2 Comparison of the tire models

2.1 T-S fuzzy representation of the vehicle
model

In this work, we take into account the nonlinearities of

the cornering forces by considering a T-S fuzzy representa-

tion of the tire model described by the following rules:

If |αf | is M1, then

{
Fyf = Cf1αf

Fyr = Cr1αr

If |αf | is M2, then

{
Fyf = Cf2αf

Fyr = Cr2αr

(5)
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where Cfi, Cri are the front and rear tire cornering stiffness

which depend on the road friction coefficient and the vehicle

parameters. M1(M2) is a fuzzy set for small (large) slip

angles.

Remark 1. Since αf and αr have similar values (the

same fuzzy sets), the proposed rules are made only for αf .

This assumption allows reducing the number of membership

functions and parameters to identify.

The overall forces are obtained by
⎧
⎪⎨

⎪⎩

Fyf = μ1(|αf |)Cf1αf + μ2(|αf |)Cf2αf

Fyr = μ1(|αf |)Cr1αr + μ2(|αf |)Cr2αr

(6)

with μj (j = 1, 2) is the j-th bell curve membership function

of fuzzy set Mj . They satisfy the following properties:

⎧
⎪⎨

⎪⎩

2∑

i=1

μi(|αf |) = 1

0 ≤ μi(|αf |) ≤ 1, i = 1, 2.

(7)

The expressions of the membership functions used are

μi(|αf |) =
ωi(|αf |)

2∑

i=1

ωi(|αf |)
, i = 1, 2 (8)

with

ωi(|αf |) =
1

(

1 +

∣
∣
∣
∣

( |αf |−ci

ai

)∣
∣
∣
∣

)2bi
. (9)

Using the above approximations of nonlinear lateral

forces and introducing equations (6) in the nonlinear model

(1), the following T-S fuzzy model is obtained:

ẋ(t) =

2∑

i=1

μi(|αf |)
(
Aix(t) +Biδf (t)

)
+Bwφr(t)

y(t) = Cx(t)

(10)

with

Ai =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−σiIxeq

mIxv

ρiIxeq

mIxv2 − 1 −hCφ

Ixv

h(msgh−kφ)

Ixv

ρi
Iz

− τi
Izv

0 0

−mshσi
mIx

mshρi
mIxv

−Cφ

Ix

(msgh−kφ)

Ix

0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Bi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2
CfiIxeq

mIxv

2
Cfilf

Iz

2
mshCfi

mIx

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Bw =

⎡

⎢
⎢
⎢
⎣

− g
v

0

0

0

⎤

⎥
⎥
⎥
⎦
,

C = [0 1 0 0]

where x(t) =
[

β(t) ψ̇(t) φ̇v(t) φv(t)
]T

is the state

vector of the model, Ixeq denotes the equivalent roll moment

of inertia of the vehicle about the roll axis, which is given

by

Ixeq = Ix +msh
2 (11)

and σi, ρi, τi are auxiliary variables introduced in order to

simplify the model description; they are defined as

σi = 2(Cri + Cfi)

ρi = 2(lrCri − lfCfi)

τi = 2(l2fCfi + l2rCri).

(12)

2.2 Parameter identification of the vehicle
model

Using an identification method based on the Levenbenrg-

Marquadt algorithm[15] combined with the least square

method, parameters of the membership functions (ai,

bi, and ci) and stiffness coefficient Cfi and Cri are

obtained so that the T-S model (6) approximates the

cornering forces for given vehicle parameters and road

conditions. For the vehicle parameters defined in Table 2

and for a dry road, the obtained values are given in Table 3.

Table 2 Simulation vehicle parameters

Parameter Value Unit

ms 1 592 kg

m 1 832 kg

v 20 m/s

Ix 614 kg·m2

Iz 2 488 kg·m2

lr 1.77 m

lf 1.18 m

T 1.5 m

h 0.559 m

Cφ 6 000 N·m·s/rad
kφ 48 000 N·m/rad

Table 3 Parameters of the membership functions

a1 a2 b1 b2 c1 c2

0.0852 3.8722 0.6741 22.8174 0.0218 3.8529

Cf1 Cf2 Cr1 Cr2

96 240 829.15 107 180 650.44

The quality of the parameter identification results is ex-

amined in comparison with the simulation results obtained

from the professional vehicle dynamics software CarSim[28].

One of the comparison results is shown in Fig. 3, where sim-

ulation is carried out under a fishhook manoeuver (Fig. 4)

at a speed of 50 km/h. The simulation results show that

the identified T-S model shows a good representation of

the actual states measured using CarSim.
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Fig. 3 Comparison with CarSim simulator at 50 km/h

Fig. 4 Steering wheel angle used in the fishhook test

3 Rollover detection study

3.1 Lateral load transfer

Lateral load transfer is the change in the normal force

acting on the tires due to both the acceleration of the centre

of gravity (CG), and shifting of the position of the CG in the

y direction due to movement of suspension. Fig. 5 illustrates

lateral load transfer in the vertical plane.

