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Abstract: In this paper, local stability and performance analysis of fractional-order linear systems with saturating elements are

shown, which lead to less conservative information and data on the region of stability and the disturbance rejection. Then, a standard

performance analysis and global stability by using Lyapunov′s second method are addressed, and the introduction of Lyapunov′s
function candidate whose sub-level set provide stability region and performance with a restricted state space origin is also addressed.

The results include both single and multiple saturation elements and can be extended to fractional-order linear systems with any

nonlinear elements and nonlinear noise that satisfy Lipschitz condition. A noticeable application of these techniques is analysis of

control fractional-order linear systems with saturation control inputs.
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1 Introduction

Recently, great attention has been paid to the analysis

of fractional order control systems. There are attractive

papers about stability and stabilization of fractional order

systems including stability of linear fractional order sys-

tem depending on location of system poles in the complex

plane. In general, poles location analysis is a difficult task.

Li et al.[1] proposed the definition of Mittag-Leffler stabil-

ity and introduced the fractional Lyapunov direct method

(also called the Lyapunov′s second method) that provides

a way to analyze the stability of system without explicitly

solving the differential equations. Lyapunov stability of the

fractional differential equation was addressed and two ap-

proaches were presented: The direct one is intuitive but it

leads to a large dimension parametric problem, while the

indirect one is based on the continuous frequency distribu-

tion, leading to a parsimonious solution[2].

An interesting application of stability analysis of the

Lyapunov′s theory is linear matrix inequalities (LMI) condi-

tion. This condition was investigated under commensurate

order hypothesis[3]. A remarkable example demonstrated

the advantage of fractional calculus in characterizing sys-

tem behavior[4]. The stability of fractional-order nonlin-

ear dynamic systems was studied using the Lyapunov di-

rect method with the introduction of Mittag-Leffler stability

and generalized Mittage-Leffler stability notion. With the

proposed definitions, the decaying speed of the Lyapunov′s
function can be more generally characterized by including
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the exponential stability and power-low stability. The de-

cay of generalized energy of a dynamic system does not

have to be exponential for the system to be stable[5]. This

means that the energy decay actually could be of any rate,

including power-low decay. The stability and stabilization

problem of the fractional order linear system with nonlinear

uncertain parameters was investigated and sufficient condi-

tion for the stability and stabilization of such a fractional-

order model were presented in terms of LMI[6]. Delavari

et al.[7] studied stability analysis of fractional order non-

linear systems and proposed an extension of Lyapunov′s
second method for fractional-order systems using Bihari′s
and Bellmam-Gronwall′s inequality. Also, Delavari et al.[8]

proposed a fractional order controller for nonlinear systems.

In this method, the fractional controller converts the sys-

tem with integer derivative into a system with desired frac-

tional derivatives in order to increase the degree of freedom

of stability. Extension of fractional order calculus in control

is the enclosed polytopic system[9], switched systems[10, 11]

and nonstandard finite difference schemes for a fractional-

order Brusselator system[12], etc. Additionally, the frac-

tional calculus plays an important role in many chemical

processes, physical phenomena, engineering systems, such

as nanotechnology, viscoelastic material systems, quantum

evolution of complex systems, robotics, signal processing

and system identification, anomalous diffusion and wave

propagation[13−30] .

We mentioned some important papers about stability or

application of fractional-order systems, but no paper has

been addressed to analyze the fractional-order saturation

systems. Because actuator saturation constitutes a fun-

damental limitation of many real systems and if ignored,

it may cause undesired response or closed-loop instability,



E. S. Alaviyan Shahri and S. Balochian / Analysis of Fractional-order Linear Systems with Saturation · · · 441

thus its study becomes necessary. Obviously, it is absolutely

an open problem in the fractional calculus field.

Like most of the references, this paper has employed the

Lyapunov′s direct method for investigating stability. Fur-

thermore, we know that stability analysis is not sufficient for

programming and planning operation of nonlinear systems.

