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Abstract: Over the past few years, nonlinear manifold learning has been widely exploited in data analysis and machine learning.

This paper presents a novel manifold learning algorithm, named atlas compatibility transformation (ACT). It solves two problems

which correspond to two key points in the manifold definition: how to chart a given manifold and how to align the patches to a global

coordinate space based on compatibility. For the first problem, we divide the manifold into maximal linear patch (MLP) based on

normal vector field of the manifold. For the second problem, we align patches into an optimal global system by solving a generalized

eigenvalue problem. Compared with the traditional method, the ACT could deal with noise datasets and fragment datasets. Moreover,

the mappings between high dimensional space and low dimensional space are given. Experiments on both synthetic data and real-world

data indicate the effection of the proposed algorithm.
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1 Introduction

Since all the objects change gradually and regularly in

the world, many high-dimensional data in real-world ap-

plications can be modeled as data points lying close to a

low-dimensional nonlinear manifold. Discovering the struc-

ture of the manifold is a challenging unsupervised learn-

ing problem, which is called dimensionality reduction in

pattern recognition[1−10] . The discovered low-dimensional

structures can be further used in classification, motion anal-

ysis, clustering and data visualization[11, 12]. A classical ex-

ample of the low-dimensional manifold embedded in high-

dimensional input spaces is that a set of images of an in-

dividual face is rotated from one side to another. The key

point is that the dimensions of the input spaces can be very

high (e.g., the number of pixels for each image in the image

dataset), however, the intrinsic dimensionality for dataset

is limited by few factors (e.g., the rotation faces lie on a line

in input space-one dimensional). The purpose of manifold

learning algorithms is to find a low-dimensional embedding

that preserves properties (e.g., geodesic distance or local

relationships) of the high-dimensional input dataset.

In this paper, we propose a nonlinear dimensionality re-

duction algorithm, called atlas compatibility transforma-

tion (ACT). This method is inspired by the manifold def-

inition in classical differential geometry, which is normal

and intuition in mathematics. The ACT charts a manifold

into maximal linear patch (MLP) adaptively based on nor-
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mal vector field firstly, and then aligns the patches into a

global coordinate system based on compatibility condition.

Compared with the existing methods, ACT could locate the

noise data by scalar curvature field of the manifold. Sup-

pose the intrinsic dimension of manifold is d, for each patch,

it can be regarded as a “flat” hyperplane in a d+1 Euclidean

space, which is called ambient space in mathematics. The

curvature should stay in a low range for each patch. How-

ever, if a noise point adds to a patch, the curvature value

should jump to an extremely high level suddenly. There-

fore, the noise points can be located and successive meth-

ods can be utilized to clear them away from the training

dataset. Moreover, the ACT could deal with fragmentary

training data. In this paper, the fragmentary data refers to

the training data that are incomplete sampling due to some

uncontrollable reason. In ACT, the distribution of missing

data can be estimated by the manifold geometry structure

depicted by MLPs.

The rest of the paper is organized as follows. We begin

with a brief review of the existing dimensionality reduction

methods in Section 2. In Section 3, the motivation and

basic idea of the proposed ACT are illustrated. Section 4

depicts the charting strategy in detail. Section 5 presents

the algorithm that aligns the charts into a global coordinate

system. Experimental results are given in Section 6. And

Section 7 is devoted to the conclusions and future work

discussion.

2 Related work and existing problems

2.1 Related work

Over the past two decades, a great number of algorithms

have been proposed to address theproblemofdimensionality
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reduction[13]. These algorithms can be divided into two

categories: linear dimensionality reduction methods[14] and

nonlinear dimensionality reduction methods.

Principle component analysis (PCA), multi-dimensional

scaling (MDS) and linear discriminant analysis (LDA) are

three representative linear dimensionality reduction meth-

ods. Since these methods cannot discover the curved or

nonlinear structures of the input data, they can only deal

with flat Euclidean structures.

To discover the nonlinear structures of input data, many

nonlinear dimensionality reduction methods have been pro-

posed, such as self-organizing maps[15], principal curves and

its extensions, autoencoder neural networks and generative

topographic maps. However, these methods often suffer

from difficulties in designing a cost function or tuning too

many free parameters. Moreover, most of these methods

are computationally expensive, which limits their utility in

high-dimensional data sets. Recently, kernel methods[16, 17]

have provided new ways to perform linear algorithms in

implicit higher-dimensional feature space. Although these

methods can improve the performance of linear ones, most

of them are still computationally expensive, and some of

them have difficulties in designing cost functions or tuning

many parameters.

