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Abstract: The analysis of stability and numerical simulation of Costas loop circuits for the high-frequency signals is a challenging

task. The problem lies in the fact that it is necessary to observe very fast time scale of input signals and slow time scale of signal′s phases
simultaneously. To overcome this difficulty, it is possible to follow the classical ideas of Gardner and Viterbi to construct a mathematical
model of Costas loop, in which only slow time change of signal′s phases and frequencies is considered. Such an construction, in turn,
requires the computation of phase detector characteristic, depending on the waveforms of the considered signals. In this paper, the

problems of nonlinear analysis of Costas loops and the approaches to the simulation of the classical Costas loop, the quadrature phase
shift keying (QPSK) Costas loop, and the two-phase Costas loop are discussed. The analytical method for the computation of phase
detector characteristics of Costas loops is described.

Keywords: Phase-locked loop (PLL) based circuits, Costas loop, phase detector characteristic, simulation, nonlinear analysis.

1 Introduction

Nowadays, binary phase shift keying (BPSK) and
quadrature phase shift keying (QPSK) modulation tech-
niques are widely used in telecommunication[1, 2]. For
BPSK and QPSK data transmission, various modifications
of the phase-locked loop (PLL) are used, e.g., circuits with
a squaring device and the so called Costas loop[1, 3−5]. Be-
cause the realization of squaring circuits can be quite dif-
ficult, the Costas loop is the preferred variant. In the fol-
lowing, we will concentrate on the Costas loop, which is
easy for implementation and effective for demodulation.
The Costas loop is a classical analog PLL based circuit
for carrier recovery[6−8]. Nowadays, among the applica-
tions of Costas loop, there are global positioning systems
(GPS)[9, 10], wireless communication[11] and others[8, 12−19] .

Although the Costas loop is inherently a nonlinear con-
trol system, it is analyzed in most textbooks and papers
by using linear models, which represent a simplification of
reality (see a plenary lecture of D. Abramovich at Ameri-
can Control Conference 2002[20]). The nonlinear analysis of
PLL-based circuits is a difficult task (see [21–42]) hence nu-
merical simulation is widely used in practice (see [1, 43–47]
and others).

Complete numerical analysis of the physical model of
PLL-based circuits is a very challenging task because it
becomes necessary to observe simultaneously very fast sig-
nals (the high frequency signals) and slower signals (i.e.,
the demodulated data signals)[48, 49]. To analyze the high
frequency signals accurately, a very high sampling rate is
required, which makes it difficult to perform a simulation
in a reasonable time.
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In this paper, we will discuss simulation methods for var-
ious modifications of the Costas loop.

1.1 Mathematical models of Costas loops

In this section, various modifications of the Costas loop
are discussed.

1.1.1 Classical BPSK Costas loop

The physical model of the classical BPSK Costas loop
with the sinusoidal carrier and voltage-controlled oscillator
(VCO) signals is shown in Fig. 1, where the input signal
is the BPSK signal, which is the product of the slow data
signal m(t) = ±1 and the harmonic carrier sin(θ1(t)) (the
carrier period is several orders of magnitude smaller than
the time between data transitions); θ1(t) represents the car-
rier phase. In analogy, sin(θ2(t)) is the output signal of the
VCO, and θ2(t) represents its phase. The Hilbert transform
block shifts the phase of the VCO output signal by −90◦.
Block

⊗
is a multiplying block.

Fig. 1 Physical model of Costas loop in the signal/time space

The standard engineering assumption is that a low-pass
filter removes the upper sideband whose frequency is about
twice the carrier frequency and passes the lower sideband
without change (ideal low-pass filter). Thus, the input of
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the loop filter can be approximated as

ϕ(t) ≈ ϕ(θ(t)) =
1

8
sin(2θ(t)) (1)

where θ(t) = θ2(t) − θ1(t). Function ϕ(θ) is called the
phase detector (PD) characteristic of Costas loop for sinu-
soidal signals (phase detector is a nonlinear element, used
to match the phases of reference and tunable signals). The
loop filter output signal g(t) adjusts the VCO frequency to
the frequency of input signal carrier. If the system has ac-
quired lock: g(t) = 0 and θ1(t) = θ2(t), then the output of
the upper low-pass filter is the data signal m(t).