And in many applications, computing the region of attrac-

tion and disturbance rejection is necessary. We will obtain

stability conditions of fractional-order linear systems with

actuator saturation and persistent disturbance. Then, we

will find the region of attraction and disturbance rejection

by using optimization based on the desired stability condi-

tions. The proposed optimization problems give maximum

volume invariant ellipsoid.

This paper is organized as follows. Information related

to fractional-order derivative is given in Section 2. Problem

statement is given in Section 3. Stability analysis and re-

gion of attraction in Section 4 and stability analysis and dis-

turbance rejection in Section 5 are studied by Lyapunov′s
second method and optimization. Finally, the results are

shown using an illustrative example.

2 Information related to fractional-

order derivative

In this section, the main definitions concerning

fractional′s derivative are outlined.

Definition 1[18, 19, 26]. (Reimann-Liouvill′s fractional

derivative). Reimann-Liouvill′s fractional derivative of q-

th order where n − 1 < q < n is as

0D
q
t f(t) =

1

Γ(n − q)

(
d

dt

)n ∫ t

0

f(τ )

(t − τ )q−n+1
dτ (1)

where n is the first integer larger than q. Subscripts 0 and t

denote the two limits related to the operation of fractional

derivation.

Γ(q) =

∫ +∞

0

e−ttq−1dt (2)

where Γ(.) is the Gamma function generalizing factorial for

non-integer arguments. It converges in the right half of

complex plane.

Definition 2[18, 19, 26] (Caputo fractional deriva-

tive). Caputo fractional derivative of q-th order is

C
0 Dq

t f(t) =
1

Γ(n − q)

∫ t

0

f (n)(τ )

(t − τ )q−n+1
dτ. (3)

It has been shown that there is a physical interpretation

for initial values of Reimann-Liouvill fractional derivative

and the interpretation of initial values of Caputo derivative

is the same as in the classical integer-order case. We shall

use Reimann-Liouvill definition throughout the paper.

Remark 1[26]. In fractional order calculus, the rule for

differentiating a product of two functions is

Dq [f g] =
∞∑

k=0

(
q

k

)
Dk[g] × Dq−k[f ], q > 0. (4)

Remark 2[17]. The q-th order fractional derivative of

function g(x(t)) = x2(t) with respect to t is given by

0D
q
t g(x(t)) = x(t) × 0D

q
t x(t) + Lb (5)

where

Lb=
∞∑

k=1

Γ(1 + q)

Γ(1 + k)Γ(1 − k − q)
0D

k
t x(t) × 0D

q−k
t x(t) (6)

with the following boundedness

‖Lb‖ ≤ β ‖x‖2 (7)

where β is a positive real number.

By considering Remarks 1 and 2, the following remark

can be concluded.

Remark 3. The q-th order fractional derivative of func-

tion V (x(t), t) = xTPx with respect to t is

0D
q
t V (x, t) = xTP 0D

q
t x(t) + Lx (8)

where P is a positive definite matrix and

Lx =

∞∑
k=1

Γ(1 + q)

Γ(1 + k)Γ(1 − k − q)
0D

k
t x(t)P 0D

q−k
t x(t). (9)

We could consider the following boundedness condition

‖Lx‖ ≤ δ ‖x‖2 (10)

where δ=βν and ν is the largest of egenvalues of P .

3 Problem statement

Consider the fractional-order linear system with a decou-

pled block of saturator described by

Dq
t x(t) = Ax(t) + Bsat(u(t)) + Dw(t, x)

u(t) = Cx (11)

where x ∈ Rn is the state, u ∈ Rm is the control input,

w ∈ Rnw is function disturbance that is Lipschitz in x, and

A, B, D and C are known real constant matrices of appro-

priate dimensions.

Remark 4[29−31]. Function g : ℵ → Rs,ℵ ⊆ Rn, is said

to be L-Lipschitz L > 0, if

|g(a)− g(b)| < L |a − b| . (12)

For any pair of points a, b ∈ ℵ, furthermore, we say that

a function is Lipschitz if it is L-Lipschitz for some L.

sat(·) denotes the normalized unit saturation function

and defined by

sat(Cx) = [sat(Cix) sat(Cix) · · · sat(Cix)]

i = 1, 2, · · · , m

sat(Cix) =

⎧⎪⎨
⎪⎩

1,

Cix,

−1,

Cix > 1

|Cix| ≤ 1

Cix < −1.

