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Abstract: This paper is concerned with the finite-time control problem for a class of networked control systems (NCSs) with short

time-varying delays and sampling jitter. Considering a state feedback controller, the closed-loop NCS is described as a discrete-time

linear system model, and the uncertain parts reflect the effect of the the network-induced delays and short sampling jitter of the system

dynamics. Then a robust approach is proposed to solve the finite-time stability and stabilization problems for the considered NCS. An

illustrative example is provided to demonstrate the effectiveness of the proposed theoretical results.
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1 Introduction

In a networked control system, one of the main prob-

lems is network-induced delay, and it is usually regarded

as the major cause of deterioration of system performance

and potential system instability. Since the network and the

scheduling policies in the networks are varying, the network-

induced delay is typically varying. Compared with the con-

stant delay, the time-varying delay is more difficult to deal

with. For the past decade, various approaches have been

presented in the existing literature to deal with the mod-

eling, analysis, and synthesis problems for the networked

control systems (NCSs) with delays. To deal with short

time-varying delays, one effective approach is the uncertain

system approach[1−6]. The main idea of this approach is

that by decomposing the time-varying network-induced de-

lay into the nominal part and the uncertain part, the NCSs

can be described as a class of discrete norm bounded un-

certain systems. Therefore, the stabilizing state feedback

controller can be designed based on the uncertain system

approach. The stabilization problem is considered for the

class of wireless networked control systems (WNCS).[7]

In the sampling process, the clock circuit of the sensor in

the NCS may be affected by some external influence such

as high-frequency electric signals and temperature. As a

consequence, the sampling period may be not the constant
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which we set, but a value changing in a range, i.e., there

exists sampling jitter. However, if the sampling period jit-

ter is large enough, the considering NCS may be unstable.

Therefore, how to design the controller to ensure the sta-

bility and dynamic performance of NCSs in this situation

is a problem worth considering. To solve this problem, it

is necessary and great significant to establish the relation

between the stability of the NCSs and the sampling jit-

ter. By the sampled-data control system approach, we can

establish the relation between the stability and the sam-

pling period. The sampling jitter problem was discussed in

sampled-data control systems, but the main idea was dif-

ferent and the time-varying delays were not considered[8, 9].

Therefore, new methods need to be explored to model and

analyze the NCSs with both short time-varying delays and

sampling jitter. This motivates the present research.

Besides, most of the results in the literature are focused

on the Lyapunov stability of the NCSs. Often asymptotic

stability is enough for practical applications, but there are

some cases where large values of the state are not accept-

able, for instance in the presence of saturations. In these

cases, we need to check that these unacceptable values are

not attained by the state, for these purposes, finite-time

stability (FTS) can be used. The concept of Lyapunov

asymptotic stability is widely known to the control commu-

nity. Conversely, a system is said to be finite-time stable

if its state does not exceed some bounds during this time-

interval. The finite-time stability, or short-time stability

was proposed during the 1960s[10, 11]. In recent years, the

concept of finite-time stability has been revisited in the light

of linear matrix inequality theory. Lots of valuable results

have been obtained for this type of stability[12−17] . Some

sufficient conditions for finite-time stability and stabiliza-

tion of continuous systems or discrete-time systems were
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provided[12−14]. Feng et al.[15−17] . extended the definition

of finite-time stability to the systems with impulsive effects

or singular systems with impulsive effect, respectively, and

derived some sufficient conditions for finite-time stability

and stabilization problems. The finite-time stability ap-

proach was extended into the area of the switched linear sys-

tem, and some sufficient conditions were provided for finite-

time stability and stabilization problems[18, 19]. In this pa-

per, we deal with the finite-time control problems of the

NCSs with short time-varying delays and the sampling jit-

ter. A new uncertain system model is proposed to describe

the considered NCS with sampling jitter, and the uncer-

tainties of the jitter and delays are expressed as the uncer-

tainties of the system matrices. Similar modeling methods

have been presented[3, 14, 15]. However, sampling jitter and

external disturbance have not been considered[3, 14, 15]. Ad-

ditionally, the definition of finite-time stability is recalled

and extended to the discrete-time NCSs. Then, a sufficient

condition for the existence of a state feedback controller

which guarantees the finite-time boundedness of the NCS

is given.

The paper is organized as follows. Section 2 is devoted

to preliminaries and problem formulation. The main results

for FTS analysis are given in Section 3. A numerical exam-

ple is presented to illustrate the efficiency of the proposed

method in Section 4. Finally, the conclusions are given in

Section 5.

