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Abstract: In this paper, the problem of controlling chaos in a Sprott E system with distributed delay feedback is considered. By

analyzing the associated characteristic transcendental equation, we focus on the local stability and Hopf bifurcation nature of the Sprott

E system with distributed delay feedback. Some explicit formulae for determining the stability and the direction of the Hopf bifurcation

periodic solutions are derived by using the normal form theory and center manifold theory. Numerical simulations for justifying the

theoretical analysis are provided.
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1 Introduction

Since the pioneering work of Ott et al.[1], the topics of

chaos and chaotic control are growing rapidly in many dif-

ferent fields such as ecological system, chemical systems and

biological systems, and so forth[2−10]. We all know that

chaotic systems have very complicated dynamical nature,

which plays an important role in many fields such as secure

communications, information processing, high-performance

circuit design for telecommunications[11]. Chaos, which of-

ten causes irregular behaviors in practical system, is usually

undesirable. In many cases, we wish to avoid and eliminate

such behaviors. Recently, many schemes such as Ott et

al.[1], feedback and non-feedback control[12−17] , observer-

based control[12], active control[13], adaptive control[18, 19],

inverse optimal control[20], evolutionary algorithm[21] , etc.,

have been presented to implement the chaos control. For

more related work, one can see [22–26]. In 2012, Wang and

Chen[27] reported the very surprising finding of the follow-

ing new 3D autonomous chaotic Sprott E system with one

stable node or stable focus

⎧
⎪⎨

⎪⎩

ẋ = y(t)z(t) + a

ẏ = x2(t) − y(t)

ż = 1 − 4x(t).

(1)
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When a = 0, it is the Sprott E system[28]. When

a �= 0, the stability of the single equilibrium is fundamen-

tally different[29]. Let yz + a = 0, x2 − y = 0, 1 − 4x = 0,

we can obtain that system (1) has only one stable equilib-

rium E(x∗, y∗, z∗) = ( 1
4
, 1

16
, 16a) if a > 0. Interestingly,

Wang and Chen[29] found that system (1) can generate

chaotic phenomenon which is shown in Fig. 1 (Fig. 1 shows

the waveform portraits and the phase portraits of system

(1)).
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Fig. 1 Chaotic attractor of system (1) with a = 0.006. The

initial value is (1.5,1.5,1.5)

In this paper, we study the stability, and the local Hopf

bifurcation nature for system (1). To the best of our knowl-

edge, it is the first try to introduce continuous distributed

time-delayed feedback force to control the chaos of the

Sprott E system.

The remainder of the paper is organized as follows. In

Section 2, we investigate the stability of the equilibrium
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and the occurrence of local Hopf bifurcations of the Sprott

E system with distributed delay feedback. In Section 3,

the direction and stability of the local Hopf bifurcation are

established. In Section 4, numerical simulations are carried

out to show the validity of chaotic control. Some main

conclusions are drawn in Section 5.

2 Stability and bifurcation analysis

In this section, we shall study the stability of the equi-

librium and the existence of local Hopf bifurcations.

In order to apply feedback control, we add a continuous

distributed time delayed force

b

∫ 0

−∞
[z(t) − z(t+ s)]k(−s)ds

to the third equation of system (1), then system (1) takes

the form
⎧
⎪⎨

⎪⎩

ẋ = y(t)z(t) + a

ẏ = x2(t) − y(t)

ż = 1 − 4x(t) + b
∫ 0

−∞[z(t) − z(t+ s)]k(−s)ds
(2)

where a, b > 0,
∫ 0

−∞ k(s)ds = 1,
∫ 0

−∞ sk(s)ds < +∞. Obvi-

ously, system (2) has the equilibrium point E(x∗, y∗, z∗) =

( 1
4
, 1

16
,−16a).

Let x̄(t) = x(t) − x∗, ȳ(t) = y(t) − y∗, z̄(t) = z(t) − z∗

and still denote x̄(t), ȳ(t) and z̄(t) by x(t), y(t) and z(t),

respectively, then (2) becomes

⎧
⎪⎨

⎪⎩

ẋ = z∗y(t) + y∗z(t) + y(t)z(t)

ẏ = 2x∗x(t) − y(t) + x2(t)

ż = −4x(t) + bz(t) − b
∫ 0

−∞ z(t+ s)k(−s)ds.
(3)

The linearization of (3) near E(x∗, y∗, z∗) is given by

⎧
⎪⎨

⎪⎩

ẋ = z∗y(t) + y∗z(t)