(13)
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Remark 5. The saturation function is Lipschitz in x

with Lipschitz constant λ, i.e.,

‖sat(x2) − sat(x1)‖ ≤ λ ‖x2 − x1‖ . (14)

Let x lie in the region of

� = {x| |Cix| ≤ ri} , i = 1, 2, · · · , m, r ∈ Rm. (15)

If r = 1 =
[

1 1 · · · 1
]T

, the given system has a

linear model, but we are interested in studying nonlinear

models.

Definition 3[32−34]. If the initial state x0 belongs to

any set D ⊆ � such that limt→∞ x(t) = 0, with w ≡
0, then D will be called an r-level guaranteed region of

attraction.

Definition 4[32−34]. If x0 ≡ 0 and for any number α,

‖w‖2
2 ≤ α, under the condition

lim
t→∞

x(t) = 0 (16)

with x(t) ∈ R, ∀t > 0, then we have r-level disturbance

rejection bounded.

Our objectives are to find the largest number α and the

largest region of attraction, D. In fact, we want to compute

the r-levels:

1) r-level guaranteed region of attraction D;

2) r-level disturbance rejection.

Furthermore, we would like our objectives not to be con-

servative.

Remark 6[32]. For any candidate of Lyapunov′s func-

tion as V = xTPx , where P ∈ Rn×n is a positive definite

matrix, ξP (α) = {V < α} denotes α-sublevel ellipsoid. It

can be shown that volume of ellipsoid is proportional to

αn det(P ).

Lemma 1[32, 33]. Let V = xTPx, P = PT > 0 be

Lyapunov′s function, F be a row vector in Rn and c be

a nonzero scalar. Then, the minimum of ξP (α) = {V ≤ α}
along the hyper plane {x|Fx = c} has

α =
c2

FP−1FT
. (17)

Remark 7. For our objective, the necessary and suf-

ficient condition for sublevel set ξP (α) containing in the

region � is

α = min
r2

i

CiP−1CT
i

(18)

where Ci is the i-th row of C.

4 Stability analysis and region of at-

traction

Our first concern is to find the stability condition and to

compute the region of attraction when w ≡ 0.

Let the linear model be

� = {x| ‖Cx‖ ≤ 1} (19)

and the nonlinear model

� = {x| ‖Cx‖ ≤ r} , r > 1. (20)

They are studied separately.

Remark 8. For fractional-order systems, the exponen-

tial stability cannot be used to characterize the asymptotic

stability, then a definition must be presented for fractional-

order systems.

Consider the following nonautonomous fractional-order

system

Dq
t x = F (x(t), t) (21)

where F is a nonlinear function.

Definition 5[3]. t−α-stability: Trajectory x(t) = 0 of

system (21) is t−α asymptotically stable if the system is

uniformly asymptotically stable and there are positive real

t0, N and α such that

‖x(t)‖ < N(t − t0)
−α, t > t0. (22)

4.1 Linear analysis

Since system (11) never saturates in its region, the closed-

loop system behaves as

Dq
t x(t) = (A + BC)x(t). (23)

Theorem 1[3]. The following system

Dq
t x(t) =

∧
Ax (24)

is t−α asymptotically stable if and only if there exists a

positive definite matrix P such that

(−(− ∧
A)

1
2−q )P + P (−(− ∧

A)
1

2−q ) < 0 (25)

where (− ∧
A)

1
2−q is defined as e

1
2−q

log(− ∧
A).

Lemma 2. Fractional system (23) with order 0 < q < 1

is asymptotically stable iff there exists a positive definite

matrix P such that

(−(−(A + BC))
1

2−q )TP + P (−(−(A + BC))
1

2−q ) < 0.