2 Preliminaries and problem formula-

tion

Consider an NCS model with the structure shown in

Fig. 1, where the continuous-time plant is described by the

linear time-invariant system model as

ẋ(t) = Apx(t) + Bpu(t) + Gω(t) (1a)

ω̇(t) = Fω(t) (1b)

where x(t) ∈ Rn and u(t) ∈ Rm are the system state

and the control input, ω(t) ∈ Rq is the exogenous input,

Ap, Bp, G, F are a set of known real constant matrices with

appropriate dimensions. Throughout the paper, the follow-

ing assumptions are needed for the considered NCS.

Fig. 1 The structure of NCS with short time varying delays

Assumption 1. The sensor is time-driven and both the

controller and the actuator are event-driven.

Assumption 2. The unknown time-varying network-

induced delay at time step k is denoted by τk, τk =

τsc(k) + τca(k) is smaller than a sampling period and is

upper bounded by τk ≤ τ̄ ≤ h, τsc(k) and τca(k) are the

sensor-to-controller delay and the controller to actuator de-

lay, respectively. There is no packet dropout in the net-

works.

Assumption 3. Consider that the setting sampling pe-

riod is h0, and the real time-varying sampling period is de-

noted by h = h0+Δh, where −h0 < −Δh̄ ≤ Δh ≤ Δh̄ < h0

and Δh̄ is the upper bound of the sampling jitter.

Remark 1. Since the sampling jitter is caused by the

external interference acting on the sensor, the size of the

jitter is unknown. But based on the actual situation of the

sensor, it can be of sufficiently small size, and it is definite

that the jitter may vary the sampling period in both larger

and smaller directions. Therefore, we assume that −Δh̄ ≤
Δh ≤ Δh̄, and Δh̄ is far less than h0.

Discretizing the system given by (1) with the period of h

and taking the network-induced delay τk into account, we

obtain the discrete model

x(k + 1) = Ax(k) + B0(τk)u(k) + B1(τk)u(k − 1) + Gω(k)

(2a)

ω(k + 1) = Fω(k) (2b)

where

A = eAph

and

B0(τk) =

∫ h−τk

0

eApsdsBp

B1(τk) =

∫ h

h−τk

eApsdsBp.

Denote A0 =eAph0 . Then, by (2), we have

A = eAph = eAph0 +
(
eAph − eAph0

)
=

eAph0 + eAph0
(
eApΔh − I

)

when Δh is sufficiently small. By Taylor formula ,we have

that eApΔh = ApΔh + I, so that we obtain

A = eAph0 + eAph0 (ApΔh + I − I) =

eAph0 + eAph0ApΔh =

A0 + A0ΔhAp =

A0 + A0Θ0(Δh)Ap =

A0 + ΔA

where

Θ0(Δh) = Δh, ΔA = A0Θ0(Δh)Ap.
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Let B0 =
∫ h0
0

eApsdsBp, we can obtain that

B0(τk) =

∫ h−τk

0

eApsdsBp =

∫ h0+Δh−τk

0

eApsdsBp =

∫ h0

0

eApsdsBp +

∫ h0+Δh−τk

h0

eApsdsBp =

B0 + A0

∫ Δh−τk

0

eApsdsBp =

B0 + A0Θ1(Δh, τk)Bp =

B0 + ΔB

where

Θ1(Δh, τk) =

∫ Δh−τk

0

eApsds

ΔB = A0Θ1(Δh, τk)Bp.

Let B2 =

∫ h

0

eApsdsBp, we have that

B2 =

∫ h

0

eApsdsBp =

∫ h0+Δh

0

eApsdsBp =

∫ h0

0

eApsdsBp +

∫ h0+Δh

h0

eApsdsBp =

∫ h0

0

eApsdsBp + eAph0

∫ Δh

0

eApsdsBp =

B0 + A0Θ2(Δh, τk)Bp = B0 + ΔB̃

where

Θ2(Δh, τk) =

∫ Δh

0

eApsds

ΔB̃ = A0Θ2(Δh, τk).

Since B2 = B0(τk) + B1(τk), we have BZ1(τk) = B2 −
B0(τk) = B0 + ΔB̃ − B0 − ΔB = ΔB̃ − ΔB. Then, with

the state feedback controller u(k) = Kx(k), the closed-loop

NCS can be described as

x(k + 1) = Acx(k) + Bcx(k − 1) + Gω(k) (3a)

ω(k + 1) = Fω(k) (3b)

where

Ac = A0 + B0K + A0Θ0(Δh)Ap + A0Θ1(Δh, τk)BpK

Bc = A0Θ2(Δh, τk)BpK − A0Θ1(Δh, τk)BpK. (4)

The definitions of finite-time stability and finite-time

boundedness in NCSs are given below.