1.1.2 QPSK Costas loop

Next, the Costas loop for QPSK[1] is considered. To im-
plement such a system, two carriers have to be generated in
the transmitter that are offset in phase by 90◦. The symbol
stream m(t) is partitioned into two data streams: One of
them (e.g., m1(t)) is used to modulate the in-phase carrier,
while the other (e.g., m2(t)) modulates the quadrature car-
rier. The combined output signal of the transmitter can be
written as

m1(t) cos(θ1(t)) − m2(t) sin(θ1(t)). (2)

The receiver of the QPSK signal is shown in Fig. 2. In
contrast to the classical Costas loop, the two low-pass filters
in the upper and lower branches are now followed by limiters
(sgn(·)). For the ideal low-pass filters, one gets

Q(t) =
1

2
[m1(t) cos(θ(t)) − m2(t) sin(θ(t))]

I(t) =
1

2
[m1(t) sin(θ(t)) − m2(t) cos(θ(t))] . (3)

If the system has acquired lock, then Q(t) and I(t) represent
the data signal.

Fig. 2 QPSK Costas loop

If, for the sake of simplicity, one assumes that m1(t) ≡
m2(t) ≡ 1, then the input of the loop filter can be approxi-
mated as

ϕ(t) ≈ ϕ(θ(t)) = 0.5[sin(θ(t)) + cos(θ(t))]×
sgn[cos(θ(t)) − sin(θ(t))]−
0.5[cos(θ(t)) − sin(θ(t))] sgn[sin(θ(t)) + cos(θ(t))] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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]
+ 2πk
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cos(θ(t)), if θ(t) ∈
[

−5π

4
,
7π

4

]

+ 2πk.

(4)

1.1.3 Two-phase Costas loop

Next, a modified implementation of the Costas loop[50]

is considered (see Fig. 3).

Fig. 3 Two-phase Costas loop

The input signal is again given by s(t) = m(t) cos(θ1(t)).
This signal is converted into the so called pre-envelope sig-
nal ŝ(t), which is given by ŝ(t) = s(t) + jH(s(t)), where H

stands for the Hilbert transform, ŝ(t) = ejθ1(t) is a complex
signal, m(t) is the (slow) data signal and can have the val-
ues 1 or −1. In contrast to the classical BPSK Costas loop,

the VCO now also creates a complex output signal e−jθ2(t).
Multiplying these two signals in the locked state yields the
multiplier output signal m(t). This has a very important
consequence: There is no need for a low-pass filter at the
output of the multiplier.

Fig. 4 represents the complex multiplier.

Fig. 4 Complex multiplier
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The outputs of the complex multiplier are the following

m(t)
[
cos(θ1(t)) cos(θ2(t)) + sin(θ1(t)) sin(θ2(t))

]
=

m(t) cos(θ1(t) − θ2(t))

m(t)
[
sin(θ1(t)) cos(θ2(t)) − cos(θ1(t)) sin(θ2(t))

]
=

m(t) sin(θ1(t) − θ2(t)).

Therefore, the input of the loop filter takes the form

ϕ(t) = ϕ(θ(t)) =
1

2
sin(2(θ(t))). (5)

The two-phase Costas loop can also be extended for use in
the QPSK data transmission.

2 Simulation of Costas loops in
Simulink

Next, Simulink models of Costas loops are considered.
Fig. 5 shows the model for the classical Costas loop for
BPSK; Fig. 6 shows the model of the Costas loop for QPSK;
and Fig. 7 represents the two-phase Costas loop.

Fig. 5 Simulink model of the classical Costas loop

Fig. 6 Simulink model of the QPSK Costas loop

Despite the fact that filter transfer functions and other
parameters are chosen the same, the transients are differ-
ent. First, the frequency difference between the VCO free-
running frequency and the carrier frequency is chosen so

low that all three circuits are able to get locked, as shown
in Fig. 8.