Fig. 5 Vehicle roll model

3.2 The load transfer ratio and LTRd in
presence of the road bank angle

The load transfer ratio (LTR) can be defined as the

difference between the normal forces on the right tires and

the left tires of the vehicle divided by their sum. Assuming

no vertical motion exists, the LTR is given by

LTR =
Fzl − Fzr

Fzl + Fzr
=
Fzl − Fzr

mg
(13)

where Fzl and Fzr are the vertical left and right tire forces,

respectively. It is apparent that LTR varies within [−1, 1],

and for a perfectly symmetric car which is driving straight,

it is zero. The extrema are reached in case of wheel lift-off

on any one side of the vehicle. In that case LTR becomes 1

or −1, depending on the side lifted off.

The estimation of the LTR is very difficult since normal

force sensors are expensive. An expression for LTR which

depends on the roll states and vehicle parameters can be ob-

tained. This is denoted by LTRd. In order to derive LTRd

we resolve weight (msg) and pseudo-force (msay) into com-

ponents in the vehicle-fixed y and z directions; the following

dynamics are obtained:

msayh+msgh(φv + φr) −Cφφ̇v +Kφφv = 0. (14)

We can also derive a torque balance equation for the sprung

and unsprung masses about the left tire roll axis as

FzrT+msayh+msghφr−msg
(T

2
−hφv

)−mug
T

2
= 0. (15)

By substituting (14) and (15) into (13), we obtain the fol-

lowing expression for LTRd:

LTRd =
2

mgT
(Cφφ̇v +Kφφv). (16)

Remark 2. In the above section, it is shown that the

presence of the road bank angle affects the LTRd through

the roll angle and roll rate.

3.3 Time to rollover computation

Even though the LTRd can be used as a rollover index to

accurately detect the tire lift off, it can be pointed out that
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the LTRd is not able to anticipate or detect an impending

rollover. The time to rollover (TTR) is one of the most

efficient indicators in order to anticipate the rollover detec-

tion. It is defined as the time remaining before wheel lift off

will occur, which gives a clear indication of the beginning of

rollover. A TTR computation is proposed in [5, 6] by assum-

ing that the input steering angle stays fixed at its current

position in the foreseeable future; it is defined as the time

taking by the vehicle sprung mass to reach its critical roll

angle. In order to take account of the steering angle rate,

two advanced versions of the TTR are developed, based on

the fifth-order linear vehicle dynamic model in [29].

In this study, the TTR is computed as follows: Assuming

that the LTRd increases or decreases at its current rate in

the near future, the time taken by the load transfer ratio to

reach 1 or −1 is computed using the following equations:

TTR =
1 − LTRd

RLTR
, if LTRd > 0 (17)

TTR =
−1 − LTRd

RLTR,
if LTRd < 0 (18)

with RLTR is the LTRd rate, which is obtained from a fil-

tered differential signal of the LTRd.

Under normal driving conditions, there is no risk of

rollover and the LTRd is close to zero. In this case the TTR

is usually very large and increases excessively. For exam-

ple, if the vehicle is driven straight, there is no roll motion

at all. Therefore, the TTR approaches infinity. For imple-

mentation considerations, TTR is saturated in 10 s when

the LTRd is too small.

4 Model-based roll state estimator with

road bank angle consideration

As shown in the above section, in order to compute the

LTRd it is necessary to know the roll angle and roll rate

which are difficult and very expensive to measure directly.

Roll angle and roll rate can be estimated from measurable

signals such as the yaw rate and the vehicle parameters. In

this study, both the roll angle and the roll rate are estimated

in presence of the road bank angle as bounded unknown

input disturbances in the used T-S vehicle model. Vehicle

dynamic variables such as the yaw rate, steering angle and

vehicle velocity are also measured (Fig. 6).

Fig. 6 Vehicle state estimator

4.1 T-S estimator design conditions

Using (10), a T-S model based estimator for the estima-

tion of the roll angle and the roll rate in the presence of the

unknown road bank angle is represented as

˙̂x(t) =
2∑

i=1

μi(|α̂f |)
(
Aix̂(t) +Biδ(t) + Li(y(t) − ŷ(t))

ŷ(t) = Cx̂(t).