Definition 1[14]. When ω(k) ≡ 0, the discrete-time lin-

ear NCS given in (3) is said to be finite-time stable with

respect to (δx, ε, R, N), where R is a positive-definite ma-

trix, 0 < δx < ε, and N ∈ N0, if

xT(0)Rx(0) ≤ δ2
x ⇒ xT(k)Rx(k) < ε2, ∀k ∈ {1, · · · , N}.

Definition 2[14]. The discrete-time linear system given

in (3) is said to be finite-time bounded with respect to

(δx, ε, R, N), where R is a positive-definite matrix, 0 ≤ δx <

ε, δω ≥ 0, and N ∈ N0, if

xT(0)Rx(0) ≤ δ2
x

ωT(0)ω(0) ≤ δ2
ω

⇒ xT(k)Rx(k) < ε2, ∀k ∈ {1, · · · , N}.

Given system (3), our main aim is to find some sufficient

conditions which guarantee that the system given by (3)

is bounded over a finite-time interval. The general idea of

finite-time stability concerns the roundedness of the state

of a system over a finite time interval for given initial con-

ditions. So we need to solve the following problem.

Problem 1. Designing a state feedback controller of the

form u(k) = Kx(k) such that the closed-loop NCS (3) is

finite-time bounded with respect to (δx, ε, R, N).

Remark 2. In this proposed modeling method, the un-

certainties of sampling jitter and the network-induced delay

are transformed into the uncertainties of the system matri-

ces.

3 Finite-time stability analysis and

controller design

In this section, a finite-time stability criteria for the NCS

(5) is given, as well as a sufficient condition for the existence

of the state feedback stabilizing controller. To obtain the

results, the following lemma will be needed.

Lemma 1. For the known constant matrices Y = Y T, D

and E with appropriate dimensions, if

Y + DFE + ETFTDT < 0

where F satisfies that FTF ≤ δ2I and δ is a finite constant,

then there exist constants ε > 0 and μ > 0, such that

Y + εDDT + μETE < 0.

Theorem 1. System (3) is FTS with respect to

(δx, δω, ε, R, N) if there exist positive-definite matrices P1 ∈
Rn×n, P2 ∈ Rn×n and P3 ∈ Rn×n, and scalars ε > 0, μ > 0

and γ ≥ 1, such that

⎡
⎢⎢⎢⎢⎢⎢⎣

Π1 0 0 (A0 + B0K)T AT
p + KTBT

p

∗ Π2 0 0 KTBT
p

∗ ∗ Π3 GT 0

∗ ∗ ∗ −P−1
1 + εA0A

T
0 0

∗ ∗ ∗ ∗ −μI

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0

(5a)

(λmax(P̃1)δ
2
x + λmax(P3)δ

2
ω)γN−

λmin(P3)λmin(F̃ )δ2
ω < ε2λmin(P̃1) (5b)
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where Π1 = −γP1 + P2, Π2 = −γP2, Π3 = −γP3 +

FTP3F, P̃1 = R− 1
2 P1R

− 1
2 and F̃ = (FT)NF N .

Proof. Let us assume that xT(0)Rx(0) ≤ δ2
x, x(−1) = 0

and ωT(0)ω(0) ≤ δ2
ω. Our aim is to prove that if condition

(5) holds, then xT(k)Rx(k) < ε2 for all k = 1, · · · , N .

Choose the Lyapunov-like function

V (k) = xT(k)P1x(k) + xT(k − 1)P2x(k − 1) + ωT(k)P3ω(k).

Denoting ξ(k) =
[
xT(k) xT(k − 1) ωT(k)

]T
, we have

V (k + 1) − γV (k) =

xT(k + 1)P1x(k + 1) + xT(k)P2x(k)+

ωT(k + 1)P3ω(k + 1) − xT(k)γP1x(k)− (6)

xT(k − 1)γP2x(k − 1) − ωT(k)γP3ω(k) =

ξT(k)Ψξ(k)

where

Ψ =

⎡
⎢⎣

AT
c

BT
c

GT

⎤
⎥⎦ + P1

[
Ac Bc G

]
+

⎡
⎢⎣

−γP1 + P2 0 0

∗ −γP2 0

∗ ∗ −γP3 + FTP3F

⎤
⎥⎦ . (7)