(26)

Proof. System (23) is a fractional-order linear model,

and by changing the following variable Acl = A + BC, the

system is converted to

Dq
t x(t) = Aclx(t). (27)

Thus, for system (27),

(−(−Acl)
1

2−q )P + P (−(−Acl)
1

2−q ) < 0. (28)

�
Remark 9. This lemma provides the condition that the

closed-loop system is in the stability region.

Optimization problem 1 (Region of attraction). For sys-

tem (23), a 1-level region of attraction D is given by the

maximum volume invariant ellipsoid ξP (1) containing in re-

gion �.
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We can compute it by solving the following convex opti-

mization problem in variable Q, where Q = P−1.

max logdet (Q)

s.t. CiQCT
i ≤ 1, i = 1, 2, · · · , m

Q > 0

Q(−(−(A + BC))
1

2−q )T + (−(−(A + BC))
1

2−q )Q<0.

(29)

Then ξP (1) is the largest invariant ellipsoid containing

the region of attraction.

4.2 Nonlinear analysis

Since system (11) could be saturated in its region, the

closed-loop system is in � = {x| ‖Cx‖ ≤ r}. It behaves

like

Dq
t x(t) = Ax(t) + B sat(Cx)

x ∈ � ⇔ |Cix| ≤ r, i = 1, 2, · · · , m. (30)

By using the following theorem and lemma, we could ob-

tain the first concern, i.e., the stability condition for system

(30).

Theorem 2[1] (The fractional Lyapunov′s second

method). Let x = 0 be an equilibrium point of the fol-

lowing system

Dq
t x(t) = g(x, t). (31)

Let V (x(t), t) be a candidate of the Lyapunov′s func-

tion that is a continuously differentiable function and lo-

cally Lipschitz with respect to x, and βi(i = 1, 2, 3) be

Class κ function satisfying

β1(‖x‖) ≤ V (x(t), t) ≤ β2(‖x‖) (32)

Dq
tV (x(t), t) ≤ −β3(‖x‖) (33)

where q ∈ (0, 1), then lim
t→∞

x(t) = 0.

Lemma 3[16, 17]. Let M and N be real vectors of the

same dimension. For any scalar r > 0,

MTN ≤ rMTM + r−1NTN. (34)

Theorem 3. System (30) is stable if and only if there

are a symmetric positive define matrix P > 0 and three

scalars r > 0, δ > 0 and λ> 0 such that

PA + rPBBTP + (r−1λ2 + δ)I < 0 (35)

where λ is a Lipschitz constant and I is an identical matrix

with appropriate dimension. Also δ satisfies (10).

Proof. Consider the following Lyapunov′s candidate

that satisfies (32)

V = xTPx. (36)

On the basis of Remark 3, we take the fractional deriva-

tive of (36)

Dq
t V = xTP 0D

q
t x + Lx (37)

where

Lx =
∞∑

k=1

Γ(1 + q)

Γ(1 + k)Υ(1 − k − q)
0D

k
t x(t)P 0D

q−k
t x(t).

(38)

According to (10),

‖Lx‖ ≤ δ ‖x‖2 . (39)

By substituting (30) into (37),

0D
q
t V = xTP (Ax + Bsat(Cx)) + Lx =

xTPAx + xTPBsat(Cx) + Lx. (40)

Applying Lemma 3,

xTPAx + xTPBsat(Cx) + Lx ≤
xTPAx + rxTPBBTPx+

r−1 [sat(Cx)]T [sat(Cx)] + Lx (41)

and using (14) and (39),

0D
q
t V ≤ xT(PA + rPBBTP + (r−1λ2 + δ)I)x. (42)

According to (33), the system is stable when (35) holds.

This theorem provides a stability condition for fractional-

order linear systems with any saturation actuator such as

hyperbolic tangent sigmoid. Also, it applies to investigation

stability condition for fractional-order systems nonlinear el-

ement that is Lipschitz in x.

Optimization problems 2 (Region of attraction).

For system (30), on the basis of Remarks 6 and 7, the max-

imum volume invariant ellipsoid gives the r-level region of

attraction D.