Fig. 7 Simulink model of the two-phase Costas loop

Fig. 8 Plot of the VCO input g(t). VCO input gain: 30; low-

pass filters transfer function: 1
0.02s+1

; loop filter transfer func-

tion: 1
s+2

; VCO free-running frequency: 99.5; carrier frequency:

100

When the frequency difference between the VCO free-
running frequency and the carrier frequency is chosen such
that it exceeds a value called pull-in range, the classical
Costas loop for BPSK is no longer able to acquire lock.
This is shown in Fig. 9. When the frequency difference is
further increased, the QPSK Costas loop also goes out of
lock (see Fig. 10). The same holds true for the two-phase
Costas loop, which can be seen in Fig. 111.

1The pull-in range of the modified Costas loop with lag-lead filter
1 + αs

1 + βs
will be larger, with the PI filter

1 + αs

βs
, the pull-in range

may conceivably be infinite.
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Fig. 9 Plot of the VCO input g(t). VCO input gain: 30; low-

pass filters transfer function: 1
0.02s+1

; loop filter transfer func-

tion: 1
s+2

; VCO free-running frequency: 98.5; carrier frequency:

100

Fig. 10 Plot of the VCO input g(t). VCO input gain: 30; low-

pass filters transfer function: 1
0.02s+1

; loop filter transfer func-

tion: 1
s+2

; VCO free-running frequency: 98; carrier frequency:

100

Fig. 11 Plot of the VCO input g(t). VCO input gain: 30; low-

pass filters transfer function: 1
0.02s+1

; loop filter transfer func-

tion: 1
s+2

; VCO free-running frequency: 95; carrier frequency:

100

Note that unlike the loop filter input of the two-phase
Costas loop, the input the filters of the classical and QPSK
Costas loops contains additional high-frequency oscilla-
tions.

To analyze the high frequency signals accurately, a rel-
atively large sampling frequency is required, which makes
it difficult to perform a simulation in a reasonable time.
In [51] one can read: “Direct time-domain simulation of
PLLs at the level of SPICE circuits is typically impractical
because of its great inefficiency. PLL transients can last
hundreds of thousands of cycles, with each cycle requir-
ing hundreds of small time steps for accurate simulation of
the embedded voltage-controlled oscillator (VCO). Further-
more, extracting phase or frequency information, one of the
chief metrics of PLL performance, from time-domain volt-
age/current waveforms is often difficult and inaccurate.”

In the next section, we are going the discuss the mathe-
matical approach that allows us to overcome this problem
when analyzing Costas loops.

3 Simulation of mathematical model of
Costas loops in the signal′s phase
space

The ideas behind are based on the works in [3, 52] and
consist of the development of a mathematical model of PLL-
based circuits in signal′s phase space where only slow time
scale of signal′s phases is considered. Such an construction
requires the computation of phase detector characteristic
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which depends on PD physical realization and the wave-
forms of the considered signals[53−60] .

Using the phase detector characteristic, instead of block
diagrams in Figs. 1–3, one can consider the equivalent block
diagram of Costas loop (Fig. 12) in the signal′s phase space,
where ϕ(θ) takes forms (1), (4), and (5), respectively.

In the equivalent block diagram, the loop filter has the
same characteristic and initial state. The loop filter output
signal G(t) adjusts the VCO frequency to the frequency of
input signal carrier.

Fig. 12 Mathematical model of Costas loops in the signal′s

phase space

Note that construction of the mathematical model and
using of analytic results for the conclusions on the be-
havior of the considered physical model need rigorous
mathematical foundation[59,61]: Here one has to prove
that 1) |g(t) − G(t)| is sufficiently small (without the as-
sumption on ideality of the filters); 2) for the consid-
ered model of VCO frequency adjustment the behavior of
the equivalent block diagrams are similar. The first re-
quires the rigorous methods for phase detector characteris-
tic computation[54,56,57,59,62−65] and to prove the second it
is essential to apply the averaging methods[66, 67].

4 Mathematical foundation of math-
ematical model for classical Costas
loop

The mathematical foundation of Costas loops considera-
tion in the signal′s phase space is considered.

The low-pass filters on the upper and the lower branches
of the classical Costas loop (Fig. 1) are responsible for the
demodulation process, therefore they can be applied sep-
arately from the loop (e.g., [9]. From a point of view of
the analysis of stability, the filter at the input of VCO exe-
cutes filtering functions. In this case, since m(t)2 = 1, the
transmitted data m(t) does not affect the operation of the
VCO. Thus one can consider the equivalent block diagrams
of the classical Costas loop in signal/time and signal′s phase
spaces.