ẏ = 2x∗x(t) − y(t)

ż = −4x(t) + bz(t) − b
∫ 0

−∞ z(t+ s)k(−s)ds
(4)

whose characteristic equation appears as

λ(λ+ 1)

(

λ− b+ b

∫ 0

−∞
k(−s)eλsds

)

+ 4y∗(λ+ 1)−

2x∗z∗
(

λ− b+ b

∫ 0

−∞
k(−s)eλsds

)

= 0. (5)

In this paper, we consider the weak kernel case, i.e., k(s) =

αe−αs, where α > 0. As to the general gamma kernel case,

we can make a similar analysis. We give the initial condition

of system (4) as

⎡

⎢
⎣

x(s)

y(s)

z(s)

⎤

⎥
⎦ =

⎡

⎢
⎣

φ1(s)

φ2(s)

φ3(s)

⎤

⎥
⎦ , −∞ < s ≤ 0.

The characteristic equation (5) with the weak kernel case

takes the form

λ4 + θ1(α)λ3 + θ2(α)λ2 + θ3(α)λ+ θ4(α) = 0 (6)

where
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ1(α) = α− b+ 1

θ2(α) = α− b− 2x∗z∗ + 4y∗

θ3(α) = 4y∗(1 + α) − 2x∗z∗(α− b)

θ4(α) = 4y∗α.

(7)

In view of the well known Routh-Hurwitz criterion, we can

conclude that all the roots of (6) has negative real parts if

the following conditions
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1(α) = θ1(α) = α− b+ 1 > 0

D2(α) = θ1(α)θ2(α) − θ3(α) =

(α− b+ 1)(α− b− 2x∗z∗ + 4y∗)−
[4y∗(1 + α) − 2x∗z∗(α− b)] > 0

D3(α) = θ3(α)D2(α) − θ21(α)θ4(α) =

[4y∗(1 + α) − 2x∗z∗(α− b)]×
{(α− b+ 1)(α− b− 2x∗z∗ + 4y∗)−
[4y∗(1 + α) − 2x∗z∗(α− b)]}−
4y∗α(α− b+ 1)2 > 0

D4(α) = θ4(α)D3(α) = 4y∗αD3(α) > 0

(8)

hold true.

Based on the analysis above, we can easily obtain the

following Theorem 1.

Theorem 1. The equilibrium E(x∗, y∗, z∗) of system (2)

with the weak kernel is locally asymptotically stable if the

following conditions are fulfilled:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

α− b+ 1 > 0

(α− b+ 1)(α− b− 2x∗z∗ + 4y∗)−
[4y∗(1 + α) − 2x∗z∗(α− b)] > 0

[4y∗(1 + α) − 2x∗z∗(α− b)]×
{(α− b+ 1)(α− b− 2x∗z∗ + 4y∗)−
[4y∗(1 + α) − 2x∗z∗(α− b)]} − 4y∗α(α− b+ 1)2 > 0.

Let λi (i = 1, 2, 3, 4) be the roots of (6), then we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ1 + λ2 + λ3 + λ4 = −θ1(α)

λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4 = θ2(α)

λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4 = −θ3(α)

λ1λ2λ3λ4 = θ4(α).

(9)

If there exists an α0 ∈ R+ such that D3(α0) = 0 and
dD3(α)

dα
|α=α0 �= 0, then by the Routh-Hurwitz criterion,

there exists a pair of purely imaginary roots, say λ1 =

λ̄2 = iω0 (ω �= 0), and the other two roots λ3, λ4 satisfy:

if λ3, λ4 are real, then λ3 < 0, λ4 < 0; if λ3, λ4 are complex

conjugate, then Re{λ3} = Re{λ4} = − θ1(α)
2
. It is easy to

calculate that

d(Re(λ1))

dα
= − θ1(α)