This could be computed by solving the following opti-

mization problem in variable P > 0.

min P

s.t. CiP
−1CT

i ≤ rT
i

P ≥ 0

PA + rPBBTP + (r−1λ2+δ)I < 0

r > 0, δ > 0. (43)

By changing variable and cost function, this problem is

converted into the convex optimization problem:

Optimization 3 (Region of attraction).

max logdet(Q)

s.t. CiQCT
i ≤ rT

i

Q ≥ 0

AQ + rBBT + θI ≤ 0

θ > 0 (44)

where

θ= (r−1λ2 + δ)

Q = P−1. (45)
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ξP (1) is the largest region of attraction and contains the

region �. We could use a cost function depending on the

application. Trace (Q) can be used instead of the maxi-

mized function that corresponds to maximizing the sum of

the square of the major axes of ξP (1).

5 Stability analysis and disturbance re-

jection

Consider the closed-loop fractional-order system

Dq
t x(t) = Ax + Bsat(Cx) + Dw(t, x) (46)

where w(t, x) is disturbance function that is Lipschitz in x,

with the Lipschitz constant Lw satisfies

‖w(x1, t) − w(x2, t)‖ ≤ Lw ‖x1 − x2‖ . (47)

We are interested in getting the stability condition of sys-

tem (46). The following theorem and optimization problem

are given for the desired stability condition and disturbance

rejection for nonlinear saturation model and linear model

consequently.

If the system could be saturated in its region, then we

would consider (46) and study the stability condition and

compute disturbance rejection by the following theorem and

optimization problem.

Theorem 4. System (46) with 0 < q < 1 is stable if and

only if there are a symmetric positive definite matrix P ≥ 0

and five scalars s ≥ 0, r ≥ 0, λ > 0, Lw > 0 and δ > 0 such

that

PA + rPBBTP + sPDDTP + (r−1λ2 + s−1L2
w + δ)I ≤ 0

(48)

where λ > 0 and Lw > 0 are the saturation Lipschitz con-

stant and the disturbance Lipschitz constant, respectively,

s ≥ 0 and r ≥ 0 are positive real numbers and δ > 0 sat-

isfies (39). Also I is an identical matrix with appropriate

dimension.

Proof. Using the Lyapunov′s candidate (36) and taking

the fractional derivative of it and substituting (46), we get

Dq
t V = xTP (Ax + Bsat(Cx) + Dw) + Lx (49)

where (38) and (39) hold. We obtain

Dq
t V = xTPAx + xTPB sat(Cx) + xTPDw + Lx. (50)

Considering Lemma 3, we have

Dq
t V ≤ xTPAx + rxTPBBTPx+

r−1 [sat(Cx)]T [sat(Cx)]+

sxTPDDTPx + s−1wTw + Lx. (51)

Using inequalities (14), (39) and (47), we have

Dq
t V ≤ xT(PA + rPBBTP + r−1λ2I+

sPDDTP + s−1L2
wI)x + Lx ≤

xT(PA + rPBBTP + sPDDT P+

(r−1λ2 + s−1L2
w + δ)I)x. (52)

On the basis of (33), the system is stable iff (48) holds.

�
This theorem gives us a condition of stability for

fractional-order linear systems with saturation control

whenever there exists disturbance. Now, we obtain distur-

bance rejection of the system by the following optimization

problem.

Optimization problem 4 (Disturbance rejection).

For system (46), α is the largest r-level disturbance rejec-

tion by considering α = 1
t∗ . Also, t∗ could be computed.

min t

s.t. P ≥ 0, r > 0, s > 0, Lw > 0, λ > 0, δ> 0 and t > 0

CiP
−1CT

i ≤ rT
i t

PA + rPBBTP + sPDDTP+

(r−1λ2 + s−1L2
w + δ)I ≤ 0 . (53)

By changing variables, this problem converts into the

convex optimization problem.