Consider a general case of the non-sinusoidal piecewise-
differentiable carrier oscillation f1(θ1(t)) and the tunable
harmonic oscillation

f1(θ) =
∞∑

i=1

(
a1

i cos(iθ) + b1
i sin(iθ)

)

f2(θ) = b2
1 sin(θ) (6)

where f1 is represented as a Fourier series with coefficients
a1 and b1.

Suppose that there exists a sufficiently large number ωmin

such that the following conditions are satisfied in a fixed

time interval [0, T ]:

θ̇p(τ ) � ωmin > 0, p = 1, 2 (7)

where T is independent of ωmin, and θ̇p(τ ) = dθp(τ)
dτ

de-
notes the frequencies of signals. The frequencies difference
is assumed to be uniformly bounded:

∣
∣θ̇1(τ ) − θ̇2(τ )

∣
∣ � Δω, ∀τ ∈ [0, T ]. (8)

Requirements (7) and (8) are obviously satisfied for the tun-
ing of two high-frequency oscillators with close frequencies.

Denote δ = ω
− 1

2
min. Consider the following relations

|θ̇p(τ ) − θ̇p(t)| � ΔΩ, p = 1, 2

|t − τ | � δ, ∀ τ, t ∈ [0, T ] (9)

where ΔΩ is independent of δ. Conditions (7)−(9) mean
that the functions θ̇p(τ ) are almost constant and the func-
tions fp(θp(τ )) are rapidly oscillating in small intervals
[t, t + δ]. Assume that

|γ(τ ) − γ(t)| = O(δ), |t − τ | � δ, ∀ τ, t ∈ [0, T ] (10)

where γ(t) is an impulse response function of the loop filter.
The following assertion is valid.
Theorem 1[65, 68]. If conditions (7), (8), and (10) are

satisfied and

ϕ(θ) =
(b2

1)
2

8

[

(a1
1)

2 sin(2θ) + 2
∞∑

q=1

a1
qa

1
q+2 sin(2θ)−

2a1
1b

1
1 cos(2θ) + 2

∞∑

q=1

a1
q+2b

1
q cos(2θ)−

2

∞∑

q=1

a1
qb

1
q+2 cos(2θ) − (b1

1)
2 sin(2θ)+

2
∞∑

q=1

b1
qb

1
q+2 sin(2θ)

]

(11)

then the following relation is valid.

G(t) − g(t) = O(δ), ∀ t ∈ [0, T ]. (12)

In other words, this theorem separates the low-frequency
error-correcting signal from parasitic high-frequency oscilla-
tions and proves that the considered function ϕ(θ) is a phase
detector characteristic of Costas loop. For sinusoidal wave-
forms, without rigorous justification this fact was known to
engineers[3].

The details of the proof can be found in [65, 68]. Note
that this result could be easily extended to the case of two
non-sinusoidal signals[69]. Arguing similarly, one can con-
sider QPSK Costas loop for the sinusoidal signals[70].

Well-known averaging method[66, 67] allows one to prove
that the processes in both equivalent block diagrams of
Costas loops in signal/time and signal′s phase spaces
are close under some assumption (see also simulations in
Figs. 14 and 15).

To avoid using extremely high sampling rates, the physi-
cal model of Costas loop in the signal space can be replaced
by the mathematical model in the signal′s phase space that
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analyses only low frequency events (e.g. Simulink models
in Figs. 5–7 can be replaced by the model in Fig. 13).

Fig. 13 Simulink model of Costas loops in signal′s phase space

This allows one to overcome the difficulties mentioned
above, and to study only slow time scale of signal′s phases.

Fig. 14 Loop filter outputs g(t) and G(t). VCO input gain:

30; low-pass filters transfer function: 1
0.02s+1

; loop filter trans-

fer function: 1
s+4

; VCO free-running frequency: 99; carrier fre-

quency 100

Fig. 15 Loop filter outputs g(t) and G(t). VCO input gain:

30; low-pass filters transfer function: 1
0.02s+1

; loop filter trans-

fer function: 1
s+2

; VCO free-running frequency: 99; carrier fre-

quency: 100

5 Conclusion

To conclude, let us compare the time required to perform
a simulation of the transient response of a classical Costas
loop when either using the Simulink model for the signal
space (see Figs. 5 and 6) or using the Simulink model for the
phase space (see Fig. 13). Assume that the carrier frequency

is 1GHz. The duration of the transient response is shown
to be about 0.4 s. When the model for the signal space is
used, the sampling frequency must be chosen (according to
the Nyquist theorem) to be larger than twice the highest
frequency existing in that system[16].