Over the past few years, manifold learning

algorithms[1−10] have attracted attention of researchers

due to their geometric intuition, nonlinear nature and com-

putational feasibility. The basic assumption of manifold

learning is that the input data lie on or close to a smooth

low-dimensional manifold. Each manifold learning algo-

rithm attempts to uncover the manifold and preserve a

different geometrical property of the underlying manifold.

Isomap[1] and local linear embedding (LLE)[2] were the

first two classical manifold methods published in Science

in 2000. Isomap constructs a shortest neighborhood graph

firstly and then utilizes MDS to seek the low-dimensional

embedding. LLE calculates the reconstruction weights for

each point which depicts the local geometry structure in

a high observation space and then constructs the low-

dimensional embedding by preserving this structure. Then,

Laplacian eigenmaps (LE)[3] and Hessian LLE (HLLE)[5]

were proposed in 2003. They estimate the Laplacian

and Hessian on the manifold respectively to minimize the

squared gradient of a low-dimensional embedding map. In

2004, local tangent space alignment (LTSA)[7] was pro-

posed. This method constructs the tangent space at each

data point firstly and then aligns these tangent spaces in

a global coordinate system. Riemannian manifold learn-

ing (RML)[9] and maximal linear embedding (MLE)[10]

were proposed in 2008 and 2011, respectively. The RML

computes normal coordinates that map the input high-

dimensional data into a low-dimensional space. The MLE

divides manifold into maximal linear patch (MLP) firstly

and then utilizes a landmark-based alignment method to

obtain the low-dimensional embedding.

2.2 Existing problems

While viewing previous work, there are mainly three

problems worth to be discussed.

The manifold learning with noise data. Manifold

learning algorithms are sensitive to noisy data that lie out-

side the manifold (outliers)[4, 18]. Several manifold learning

algorithms can be adopted to extract the intrinsic features

of manifold in high dimensional space by preserving the lo-

cal geometric characteristics. However, due to the locality

geometry preservation, these manifold learning methods are

sensitive to noise. Moreover, experiments show that, for dif-

ferent types of noises, there is no single method that could

be immune to all of them and the dimensional reduction re-

sults are uncontrollable and unpredictable. Compared with

the existing methods, the ACT could distinguish noise data

from manifold dataset by analyzing curvature of the mani-

fold.

The manifold learning with fragmentary data.

High-density sampling is an important assumption for all of

the existing manifold learning algorithms. However, during

the sampling process, some data may be lost or not sam-

pled. Compared with the existing methods, the ACT could

estimate the geometry distribution of the missing data by

analyzing the basic vectors of neighboring MLPs.

The incremental-learning problem. Most manifold

learning methods operate in “batch”, in which the mapping

between input high dimensional space and low-dimensional

embedding space is not given. Therefore, new data points

could not get their coordinates in the embedding space di-

rectly. However, incremental learning is essential for prac-

tical applications. Recently, many methods have been pro-

posed to solve this problem[19, 20]. Our algorithm gives the

mapping between original input high-dimensional space and

low-dimensional embedding space through a mapping set

which contains mappings between MLPs and their coordi-

nate areas in the embedding space. The embedded coordi-

nates for new data points could be computed as long as the

MLPs that contain new data points are determined and the

data points in the original space can be reconstructed from

the embedded coordinates.

The proposed ACT method in this paper provides a so-

lution to the above problems, with the five characteristics

briefly summarized in Section 1. The details of the algo-

rithm are described in the following sections.

3 Motivation and basic idea

In this paper, the proposed ACT method is inspired by

the manifold definition in classical differential geometry.

Therefore, we list the definition below firstly and then move

on to the motivation and basic idea.

3.1 Manifold definition

In differential geometry, a topological space M that has

an open cover Oα, i.e.,
⋃

α

, is an n-dimensional manifold

if: 1) for each open set O, ∃ homeomorphism mapping
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ψα : Oα → Vα (Vα is an open set in Rn), 2) if Oα

⋂
Oβ �= Ø,

the complex mapping ψβ ◦ψ−1
α has C∞ differentiable struc-

ture (smooth).