2[θ31(α)θ3(α) + (θ1(α)θ2(α) − 2θ3(α))2]
×

dD3(α)

dα

∣
∣
∣
∣
∣
α=α0

(10)

thus the Hopf bifurcation occurs near E(x∗, y∗, z∗) when α

passes through α0.
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3 Direction and stability of bifurcating

periodic solutions

In this section, by using techniques from normal form

and center manifold theory[30], we shall investigate the di-

rection, stability, and period of these periodic solutions bi-

furcating from the equilibrium E(x∗, y∗, z∗). Let μ = α−α0,

then system (3) undergoes the Hopf bifurcation at the equi-

librium E(x∗, y∗, z∗) for μ = 0, and then ±iω0 are purely

imaginary roots of the characteristic equation at the equi-

librium E(x∗, y∗, z∗). System (3) can be written as an func-

tional differential equation (FDE) in C = C([−∞, 0]),R3)

as

u̇(t) = A(μ)ut +R(μ)ut (11)

where u(t) = [x(t), y(t), z(t)]T ∈ C and ut(θ) = u(t + θ) =

[x(t+ θ), y(t+ θ), z(t+ θ)]T ∈ C, and A and R are given by

A(μ)φ(θ) =
⎧
⎨

⎩

dφ(θ)

dθ
, −∞ ≤ θ < 0

Lφ(θ) +
∫ 0

−∞ F (s)φ(s)ds, θ = 0
(12)

and

R(μ)φ(θ) =

{
[0, 0, 0]T, −∞ ≤ θ < 0

[f1, f2, 0]
T, θ = 0

(13)

respectively, where φ(θ) = [φ1(θ), φ2(θ), φ3(θ)]
T ∈ C and

f1 = φ2(0)φ3(0), f2 = φ2
1(0).

For ψ ∈ C ([0,+∞], (R3)∗), define

A∗ψ(s) =

⎧
⎨

⎩

−dψ(s)

ds
, s ∈ (0,+∞]

LTψ(0) +
∫ 0

−∞ FT(t)ψ(−t)ds, s = 0.

For φ ∈ C([−∞, 0],R3) and ψ ∈ C([0,+∞], (R3)∗), de-

fine the bilinear form

〈ψ, φ〉 = ψ̄(0)φ(0) −
∫ 0

−∞

∫ θ

ξ=0

ψ̄(ξ − θ)dη(θ)φ(ξ)dξ

where η(θ) = η(θ, 0), the A = A(0) and A∗ are adjoint

operators. By the discussions in Section 2, we know that

±iω0 are eigenvalues of A(0), and they are also eigenvalues

of A∗ corresponding to iω0 and −iω0, respectively. Assume

that q(θ) = (1, a1, a2)
Teiω0θ is the eigenvector of A(0) cor-

responding to iω0, then we have A(0)q(0) = iω0q(0), i.e.,

Lq(0)+

∫ 0

−∞
F (s)q(s)ds =

⎡

⎢
⎣

0 z∗ y∗

2x∗ −1 0

−4 0 b

⎤

⎥
⎦

⎡

⎢
⎣

1

a1

a2

⎤

⎥
⎦ +

∫ 0

−∞

⎡

⎢
⎣

0 0 0

0 0 0

0 0 bk(−s)

⎤

⎥
⎦

⎡

⎢
⎣

1

a1

a2

⎤

⎥
⎦ eiω0sds =

⎡

⎢
⎣

a1z
∗ + a2y

∗

2x∗ − a1

−4 + ba2 − ba2χ
(1)

⎤

⎥
⎦ =

⎡

⎢
⎣

iω0

iω0a1

iω0a2

⎤

⎥
⎦

where

χ(1) =

∫ 0

−∞
k(−s)eiω0sds =

α

α+ iω0
.

We can obtain

q(θ) = [1, a1, a2]
Teiω0θ

where

a1 =
2x∗

iω0 + 1
, a2 =

4

b− bχ(1) − iω0
.

Assume that q∗(s) = D[1, a∗1, a
∗
2]

Teiω0s(0 ≤ s < +∞) is

the eigenvector of A∗(0) corresponding to −iω0, then we

have A∗(0)q∗(0) = iω0q
∗(0), i.e.,

LTq∗(0) +

∫ 0

−∞
F ∗(s)q∗(−s)ds =

⎡

⎢
⎣

0 2x∗ −4

z∗ −1 0

y∗ 0 b

⎤

⎥
⎦

⎡

⎢
⎣

D

Da∗1
Da∗2

⎤

⎥
⎦ +

∫ 0

−∞

⎡

⎢
⎣

0 0 0

0 0 0

0 0 bk(−s)

⎤

⎥
⎦

⎡

⎢
⎣

D

Da∗1
Da∗2

⎤

⎥
⎦ e−iω0sds =

⎡

⎢
⎣

2x∗a∗1 − 4a∗2
z∗ − a∗1

y∗ + ba∗2 − bχ(2)

⎤

⎥
⎦ =

⎡

⎢
⎣

−iω0D

−iω0a
∗
1D

−iω0a
∗
2D

⎤

⎥
⎦

where

χ(2) =

∫ 0

−∞
k(−s)e−iω0sds =

α

α− iω0
.