(19)

By using measurable signals such as the tire steering an-

gle and yaw rate and considering unmeasurable premise

variables, the roll angle and the roll rate can be estimated

with (19). The aim of the design is to determine gain ma-

trices Li, which guarantee the asymptotic convergence of

x̂(t) towards x(t). Let us define the state estimation error

as

e(t) = x(t) − x̂(t). (20)

The dynamics of the state estimation error is governed by

ė(t) =
2∑

i=1

2∑

j=1

μi(|α̂f |)μj(|αf |) ((Ai − LiC)e(t)+ (21)

ΔAijx(t) + ΔBijδ(t)) +Bwφr(t)

with

ΔAij = Aj −Ai, ΔBij = Bj −Bi. (22)

Let us define

xe(t) =

[
e(t)

x(t)

]

, w =

[
δ(t)

φr(t)

]

. (23)

The augmented system formed from system (10) and state

estimation error (21) can now be expressed as

ẋe(t) =
2∑

i=1

2∑

j=1

μi(|α̂f |)μj(|αf |)
(
Āijxe(t) + B̄ijw(t)

)

(24)

with

Āij =

[
Ai − LiC ΔAij

0 Aj

]

, B̄ij =

[
ΔBij Bw

Bj Bw

]

.

(25)

Remark 3. Since w(t) constitutes of the steering angle

and the road bank angle, it can be logically assumed to have

a finite energy.

The T-S estimator gains have been computed by consid-

ering the effect of the road bank angle on the state estima-

tion errors. One possible method is to minimize the L2 gain

(H∞ norm) from disturbances to the estimation errors.

The L2 gain between vector w(t) and estimation error

e(t) is defined by the following quantity:

γ = sup
‖e(t)‖
‖w(t)‖ . (26)

By the definition of the supremum and the L2 gain, (26)

can be expressed as

∫ ∞

0

e(t)Te(t) dt ≤ γ2

∫ ∞

0

w(t)Tw(t) dt. (27)
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Theorem 1. If there exists positive and symmetric ma-

trices P1 and P2, matrices Mj and positive scalar γ satisfy-

ing the following LMI for i, j = 1, 2:

⎡

⎢
⎢
⎢
⎣

Θi P1ΔAij P1ΔBij P1Bw

ΔAT
ijP1 Ψj P2Bj P2Bw

ΔBT
ijP1 BT

j P2 −γ2I 0

BT
wP1 BT

wP2 0 −γ2I

⎤

⎥
⎥
⎥
⎦
< 0 (28)

with

Θi = AT
i P1 + P1Ai −MiC − CTMT

i + I (29)

Ψj = AT
j P2 + P2Aj (30)

then estimation error (20) converges asymptotically toward

zero and satisfies the H∞ performance (27). The observer

gains are given by Li = P−1
1 Mi.

Proof. Let us consider the following Lyapunov function

candidate:

V (xe) = xe(t)
TPxe(t) (31)

with P = PT > 0. The state estimation error can be writ-

ten as

e(t) = Cexe(t) (32)

with

Ce =
[

I 0
]
. (33)

System (24) is stable and theH∞ norm of the transfer func-

tion between unknown input w(t) and the state estimation

errors e(t) is bounded by γ > 0 if the following condition

holds:

J∞ = V̇ (xe) + e(t)Te(t) − γ2w(t)Tw(t) < 0. (34)

Substituting (24) into (34) gives

2∑

i=1

2∑

j=1

μi(α̂f )μj(αf )(xe(t)
TĀT

ijPxe(t)+

xe(t)
TPĀijxe(t) + w(t)TB̄T

ijPxe(t)+

xe(t)
TPB̄ijw(t)) + xe(t)

Txe(t)−
γ2w(t)Tw(t) < 0.

(35)

Inequality (35) can be expressed as an equivalent inequal-
ity as

2∑

i=1

2∑

j=1

μi(|α̂f |)μj(|αf |)
[

xe

]T
[

Xij PB̄ij

B̄T
ijP −γ2I

]
[

xe

]
< 0

(36)

with

Xij = ĀT
ijP + PĀij +CT

e Ce. (37)

According to the convex sum property of the activation

functions, inequality (36) holds if the following conditions

are satisfied:
[
ĀT

ijP + PĀij + CT
e Ce PB̄ij

B̄T
ijP −γ2I

]

< 0, ∀ i, j = 1, 2.

(38)

These constraints are nonlinear. In order to get LMI condi-

tions, let us consider the following particular form of matrix

P :

P =

[
P1 0

0 P2

]

. (39)

By substituting (25) and (39), inequality (39) can be writ-

ten as

⎡

⎢
⎢
⎢
⎣

Ωi P1ΔAij P1ΔBij P1Bw

ΔAT
ijP1 Ψj P2Bj P2Bw

ΔBT
ijP1 BT

j P2 −γ2I 0

BT
wP1 BT

wP2 0 −γ2I

⎤

⎥
⎥
⎥
⎦
< 0 (40)

with

Ωi = (Ai − LiC)TP1 + P1(Ai − LiC) + I (41)

Ψj = AT
j P2 + P2Aj . (42)

Using change of variable as Mi = P1Li, condition (40) is

linear in variables P1, P2 and Mi, which leads to the equiv-

alent condition given by (28). Indeed, it suffices to satisfy

(28) to guarantee V̇ (t) < 0 with the γ-attenuation (27). �
To obtain less conservative LMI conditions of Theorem

1, we use the technique developed in [21], and the following

results are obtained.