In differential geometry, (Oα, ψα) is called a “chart”

which maps an open set Oα to a Euclidean space through

a homeomorphic mapping ψα. Any manifold can be de-

scribed by a collection of charts, also known as an atlas. It

is worth mentioning that in manifold M (topological space),

the elements have no coordinates initially. However, they

get coordinates in the Euclidean space after selecting a set

of coordinate basis. Therefore, (Oα, ψα) is also called a

local coordinate system.

The condition 2) is called “compatibility”, which gives

the differential structure to charts. It indicates that where

the domains of charts overlap (the shadow area in Fig. 1),

the coordinates defined by each chart are required to be

differentiable with respect to the coordinates defined by ev-

ery chart in the atlas. The mappings that relate the co-

ordinates defined by the various charts to one another are

called transition maps. Suppose an element p ∈ Oα, and

that ψα(p) maps p to space Vp1. {X1,X2, · · · ,Xn} is a co-

ordinate basis of Vp1 and {x1, x2, · · · , xn} is the coordinate

of p in Vp1. If Oα

⋂
Oβ �= Ø, the elements in the inter-

section area of Oα

⋂
Oβ could not only obtain coordinates

{xμ}(μ = 1, 2, · · · , n) in Vp1 by ψα, but also obtain coor-

dinates {xμ}(ν = 1, 2, · · · , n) in Vp2 by ψβ. The transition

mapping between (Oα, ψα) and (Oβ , ψβ), ψβ ◦ψ−1
α , can be

depicted by the equation for coordinate system transforma-

tion.

Fig. 1 Manifold definition

3.2 Motivation and basic idea

Manifold definition gives us a nature way for nonlinear

dimensionality reduction: 1) charting the manifold reason-

ably, 2) aligning the charts into a single global space based

on compatibility. It is the basic idea of atlas compatibility

transformation. Correspondingly, the two key problems we

will confront are how to chart the manifold reasonably and

how to find the translation maps that align patches into a

single global coordinate system.

The methods that deal with these two problems are the

main novelty of the ACT. For the first problem, the man-

ifold is divided into maximal linear patches (MLPs) based

on the curvature of the manifold. For the second prob-

lem, we seek for the proper mapping that maps each patch

to a global coordinate system. What we want to preserve

are the relationships among MLPs by minimizing the sum

of the coordinate errors of MLPs intersection areas in the

global coordinate system. Our alignment method follows

[6, 7]. The following two sections present the way to solve

these key problems in detail.

4 Manifold charting

In manifold definition, one open set on the manifold and

its homeomorphism mapping constitute one chart. In this

paper, an open set is called a patch of the manifold. Since

homeomorphism mapping maps the chart to a Euclidean

space, the patch should be flat. In other words, the patch

should be approximate to a linear space.

Several manifold methods, such as ISOMAP, LLE, LE,

usually define their patches on each data point by k-NN or

ε-ball, generally of fixed and small size. However, it may

divide a large linear patch into multiple smaller ones. Ev-

idently, these small patches could not depict the structure

of the manifold. Moreover, small changes to the size of the

trusted set can make the resulting embedding unstable in

some cases. Some efforts have been made to alleviate the

effect on the fixed neighborhood size[8, 10].

In this paper, based on the curvature of the manifold, we

divide the manifold into maximal linear patches adaptively

by measuring the degree of manifold curvature at each local

area. The curvature of manifold is estimated by the normal

vector filed of the scatter data points that distribute on the

manifold. Firstly, a neighborhood graph is constructed for

each point of the data. Then, PCA is utilized to obtain the

normal vector field of the manifold. The manifold curva-

ture can be also estimated at this step. Finally, manifold

is divided into MLPs by measuring the intersection angles

between neighborhood normal vectors by Cosine theorem.

In a practical project, the disordered high-sample im-

age set is the object that the manifold learning algorithm

deals with. Each image of the dataset corresponds to a

point in the high dimensional image space. Since there are

regularities when an object changes gradually, the points

that correspond to images lie on a manifold in the high

dimensional image space. Therefore, the treated object is

the scatted point cloud data. Lots of algorithms have been

proposed for estimating the curvature of the scatted point

cloud data[21]. Our method is listed below:

1) Constructing the neighborhood graph for each data

point by k-NN or ε-ball. Since each graph is “small”

enough, it could be regard as a local tangent space of the

point.