We can obtain

q∗(s) = D[1, a∗1, a
∗
2]

Teiω0s

where

a∗1 =
z∗

1 − iω0
, a∗2 =

bχ(2) − y∗

b+ iω0
.

If we choose

D =
1

1 + a∗1ā1 + a∗2ā2 + ba∗2ā2

∫ 0

−∞
θe−iω0θk(−θ)dθ

then < q∗(s), q(θ) ≥ 1 and < q∗(s), q̄(θ) ≥ 0.

Next, we use the same notations as those in Hassard[30]

and we first compute the coordinates to describe the center

manifold C0 at μ = 0. Let ut be the solution of (11) when

μ = 0.

Define

z(t) = 〈q∗, ut〉W (t, θ) = ut(θ) − 2Re{z(t)q(θ)} (14)

on the center manifold C0, and we have

W (t, θ) = W (z(t), z̄(t), θ) (15)

where

W (z(t), z̄(t), θ) = W (z, z̄) = W20
z2

2
+W11zz̄+W02

z̄2

2
+ · · ·
(16)

and z and z̄ are local coordinates for center manifold C0

in the direction of q∗ and q̄∗. Noting that W is also real
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if ut is real, we consider only real solutions. For solutions

ut ∈ C0 of (11),

ż(t) =iω0z + q̄∗(θ)f [0,W (z, z̄, θ)] + 2Re{zq(θ)} def
=

iω0z + q̄∗(0)[f1, f2, 0]
T.

That is

ż(t) = iω0z + g(z, z̄)

where

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ · · · .

Let f0 = [f1, f2]
T. Hence, we have

g(z, z̄) =q̄∗(0)f0(z, z̄) = f(0, ut) =

D̄ (a1a2 + ā∗1) z
2 + D̄(2Re{a1ā2} + 2ā∗1)zz̄+

D̄(ā1ā2 + ā∗1)z̄
2 + D̄

[
1

2
ā1W

(3)
20 (0)+

1

2
ā2W

(3)
20 (0) + ā1W

(3)
11 (0) + ā2W

(2)
11 (0)+

ā∗1
(
W

(1)
20 (0) + 2W

(1)
11 (0)

)]
z2z̄ + high order term.

Then, we get

g20 = 2D̄ (a1a2 + ā∗1)

g11 = 2D̄(Re{a1ā2} + ā∗1)

g02 = 2D̄(ā1ā2 + ā∗1)

g21 = 2D̄

[
1

2
ā1W

(3)
20 (0) +

1

2
ā2W

(3)
20 (0) +

ā1W
(3)
11 (0) + ā2W

(2)
11 (0)+

ā∗1
(
W

(1)
20 (0) + 2W

(1)
11 (0)

)]
.

Since there exist unknowns W
(1)
20 (0), W

(3)
20 (0),

W
(1)
11 (0),W

(2)
11 (0),W

(3)
11 (0) in g21, we still need to compute

them.

It follows from (11) and (14) that

W
′
=

⎧
⎪⎪⎨

⎪⎪⎩

AW − 2Re{q̄∗(0)[f1, f2, 0]Tq(θ)},−∞ ≤ θ < 0

AW − 2Re{q̄∗(0)[f1, f2, 0]Tq(θ)} + [f1, f2, 0]
T,

θ = 0

def
= AW +H(z, z̄, θ) (17)

where

H(z, z̄, θ) = H20(θ)
z2

2
+H11(θ)zz̄+H02(θ)

z̄2

2
+ · · · . (18)

Comparing the coefficients, we obtain

(AW − 2iω0)W20 = −H20(θ) (19)

AW11(θ) = −H11(θ). (20)

For θ ∈ [−∞, 0),

H(z, z̄, θ) = − q̄∗(0)f0q(θ) − q∗(0)f̄0q̄(θ) =

− g(z, z̄)q(θ) − ḡ(z, z̄)q̄(θ). (21)

Comparing the coefficients of (21) with (18) gives that

H20(θ) = −g20q(θ) − ḡ02q̄(θ) (22)

H11(θ) = −g11q(θ) − ḡ11q̄(θ). (23)

From (19), (22) and the definition of A, we get

Ẇ20(θ) = 2iω0W20(θ) + g20q(θ) + ¯g02q̄(θ). (24)

Noting that q(θ) = q(0)eiω0θ, we have

W20(θ) =
ig20
ω0

q(0)eiω0θ +
iḡ02
3ω0

q̄(0)e−iω0θ + E1e
2iω0θ (25)

where E1 = [E
(1)
1 , E

(2)
1 , E

(3)
1 ] ∈ R3 is a constant vector.