Fig. 16 Classical Costas loop filter output: VCO input gain:

200; loop filter transfer function: 1
10−5s+1

; low-pass filters trans-

fer functions: 1
2/109+1

; VCO free-running frequency: 109 + 20;

carrier frequency: 109; discretization step for the signal space

simulation: 10−10; discretization step for the signal′s phase space

simulation: 1
200 000

; simulation time = 3 s

As shown in Section 1.1.1, the maximum frequency is
twice the carrier frequency, hence the sampling frequency
must be chosen larger than 4GHz. Using a sampling in-
terval of 0.1 ns, during 3 s of simulation only 25 μs of the
transient response was obtained.

When the model for the phase space is used, the sampling
frequency can be chosen much lower. Using the phase space
model, the whole transient could be simulated now in less
than 0.4 s, see Fig. 6.

References

[1] R. E. Best. Phase Locked Loops: Design, Simulation, and
Applications, 6th ed., New York: McGraw-Hill, 2007.

[2] Y. Shmaliy. Continuous-time Systems, Netherlands:
Springer, 2007.

[3] F. M. Gardner. Phase-lock Techniques, New York: John
Wiley and Son, 1966.

[4] W. C. Lindsey, M. K. Simón. Telecommunication Systems
Engineering, New jersey: Prentice Hall, 1973.

[5] M. B. Pursley. Introduction to Digital Communications,
New jersey: Prentice Hall, 2005.

[6] J. P. Costas. Synchronous communications. Proceedings of
the IRE, vol. 44, no. 12, pp. 1713–1718, 1956.

[7] G. W. Waters. Costas Loop QPSK Demodulator, US Patent
4344178, USA, August 1982.

[8] I. B. Djordjevic, M. C. Stefanovic, S. S. Ilic, G. T. Djordje-
vic. An example of a hybrid system: Coherent optical sys-
tem with Costas loop in receiver-system for transmission in



R. E. Best et al. / Simulation of Analog Costas Loop Circuits 577

baseband. Journal of Lightwave Technology, vol. 16, no. 2,
pp. 177–183, 1998.

[9] E. D. Kaplan, C. J. Hegarty. Understanding GPS: Princi-
ples and Applications, Boston, USA: Artech House, 2006.

[10] D. Doberstein. Fundamentals of GPS Receivers: A Hard-
ware Approach, New York: Springer, 2011.

[11] R. D. Stephens. Phase-Locked Loops for Wireless Commu-
nications: Digital, Analog and Optical Implementations,
New York: Springer, 2002.

[12] Y. Wang, W. R. Leeb. A 90◦ optical fiber hybrid for opti-
mal signal power utilization. Applied Optics, vol. 26, no. 19,
pp. 4181–4184, 1987.

[13] T. Miyazaki, S. Ryu, Y. Namihira, H. Wakabayashi. Op-
tical Costas loop experiment using a novel optical 90◦ hy-
brid module and a semiconductor-laser-amplifier external
phase adjuster. In Proceedings of Optical Fiber Communi-
cation, Optical Society of America, San Diego, California,
pp.WH6, 1991.

[14] I. B. Djordjevic, M. C. Stefanovic. Performance of optical
heterodyne PSK Systems with Costas loop in multichannel
environment for nonlinear second-order PLL model. Jour-
nal of Lightwave Technology, vol. 17, no. 12, pp. 2470–2479,
1999.

[15] K. Hasegawa, H. Kanetsuna, M. Wakamori. GPS Position-
ing Method and GPS Reception Apparatus, EP Patent
1092987A2, USA, April 2001.

[16] P. S. Cho. Optical phase-locked loop performance in homo-
dyne detection using pulsed and CW LO. In Proceedings of
Optical Amplifiers and Their Applications/Coherent Opti-
cal Technologies and Applications, Optical Society of Amer-
ica, Whistler, Canada, pp. JWB24, 2006.