Ψ < 0 guarantees that V (k + 1) − γV (k) < 0, which will

be used for our proof. By Schur complement, Ψ < 0 is

equivalent to the following matrix inequality

⎡
⎢⎢⎢⎣

−γP1 + P2 0 0 AT
c

∗ −γP2 0 BT
c

∗ ∗ −γP3 + FTP3F GT

∗ ∗ ∗ −P−1
1

⎤
⎥⎥⎥⎦ < 0

(8)

which can be written as

Ψ0 + D̄Θi(τk, Δh)Ē + ĒTΘT
i (τk, Δh)D̄T < 0 (9)

where

Ψ0 =

⎡
⎢⎢⎢⎣

−γP1 + P2 0 0 (A0 + B0K)T

∗ −γP2 0 0

∗ ∗ −γP3 + FTP3F GT

∗ ∗ ∗ −P−1
1

⎤
⎥⎥⎥⎦

D̄ =
[

0 0 0 AT
1

]T

Ē =
[

Ap + BpK BpK 0 0
]
.

Since τk and Δh are bounded, it can be known that

ΘT
i (τk, Δh)Θi(τk, Δh) ≤ δ2, where δ is a bounded constant.

Therefore, by Lemma 1, we have that

Ψ0 + εD̄D̄T + μĒTĒ < 0 (10)

holds. It then follows from the Schur complement that (10)

is equivalent to (5a).

Then, (5a) implies that

V (k + 1) < γV (k). (11)

Applying (11) iteratively and using the fact that γ ≥ 1, we

obtain

V (k) < γkV (0) =

γk
(
xT(0)P1x(0) + xT(−1)P2x(−1) + ωT(0)P3ω(0)

)
≤

γk
(
λmax(P̃1)x

T(0)Rx(0) + λmax(P̃2)x
T(−1)Rx(−1)+

λmax(P̃3)ω
T(0)ω(0)

)
≤

γN
(
λmax(P̃1)x

T(0)Rx(0) + λmax(P3)ω
T(0)ω(0)

)
≤

γN
(
λmax(P̃1)δ

2
x + λmax(P3)δ

2
ω

)
,

k = 1, · · · , N (12)

where P̃1 = R− 1
2 P1R

− 1
2 , P̃2 = R− 1

2 P2R
− 1

2 ,

λmax(P̃1), λmax(P̃2), λmax(P3) represent the maximum

eigenvalues of matrices P̃1, P̃2, P3, and

V (k) = xT(k)P1x(k) + xT(k − 1)P2x(k − 1)+

ωT(k)P3ω(k) ≥
xT(k)P1x(k) + ωT(k)P3ω(k) ≥
λmin(P̃1)x

T(k)Rx(k) + λmin(P3)ω
T(k)ω(k) ≥

λmin(P̃1)x
T(k)Rx(k) + λmin(P3)ω

T(0)(FT)kF kω(0).

(13)

Denote F̃ = (FT)NF N , and (13) can be described as

V (k) ≥ λmin(P̃1)x
T(k)Rx(k) + λmin(P3)ω

T(0)F̃ ω(0) ≥
λmin(P̃1)x

T(k)Rx(k)+

λmin(P3)λmin(F̃ )ωT(0)ω(0) ≥
λmin(P̃1)x

T(k)Rx(k) + λmin(P3)λmin(F̃ )δ2
ω (14)

where λmin(·) represents the minimum eigenvalues of the

corresponding matrix.

From (12) to (14), we obtain

xT(k)Rx(k) <

1

λmin(P̃1)
[(λmax(P̃1)δ

2
x + λmax(P3)δ

2
ω)γN−

λmin(P3)λmin(F̃ )δ2
ω]. (15)

From (15), it follows that (5b) implies that, for all k =

1, · · · , N, xT(k)Rx(k) < ε2. Then the close-loop NCS (3) is

finite-time bounded with respect to (δx, ε, R, N). �
Remark 3 (Asymptotic stability from Theorem

1). If conditions (5) in Theorem 1 are satisfied by γ = 1

and ω ≡ 0, then the close-loop NCS (3) is finite-time stable

with respect to (δx, ε, R, N) for all N ∈ N0 and it is also

asymptotically stable.