2) Utilizing PCA to find the eigenvalues and eigenvectors

of each neighborhood graph. Supposing P is a point on the

manifold and its k-neighborhood is Xp = [x1, x2, · · · , xk],
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we have

(XP − x̄eT) × (XP − x̄eT)T = QΛQT

x̄ = XP × e

N
, Q = [v1, v2, · · · , vn]

Λ = diag{λ1, λ2, · · · , λn}, e = [1, 1, · · · , 1
︸ ︷︷ ︸

k

]T (1)

where (X−x̄eT) is the centralized matrix, λ1, λ2, · · · , λn are

the eigenvalues with decent order, and v1, v2, · · · , vn are the

corresponding eigenvectors. Especially, n is the dimension-

ality of the original input space. Since the covariance matrix

(XP − x̄eT)× (XP − x̄eT)T is symmetric, all the eigenvalues

are positive real numbers and eigenvectors are pairwise or-

thogonal. In this case, the eigenvalue λi depicts the scatter

range of points that are in the neighborhood graph along vi

direction. Suppose d is the intrinsic dimensionality of the

manifold. Therefore, v1, v2, · · · , vd can be regard as a batch

of coordinate basis vectors of tangent space of P and vd+1

is the normal vector of point P . Hence, the normal vector

field can be obtained.

3) Estimate curvature scalar field of the manifold. It is

visible in Fig. 2 that the curvature at point P can be pre-

sented by

ck(p) =
λd+1

λ1 + λ2 + · · · + λd+1
. (2)

4) Chart the manifold. MLPs have two constrain con-

ditions: 1) Each patch should be approximated to a linear

space. 2) The patch should be the largest open set under

a certain curvature range. In order to meet the two condi-

tions above, firstly, a random point is selected as the center

of the first patch. Then, we calculate the intersect angels

between the vector of the center point and other normal

vectors by Cosine theorem:

cos(θ) =
nvc × nvT

r

nvc × nvT
c + nvr × nvT

r

, r = 1, 2, · · · ,m (3)

Patchi = {x|θc,x < θt‖θc,x > π − θt}. (4)

For each patch, the intersection angel θ is constrained to a

constant curvature range that we set in advance, where θt

is a threshold angel which can be adjusted by requirements

in different cases. The smaller θt is, the more charts are

divided. And each chart is more similar to a linear space.

In other words, the manifold is charted when θt is small.

On the contrary, the manifold is charted roughly when θt

has a big value.

5) Finally, a new center point is selected and a new patch

is divided by iterating the second step. The loop keeps run-

ning until all the data points are distributed into different

patches. It is worth noticing that we must guarantee there

Fig. 2 Manifold charting
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is an intersection area among adjacent patches. Two clas-

sical synthetic data sets, V-like shape data and Swiss-roll

data, are listed in Fig. 2 to show the effectiveness of our

method.

In Figs. 2 (a) and 2 (b), the blue points stand for the

dataset and red rows show the normal vector field of the

manifold that consists of cloud point data. In Figs. 2 (c)

and 2 (d), the color depicts how the manifold is twisted.

The points with hot color stands for the high curvature. On

the contrary, the cool color points stand for the flat area.

In Figs. 2 (e) and 2 (f), the final results of manifold chart-

ing are shown. Different patches are labeled with different

colors. It is obvious that each patch holds the maximal

linear structure. In Figs. 2 (e), the V-like shape data are

mainly consisted of two linear patches. In Fig. 2 (f), since

the curvature of inner circle is larger than the outer one′s,
the patches at the inner circle is smaller than the ones at

the outer circle.

Remark 1. The intrinsic dimensionality of the mani-

fold is a critical problem in manifold learning. Intuitively,

we always observe a d-dimensional manifold in a d+1-

dimensional surrounding Euclidean space which is called

ambient space in mathematics. In real world data, the di-

mensionality of the manifold corresponds to the variation

degree of freedom of the object. Similar to the classical

methods[1, 11], the true dimensionality of the manifold can

be estimated by the residual variance of PCA as applied to

the neighborhood graph constructed in Step 1.