[17] Y. Hayami, F. Imai, K. Iwashita. Linewidth investigation
for costas loop phase-diversity homodyne detection in dig-
ital coherent detection system. In Proceedings of the Asia
Optical Fiber Communication and Optoelectronic Exposi-
tion and Conference, IEEE, Shanghai, China, pp. 1–3, 2008.

[18] G. M. Helaluddin. An improved optical costas loop PSK
receiver: Simulation analysis. Journal of Scientific & Indus-
trial Research, vol. 67, pp. 203–208, 2008.

[19] N. Nowsheen, C. Benson, M. Frater. Design of a high fre-
quency FPGA acoustic modem for underwater communi-
cation. In Proceedings of IEEE OCEANS, IEEE, Sydney,
Australia, pp. 1–6, 2010.

[20] D. Abramovitch. Phase-locked loops: A control centric tu-
torial. In Proceedings of the 2002 American Control Con-
ference, IEEE, Anchorage, AK, USA, vol. 1, pp. 1–15, 2002.

[21] D. Y. Abramovitch. Lyapunov Redesign of analog phase-
lock loops. IEEE Transactions on Communications, vol. 38,
no. 12, pp. 2197–2202, 1990.

[22] K. Watada, T. Endo, H. Seishi. Shilnikov orbits in an
autonomous third-order chaotic phase-locked loop. IEEE
Transactions on Circuits and Systems I: Fundamental The-
ory and Applications, vol. 45, no. 9, pp. 979–983, 1998.

[23] M. Hinz, I. Konenkamp, E. H. Horneber. Behavioral model-
ing and simulation of phase-locked loops for RF front ends.
In Proceedings of the 43rd IEEE Midwest Symposium on
Circuits and Systems, IEEE, Lansing, MI, USA, pp. 194–
197, 2000.

[24] A. Rantzer. Almost global stability of phase-locked loops.
In Proceedings of the 40th IEEE Conference on Decision
and Control, IEEE, Orlando, FL, USA, vol. 1, pp. 899–900,
2001.

[25] N. E. Wu. Analog phaselock loop design using Popov crite-
rion. In Proceedings of the 2002 American Control Confer-
ence, IEEE, Anchorage, AK, USA, vol. 1, pp. 16–18, 2002.

[26] J. R. C. Piqueira, L. H. A. Monteiro. Considering second-
harmonic terms in the operation of the phase detector for
second-order phase-locked loop. IEEE Transactions on Cir-
cuits and Systems I: Fundamental Theory and Applications,
vol. 50, no. 6, pp. 805–809, 2003.

[27] A. Suarez, R. Quere. Stability Analysis of Nonlinear Mi-
crowave Circuits, New Jersey: Artech House, 2003.

[28] W. I. Margaris. Theory of the Non-Linear Analog Phase
Locked Loop, New Jersey: Springer Verlag, 2004.

[29] G. D. Vendelin, A. M. Pavio, U. L. Rohde. Microwave Cir-
cuit Design Using Linear and Nonlinear Techniques, New
York: Wiley, 2005.

[30] P. Goyal, X. L. Lai, J. Roychowdhury. A fast methodology
for first-time-correct design of PLLs using nonlinear phase-
domain VCO macromodels. In Proceedings of the 2006 Asia
and South Pacific Conference on Design Automation, IEEE,
Yokohama, Japan, pp. 291–296, 2006.

[31] V. V. Matrosov. Nonlinear dynamics of phase-locked loop
with the second-order filter. Radiophysics and Quantum
Electronics, vol. 49, no. 3, pp. 239–249, 2006.

[32] J. Kudrewicz, S. Wasowicz. Equations of Phase-locked
Loops: Dynamics on the Circle, Torus and Cylinder, vol. 59,
Singapore: World Scientific Publishing Company, 2007.

[33] O. Feely. Nonlinear dynamics of discrete-time circuits: A
survey. International Journal of Circuit Theory and Appli-
cations, no. 35, no. 5–6, pp. 515–531, 2007.

[34] N. V. Kuznetsov. Stability and Oscillations of Dynamical
Systems: Theory and Applications, Jyväskylä: Jyväskylä
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