Remark 4. Compared with the proof in [14], we deal

with ωT(k)P3ω(k) in (14) by a less conservative approach

instead of simply discarding it. Therefore, the result we

obtain in this paper has less conservatism.
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Theorem 2 (Controller design). System (3) is FTS

with respect to (δx, ε, R, N) if there exist positive-definite

matrices Q ∈ Rn×n, S ∈ Rn×n, T ∈ Rn×n, matrix U ,

scalars ε > 0, μ > 0 and γ ≥ 1 such that
⎡
⎢⎢⎢⎢⎢⎢⎣

Γ1 0 0 QAT
0 + UTBT

0 QAT
p + UTBT

p

∗ Γ2 0 0 UTBT
p

∗ ∗ Γ3 GT 0

∗ ∗ ∗ −Q + εA0A
T
0 0

∗ ∗ ∗ ∗ −μI

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0

(16a)(
λmax(Q̃)δ2

x + λmax(T )δ2
ω

)
γN − λmin(T )λmin(F̃ )δ2

ω <

ε2λmin(Q̃) (16b)

where Γ1 = −γQ + S, Γ2 = −γS, Γ3 = −γT + FTTF,

Q̃ = R− 1
2 Q−1R− 1

2 . Then NCS (3) is controlled by u(k) =

Kx(k), and the controller gain matrix is given by K =

UQ−1.

Proof. Denoting Q = P−1
1 , S = QP2Q, T = P3 and

U = KQ, we obtain inequality (16a) by pre-multiplying

and post-multiplying (5a) by diag{Q,Q, I, I} and (16b) by

replacing P1, P2, P3 by Q,S and T. �
Remark 5. Sun and Xu[20] have considered the FTS

problem of NCSs with constant time delays. This paper

deals with the FTS problem of NCSs with time-varying de-

lays. Compared with constant delay situation in [20], a

time-varying delay situation in this paper is more coinci-

dent with the real network environment, and the process-

ing of time-varying delays is an important part when we

are analyzing NCSs. Besides, we have also considered the

sampling jitter problem in this paper.

Remark 6. According to the procedures above, we have

successfully extended the definition of FTS to NCS. The-

orem 1 and Corollary 1 have been given to solve the sta-

bility and stabilization problems. Indeed, the key idea in

our proof is to relax the condition of negative definiteness

of ΔV : ΔV does be not need to be negative definite but

should just not greater than (γ − 1) V. This is important

for an NCS, because we can also give a controller to keep

the system stable or bounded even that a negative definite

ΔV cannot be found since the bad network environment or

emergencies happen. To illustrate our results, a numerical

example will be presented in the following section.

4 Numerical example and simulations

Example 1. Consider system (1), where

Ap =

[
2.9124 3.6276

−3.6276 −0.7152

]
, Bp =

[
−1.8138

0.3576

]

G =

[
1 0

0 1

]
, F =

[
0.8 0.6

−0.6 0.8

]
.

Choose the sampling period h = 0.5 s, 0 < τk < 0.05 s, 0 <

|Δh| < 0.05 s, δx = 2, R = I, and the initial system state

x(0) =
[

−1 0
]T

, ω(0) =
[

1 0
]T

. Then, the corre-

sponding discrete system model (4) with short time-varying

network-induced delay is given by

x(k + 1) =

[
1 2

−2 −1

]
x(k)+

∫ 0.5+Δh−τk

0

eApsdsBpu(k)+

∫ 0.5

0.5+Δh−τk

eApsdsBpu(k − 1).

Case 1. When γ = 1, N = 20, ω = 0, δx = 1, we

solved LMIs (16) and we found that the controller K =

[0.71 1.11] guarantees the desired closed-loop properties

with ε = 2.64. The value of γ (see Remark 3) implies that

the state boundedness is guaranteed for all N ∈ N0 and

that the closed-loop system is also asymptotically stable.

The simulation results are shown in Figs. 2 and 3, which de-

pict the state trajectories and the trajectories of x(k)Rx(k)

when applying the designed controller.

Case 2. When γ = 1.3, N = 4, δω = 1, δx = 1, we solved

LMIs (16) and found the controller K = [1.44 1.60] guar-

antees the desired closed-loop properties with ε = 4.10.

From Figs. 4 and 5, it is straight to see that the states of

the close-loop system are well bounded under the obtained

controller gain during the specified time interval, which in-

dicates the effectiveness of the theoretical results.

Fig. 2 The state trajectories at each iteration with γ = 1

Fig. 3 The trajectory of xT(k)Rx(k) at each iteration with

γ = 1
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Fig. 4 The state trajectories at each iteration with γ = 1.3

Fig. 5 The trajectory of xT(k)Rx(k) at each iteration with

γ = 1.3

5 Conclusions

This paper addresses the finite-time stabilization prob-

lem for a class of networked control systems with short

time-varying delays and sampling jitter. A linear uncertain

system model is proposed to describe the considered NCS.

Starting from some conditions guaranteeing finite-time sta-

bility and finite-time boundedness, we have provided suffi-

cient conditions for the state feedback problem by the ro-

bust control approach. The proposed design conditions are

expressed in terms of linear matrix inequalities.
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