Similarly, from (20), (23) and the definition of A, we have

Ẇ11(θ) = g11q(θ) + ¯g11q̄(θ) (26)

W11(θ) = − ig11
ω0

q(0)eiω0θ +
iḡ11
ω0

q̄(0)e−iω0θ + E2 (27)

where E2 = [E
(1)
2 , E

(2)
2 , E

(3)
2 ] ∈ R3 is a constant vector.

In what follows, we shall seek appropriate E1, E2 in (25),

(27), respectively. It follows from the definition of A and

(22), (23) that

∫ 0

−1

dη(θ)W20(θ) = 2iω0W20(0) −H20(0) (28)

and ∫ 0

−1

dη(θ)W11(θ) = −H11(0) (29)

where η(θ) = η(0, θ).

From (22) and (23), we have

H20(0) = −g20q(0) − ḡ02q̄(0) + 2

⎡

⎢
⎣

a1a2

1

0

⎤

⎥
⎦ (30)

H11(0) = −g11q(0) − ḡ11(0)q̄(0) + 2

⎡

⎢
⎣

Re{a1ā2}
1

0

⎤

⎥
⎦ . (31)

Noting that

(

iω0I −
∫ 0

−1

eiω0θdη(θ)

)

q(0) = 0

(

−iω0I −
∫ 0

−1

e−iω0θdη(θ)

)

q̄(0) = 0

and substituting (25) and (30) into (28), we have

(

2iω0I −
∫ 0

−1

e2iω0θdη(θ)

)

E1 = 2

⎡

⎢
⎣

a1a2

1

0

⎤

⎥
⎦ .
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That is

⎡

⎢
⎣

2iω0 −z∗ −y∗
2x∗ 2iω0 + 1 0

4 0 2iω0 − b+ bχ(3)

⎤

⎥
⎦E1 = 2

⎡

⎢
⎣

a1a2

1

0

⎤

⎥
⎦

where

χ(3) =

∫ 0

−∞
k(−s)e2iω0sds =

α

α+ 2iω0
.

It follows that

E
(1)
1 =

Δ11

Δ1
, E

(2)
1 =

Δ12

Δ1
, E

(3)
1 =

Δ13

Δ1
(32)

where

Δ1 =det

⎡

⎢
⎣

2iω0 −z∗ −y∗
2x∗ 2iω0 + 1 0

4 0 2iω0 − b+ bχ(3)

⎤

⎥
⎦

Δ11 =2 det

⎡

⎢
⎣

a1a2 −z∗ −y∗
1 2iω0 + 1 0

0 0 2iω0 − b+ bχ(3)

⎤

⎥
⎦

Δ12 =2 det

⎡

⎢
⎣

2iω0 a1a2 −y∗
2x∗ 1 0

4 0 2iω0 − b+ bχ(3)

⎤

⎥
⎦

Δ13 =2 det

⎡

⎢
⎣

2iω0 −z∗ a1a2

2x∗ 2iω0 + 1 1

4 0 0

⎤

⎥
⎦ .

Similarly, substituting (26) and (31) into (29), we have

(∫ 0

−1

dη(θ)

)

E2 = 2

⎡

⎢
⎣

Re{a1ā2}
1

0

⎤

⎥
⎦ .

That is

⎡

⎢
⎣

0 z∗ y∗

2x∗ −1 0

−4 0 b+ bχ(1)

⎤

⎥
⎦E2 = 2[−Re{a1ā2},−1, 0]T.

It follows that

E
(1)
2 =

Δ21

Δ2
, E

(2)
2 =

Δ22

Δ2
, E

(3)
2 =

Δ23

Δ2
(33)

where

Δ2 =det

⎡

⎢
⎣

0 z∗ y∗

2x∗ −1 0

−4 0 b+ bχ(1)

⎤

⎥
⎦

Δ21 =2 det

⎡

⎢
⎣

−Re{a1ā2} z∗ y∗

−1 −1 0

0 0 b+ bχ(1)

⎤

⎥
⎦

Δ22 =2 det

⎡

⎢
⎣

0 −Re{a1ā2} y∗

2x∗ −1 0

−4 0 b+ bχ(1)

⎤

⎥
⎦

Δ23 =2 det

⎡

⎢
⎣

0 z∗ −Re{a1ā2}
2x∗ −1 −1

−4 0 0

⎤

⎥
⎦ .