Generally speaking, the dimensionality of the input space

is extremely larger than that of the ambient space. In our

experiments, PCA is utilized to reduce the dimensionality

of the input dataset to ambient space before manifold chart-

ing. The delightful fact is that the ambient space can be

estimated after linear dimensionality reduction. It has two

advantages. The first one is that the dimensionality of the

ambient space is theoretically one more than the manifold

intrinsic dimensionality. It could ensure the correctness of

the intrinsic dimensionality of the manifold that has been

estimated. The second one is that the normal vectors of

data points are unique in the ambient space.

Remark 2. The number of intersection data points of

adjacent charts should be more than d (the intrinsic di-

mensionality of the manifold). d equations are needed to

determine the parameters of d× (d+ 1) translation matrix.

5 Alignment

We assume that the manifold F is divided into n-th

patches {P1, P2, · · · , Pn} after Section 4. The following

problem is how to align them in a global coordinate system.

In manifold definition, there are intersection areas between

adjacent patches. It is evident that the intersection data

points from different patches should have the same coordi-

nates in the global coordinate system. Therefore, in this

paper, a global coordinate system is constructed by mini-

mizing coordinate divergence of the intersection data points

in the global coordinate system. The process is listed below.

Step 1. Calculating the local coordinates of each patch

(homeomorphism mapping). Let Pi = {xi
1, x

i
2, · · · , xi

k} be

a matrix of data points in the i-th patch. The local coordi-

nates satisfy

min
x,θ,Q

k∑

j=1

‖xi
j − (x̄j +QT

i θj)‖2 = min
x,θ,Q

‖Pi − (xeT +QT
i θ)‖2

(5)

where Q is the d left singular vectors of Pi(I − 1
k
eeT) cor-

responding to its d largest singular values, d is the intrinsic

dimensionality of the manifold. The local coordinates of θi

are

Θi = QiPi

(

I − 1

k
eeT

)

=

[θi
1, θ

i
2, · · · , θi

k], θi
j = Qi(x

i
j − x̄i). (6)

Step 2. Constructing object function and constraint

condition. Suppose P ij is the intersection point set of

adjacent patches Pi and Pj . The point′s local coordi-

nates of these two patches are θi
int = {θi

1, θ
i
2, · · · , θi

m} and

θj
int = {θj

1, θ
j
2, · · · , θj

m}, m is the number of points in P ij .

However, in global coordinate system, intersection points

should be coincided with

riθ
i
int + li + E = rjθ

j
int + lj + E ⇔

Θi
intRi − Θj

intRj = Ec ⇔

[Θi
int,−Θj

int]

[
Ri

Rj

]

= Ec ⇔

Eeu = ET
c × Ec

Θi
int =

⎡

⎢
⎢
⎢
⎣

(θi
1)

T 1

(θi
2)

T 1

· · · · · ·
(θi

m)T 1

⎤

⎥
⎥
⎥
⎦

Ri =

[
rTi

lTi

]

(7)

where ri is a rotation matrix and li is a offset matrix for

Pi, Ec is coordinate components error of the intersection

points of pij , and Eeu is the summation of Euclidean dis-

tance errors of intersection points. Therefore, to obtain an

optimum global coordinate system, we seek to find proper

Ri to minimize the summation of Euclidean distance errors

of all the intersection points that are from adjacent patches.

E =

⎡

⎢
⎢
⎢
⎣

E1
c

E2
c

· · ·
En

c

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X1,2
int

· · ·
X1,n

int

X2,2
int

· · ·
X2,n

int

· · ·
Xn,n

int

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎣

R1

R2

· · ·
Rn

⎤

⎥
⎥
⎥
⎦

= XR
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e =

n∑

i=1

Ei
eu = ET × E = RTXTXR

Xi,j
int =

[0, 0, · · · , 0
︸ ︷︷ ︸
(i−1)×(d+1)

,Θi
int, 0, 0, · · · , 0

︸ ︷︷ ︸
(j−i−1)×(d+1)

,−Θj
int, 0, 0, · · · , 0

︸ ︷︷ ︸
(n−j−1)×(d+1)

]

(8)

where Θi
int and Θj

int are changed simultaneously at either a

different i or j.