Corollary 1. If there exists matrices P1 > 0 and P2 > 0,

matrices Qij , Mj and scalar γ, the following LMIs hold:

Γii +Qii < 0, i = 1, 2 (43)

Γij + Γji +Qij +Qji < 0, i < j (44)

[
Q11 Q12

QT
12 Q22

]

> 0 (45)

with

Γij =

⎡

⎢
⎢
⎢
⎣

Θj P1ΔAij P1ΔBij P1Bw

ΔAT
ijP1 Ψi P2Bi P1Bw

ΔBT
ijP1 BT

i P2 −γ2I 0

BT
wP1 BT

wP2 0 −γ2I

⎤

⎥
⎥
⎥
⎦
< 0 (46)

then estimation error (20) is stable and satisfies the H∞
performance (27). The observer gains are given by Li =

P−1
1 Mi.

5 Simulation results

The developed model based estimator has been imple-

mented in a professional simulator in order to be tested

under different driving tests. Two fishhook tests are con-

ducted with different steering wheel angles (Fig. 7). The

input steering angle used in test 2 is defined such that the

wheel lift off occurs at 2.8 s, whereas in test 1 no wheel lift

off occurs. In this simulation, the vehicle is driven at a

constant speed of 110 km/h in a 6% banked road.
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Fig. 7 The used steering angles in tests 1 and 2

Using the model parameters given in Table 2, the

resolution of LMI constraints (28), the LMI toolbox of

Matlab leads to the following Pi and Mi matrices:

P1 = 104

⎡

⎢
⎢
⎣

0.0003 0.0145 0.0022 0.0087

0.0145 1.6132 0.2351 0.4366

0.0022 0.2351 0.0343 0.0632

0.0087 0.4366 0.0632 1.1349

⎤

⎥
⎥
⎦

P2 = 103

⎡

⎢
⎢
⎣

0.4271 0.0101 −0.001 0.0788

0.0101 0.0961 0.0033 0.0410

−0.001 0.0033 0.0025 0.0059

0.0788 0.0410 0.0059 0.1457

⎤

⎥
⎥
⎦

M1 = 104 [
−0.099 −5.277 −0.782 −8.482

]T

M2 = 105
[

0.007 1.096 0.160 −0.417
]T
.

Then, the following observer gains are obtained:

L1 =
[

222.130 131.155 −920.682 −8.385
]T

L2 =
[

192.989 75.474 −468.130 −8.131
]T
.

The vehicle states estimated by the designed observer are

compared to the actual states measured in CarSim for the

conducted tests (Figs. 8 and 9). In both tests the designed

estimator shows good performance. However, between 3 s

and 3.6 s (the moment of the wheel lift off), the estimation is

not quite that good. This is due to the vehicle model which

does not take into account the vehicle behavior after the

rollover. Fig. 10 shows the simulation results of the LTRd

computation for the two tests. The TTR shows good effi-

ciency for the rollover detection, but the proposed rollover

indicator, which is the TTR, shows better anticipation in

the rollover detection (Fig. 10). This advantage is very in-

teresting since the rollover has to be avoided in a matter of

seconds.

Fig. 8 Simulation results of the vehicle state estimator in test 1

6 Conclusion and future works

A model-based roll state estimator is designed in pres-

ence of the road bank angle using the H∞ approach. The

nonlinear model given by three-degrees-of freedom vehicle

lateral dynamics is represented by a T-S fuzzy model. This

representation takes into account the nonlinearities intro-

duced by the lateral forces. The designed fuzzy observer

shows good performance even in presence of unknown road

bank angle. Design conditions are formulated in LMI terms

that are easy to solve using numerical tools. A dynamic ap-

proximation of the lateral transfer ratio is used to compute

the time to rollover (TTR) which shows good efficiency and

good anticipation in detecting of impending rollover. The

proposed fuzzy observer and the rollover index are tested

through the CarSim software in two different tests. In fur-
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Fig. 9 Simulation results of the vehicle state estimator in test 2

Fig. 10 Comparison of the LTRd and TTR computed in tests 1

and 2

ther works, we will extend the results by considering more

complex vehicle models in order to take account of the vehi-

cle behavior after the wheel lift off. An experimental study

will also be developed in the near future.
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