From (25), (27), (32) and (33), we can calculate g21 and

derive the following values:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1(0) =
i

2ω0

(

g20g11 − 2|g11|2 − |g02|2
3

)

+
g21
2

μ2 = − Re {c1(0)}
Re{λ′(α0)}

β2 = 2Re(c1(0))

T2 = − Im{c1(0)} + μ2Im{λ′
(α0)}

ω0

(34)

which determine the quantities of bifurcating periodic so-

lutions on the center manifold C0 at the critical value α0,

namely, we have the following result.

Theorem 2. The periodic solution is supercritical (sub-

critical) if μ2 > 0 (μ2 < 0); the bifurcating periodic solu-

tions are orbitally asymptotically stable with asymptotical

phase (unstable) if β2 < 0 (β2 > 0); the periods of the

bifurcating periodic solutions increase (decrease) if T2 > 0

(T2 < 0).

4 Computer simulations

In this section, we present some numerical results of sys-

tem (2) to verify the analytical predictions obtained in the

previous section. From Section 3, we may determine the

direction of a Hopf bifurcation and the stability of the bi-

furcation periodic solutions. Let us consider the following

system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ = y(t)z(t) + 0.006

ẏ = x2(t) − y(t)

ż = 1 − 4x(t) + 0.5
∫ 0

−∞(z(t) − z(t+ s))k(−s)ds
(35)

where k(s) = αe−αs, α > 0. Let yz + 0.006 = 0, x2 − y =

0, 1 − 4x = 0. It is easy to see that system (35) has an

equilibrium E( 1
4
, 1

16
, 1

4
,− 12

125
) and all the conditions indi-
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cated in Theorem 2 are satisfied. When τ = 0, the equilib-

rium E( 1
4
, 1

16
, 1

4
,− 12

125
) is asymptotically stable. By means

of Matlab 7.0, we get α0 ≈ 0.4512. Thus the equilibrium

E( 1
4
, 1

16
, 1

4
,− 12

125
) is stable when α < α0 which is illus-

trated by the computer simulations (see Fig. 2). When

α passes through the critical value α0, the equilibrium

E( 1
4
, 1

16
, 1

4
,− 12

125
) loses its stability and a Hopf bifurcation

occurs, i.e., a family of periodic solutions bifurcations from

the equilibrium E( 1
4
, 1

16
, 1

4
,− 12

125
). It follows from the for-

mulae (34) presented in Section 3 that μ2 > 0 and β2 < 0.

Then the direction of the Hopf bifurcation is α > α0, and

these bifurcating periodic solutions from E( 1
4
, 1

16
, 1

4
,− 12

125
)

around α0 are stable, which are depicted in Fig. 3.



C. J. Xu and Y. S. Wu / Chaos Control and Bifurcation Behavior for a Sprott E system with · · · 189

Fig. 2 Behavior and phase portraits of system (35) with α =

0.25 < α0 ≈ 0.4512. The equilibrium E( 1
4
, 1

16
, 1

4
,− 12

125
) is asymp-

totically stable. The initial value is (1.5, 1.5, 1.5)

5 Conclusions

In this paper, a feedback control method is applied to

suppress chaotic behavior of a Sprott E system within the

chaotic attractor. By adding a continuous distributed time

delayed force to the third equation of the Sprott E system,

we have made a detailed discussion on the local stability of

the equilibrium E(x∗, y∗, z∗) and local Hopf bifurcation of

the delayed Sprott E system model. We showed that if some

conditions are fulfilled, then the Sprott E system is asymp-

totically stable for α < α0 and when α passes through α0, a

sequence of Hopf bifurcations occur around the equilibrium

E(x∗, y∗, z∗), namely, a family of periodic orbits bifurcate

from the the equilibrium E(x∗, y∗, z∗), which implies the

chaos of this system can be suppress. Some numerical sim-

ulations are included to visualize the theoretical findings.

Moreover, the control method used in this paper can be ap-

plicable to other chaotic systems. We will carry our some

related work in near future.
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Fig. 3 Behavior and phase portraits of system (35) with α =

0.55 > α0 ≈ 0.4512. Hopf bifurcation occurs from the equilib-

rium E( 1
4
, 1

16
, 1

4
,− 12

125
). The initial value is (1.5,1.5,1.5)
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