Suppose the global coordinates of data points we will

construct are T = {t1, t2, · · · , tn}. To uniquely deter-

mine T , we impose a constrain condition TTT = Id.

And for each patch, the global coordinate coordinates is

Ti = {ti1, ti2, · · · , tim}. The relationship between global co-

ordinates and local coordinates are Ti = RT
i Θi, where Θi

is the local coordinates of data points in patch i that are

obtained from (6).

T =

⎡

⎢
⎢
⎢
⎣

R1

R2

· · ·
Rn

⎤

⎥
⎥
⎥
⎦
×

[
Θ1 Θ2 · · · Θn

1 1 · · · 1

]

⇒

TTT = RTΘΘTR. (9)

Therefore, in our paper, the cost function ξ and con-

straint condition C are

ξ : mine = RTXTXR (10)

C : RTΘΘTR = I. (11)

It is worth pointing out that the cost function is convex.

Therefore, the solution to this problem is given by the small-

est generalized eigenvectors v with (XTX)v = λ(ΘΘT)v.

The optimal R is given by the d eigenvectors corresponding

to the 2nd to (d+1)-th smallest generalized eigenvectors.

Remark 3. The relationship among homeomorphic

mapping, affine mapping and translation mapping is illus-

trated in Fig. 3. The homeomorphic mapping ψ is obtained

from (6), which maps the patch into the n-dimensional Eu-

clidean space. Piψi is a chart in the manifold definition. Ri

is the optimal affine mapping that maps the i-th coordinate

system into the global coordinate system. The translation

mappings between the i-th and j-th patches in local coor-

dinate systems and global coordinate system are ψi ◦ ψ−1
j

and (ψiRi) ◦ (ψjRj)
−1, respectively. It is worth noticing

that all maps are invertible.

Fig. 3 The relationship between homeomorphic mapping, affine

mapping and translation mapping

Remark 4. The intersection points that belong to dif-

ferent patches have different global coordinates. In this

paper, we take their average value as their global coordina-

tes.

Remark 5. It could map the input space to the am-

bient space firstly by a linear mapping Q, then calculate

the homeomorphic mapping and affine mapping in this

space.

6 Experimental results

In this section, the experiments are divided into three

parts to show the effectiveness of the ACT. Firstly, the noise

synthetic data and fragment synthetic data are utilized to

show the effect of the ACT in preprocessing of manifold

learning. Secondly, we test the ACT on six synthetic data

sets. At last, two face data sets are utilized to test the

effect of the ACT on dimension reduction and data recon-

struction. Some of the compared results are generated by

the Mani Matlab demo[22].

6.1 Experiment on noise data and frag-
ment data

The characteristics of ACT are illustrated for dealing

with noise data and fragment data, respectively. As men-

tioned above, the noise data and fragment data may cause

unwilling results for dimensional reduction. “V” data and

“Swiss-roll” data with noise and fragment are utilized to

show this in Figs. 4 and 5.

For generating noise data, ten random points in syn-

thetic data set are additive white Gaussian noise in range

of [−3, 3] at z-axis direction. It can be seen from Fig. 4 (a)

that the three methods (MDS, Isomap, and Diffusion map)

yield good results and the other methods give incorrect re-

sults. In Fig. 4 (b), it is obvious that these methods produce

an satisfactory results. Moreover, the Hessian LLE could

not get results in these two datasets when the parameter

KNN = 8. Moreover, in other experiments, different types

of noise are added to synthetic data sets and the dimension-

ality reduction results are poor and unpredictable in most

cases. Therefore, identifying and removing noise data is

essential in preprocessing.

Since the curvature of local area that contains noise point

jumps much higher than that of the neighborhood area,

the noise data can be identified by curvature with sudden

change. In this paper, the curvature of data sets can be

estimated in Section 4.2 which could locate the noise points

roughly. In Figs. 4 (c) and 4 (d), the 200 and 400 largest cur-

vature value points are marked respectively. It can be seen

that the noise points are pointed out entirely in Fig. 4 (c)

and the main noise points are marked in Fig. 4 (d). Since

the curvature is estimated in a local area by the ratio of

eigenvalue, the neighborhood data points have the same

curvature value with the noise point. Therefore, these data

points are also marked in Fig. 4. It is worth noticing that

these neighborhood points can be removed by subsequent

processes.
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Fig. 4 Dimensionality reduction for noise data

Fig. 5 Dimensionality reduction for fragment data

For fragment data, we remove some data points from the

synthetic data sets. It can be seen from Fig. 5 that the

two methods (MDS and Diffusion map) generate satisfac-

tory results in Fig. 5 (a) and another two methods (Hessian

LLE and LTSA) produce good results in Fig. 5 (b). Same as

noise data, there is no method that could get satisfactory re-

sults for all fragment data sets. Therefore, how to fill up the

missing data is also an important problem in preprocessing.
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In this paper, after dividing the manifold into maximal lin-

ear patches, the distribution of missing data points can be

estimated by the neighborhood patches. We select the pa-

rameter equal to 40 degrees as utilized in Section 4.3 and it

can be seen that the manifolds are properly charted. Since

the coordinate basis of each patch is calculated by (5), the

basis vectors of the area that miss data point distribution

can be simply estimated by linear combination.

6.2 Experiment on synthetic data

To evaluate the performance of our ACT, we test it

on five classical synthetic data sets and compare the re-

sults with eight classical dimensionality reduction meth-

ods. In our experiments, each synthetic datasets consists

of 1600 data points. The number of nearest neighborhoods

KNN = 8 and target dimension d = 2. In ACT, the param-

eter in (4) is set to 30 degrees. The efficient method could

preserve the intrinsic geometrical structure of the manifold

after dimensional reduction.

It can be seen from Fig. 6 that the ACT could produce

correct results except punctured sphere data, which per-

forms as well as the LSTA. Moreover, it could depict the

linear structure of the manifold when the manifold has vis-

ible linear structure, which is shown with different colors in

Figs. 6 (a)–(c). PCA and MDS just suit to deal with linear

datasets and cannot unfold manifold with nonlinear struc-

ture. Other methods are unstable on different datasets.
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Fig. 6 Results comparison on synthetic data sets

Fig. 7 Two-dimensional embedding of ACT of Isomap face data

using ACT

To evaluate our ACT algorithm on image datasets, two

data sets (ISOMAP face data and LLE face data) are used

to perform dimensionality reduction. The following figures

show results in detail.

Isomap face image set consists of 698 pixel images, in

which a 3D face model changes with pose and lighting con-

dition. Each image is converted to an m = 4096 dimen-

sional image vector. We apply the ACT with degree = 40

and d = 2. The result of dimension reduction is shown in

Fig. 7. Three paths along the boundaries are extracted. In

Fig. 6, the three image rows from top to bottom correspond

to lines 1, 2 and 3, respectively. It can be seen that the

pose and lighting variations can be depicted by the low-

dimensional coordinate system.

The LLE face image set consists of 1965 pixel images

that are 28×20, in which a single person strikes a variety

of pose and expressions. Each image is converted to an

m = 560 dimensional image vector. We apply the ACT

with degree = 40 and d = 2. The result of dimension re-

duction is shown in Fig. 8. Two patches are extracted which

correspond to two image rows below Fig. 8. It can be seen

that the horizon axis depicts the variation of face rotation

and the vertical axis reflects the expression changes.

7 Conclusions and future work

A manifold learning method (atlas compatibility trans-

formation) is proposed. Firstly, the manifold is divided into

maximal linear charts based on normal vector field. Then,

charts are aligned into a global coordinate system by min-

imizing the error of intersection areas among patches. Our

method can preserve both local geometry and global struc-

ture of the manifold. Compared with previous manifold

learning algorithms, the ACT could deal with noise datasets

and fragment datasets. Moreover, it more corresponds to

the manifold definition in differential geometry. And the

incremental-learning problem is solved by given invertible
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maps between high input space and low embedding space.

Experimental results indicate that the ACT could get ex-

cellent performance on both synthetic and real data sets.

It is worth pointing out that intersection area between

charts has great impact on the dimensional reduction re-

sults. Hence, how to select intersection area is interesting

in future work. Moreover, in 1956, Stein showed that Eu-

clidean distance is not the best measurement manner in a

high-dimensional space. Therefore, adopting different dis-

tance is another research direction.

Fig. 8 Two-dimensional embedding of LLE face data using ACT
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