Optimization problem 5 (Disturbance rejection).

min t

s.t. Q > 0, r > 0, s > 0, θ > 0 and t > 0

CiQCT
i ≤ rT

i t

AQ + rBBT + sDDT + θI ≤ 0

Q = P−1 and θ = r−1λ2 + s−1L2
w + δ. (54)

ξP (α) gives us the largest disturbance rejection and also

ξP (α) ⊆ � whenever x(0) ≡ 0 and ‖ w‖2
2 ≤ α, then the

trajectory of the system will never abandon ξP (α).

If the system never saturates in its region, the closed-loop

system (46) behaves as

Dq
t x(t) = (A + BC) + Dw(t, x). (55)

Lemma 4. System (55) with 0 < q < 1 is stable if and

only if there are a symmetric positive definite matrix P ≥ 0

and two scalars s ≥ 0 and δ > 0 such that

PAcl + sPDDTP + (s−1L2
w + δ)I ≤ 0 (56)

where

Acl = A + BC. (57)

Proof. Considering the Lyapunov candidate (36) and by

taking fractional derivative of it and substituting (55), we

get

Dq
t V = xTP (Aclx + Dw) + Lx =

xTPAclx + xTPDw + Lx (58)

where (38) and (39) hold.

By using Lemma 3, we have

Dq
t V ≤ xTPAclx + sxTPDDTPx + s−1wTw + Lx. (59)

Using inequalities (39) and (47), we have

Dq
t V ≤ xTPAclx + sxTPDDTPx + xT(s−1L2

w + δ)x =

xT(PA + sPDDTP + (s−1L2
w + δ)I)x. (60)
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The system is stable iff (56) holds. �
This lemma provides a stability condition for fractional

linear systems whenever control is not saturated and there

exists disturbance.

Optimization problem 6 (Disturbance rejection).

For system (55), α is the largest 1-level disturbance rejec-

tion that could be computed.

α= min
1

CiP−1CT
i

, i = 1, 2, · · · , m

P > 0, s > 0, Lw > 0 and δ > 0

P (A + BC) + sPDDTP + (s−1L2
w + δ)I ≤ 0. (61)

Furthermore, this optimization problem can be converted

into a convex optimization problem by changing variables

as

min t

s.t. Q > 0, s > 0 and θ > 0

CiQCT
i < t

(A + BC)Q + sDDT + θI ≤ 0 (62)

where

Q = P−1, t =
1

α
and θ = s−1L2

w + δ.

Also, ξP (α) ⊆ � whenever x(0) ≡ 0 and ‖w‖2
2 ≤ α, then

the trajectory of the system will never abandon ξP (α).

6 Example

We use an example to illustrate our results. The system

is described by (11) with

A =

[
−20 1

−10 0

]
, B =

[
2

−1

]

C =[ 1 5 ] , D =[ 2 1 ]

with w =

[
sin(2x1)

e−x1

]
when � = {x| |Cx| ≤ 4} .

(63)

First, we compute the desired region of attraction for the

given system. By solving (29) and (44), we get

r∗44 = 0.277, θ∗
44= 2.9301 × 10−3

and the maximal ellipsoids are ξP∗(1), where

P ∗
44 =

[
0.8407 −0.0213

−0.0213 8.9864

]

P∗
29 =

[
3.7479 3.0569

3.0569 26.3774

]
. (64)

Fig. 1 shows a 4-level region of attraction by the bold

ellipsoid and 1-level region of attraction by the dot ellipsoid.

To find the region of disturbance rejection when the system

is saturated and when it is non-saturated, we solve (54) and

(62). We get

P ∗
54 =

[
0.1629 −0.2007

−0.2007 1.7203

]
× 1012

α∗
54 = 1.1289 × 1011

P ∗
62 =

[
0.1031 −0.5254

−0.5254 7.1032

]
× 1013

α∗
62 = 2.6810 × 1011 (65)

with

r∗54 = 2.5412 × 10−12

s∗54 = 3.5358 × 10−13

θ∗
54 = 1.9926 × 10−12

s∗62 = 7.5387 × 10−14

θ∗
62 = 4.9787 × 10−13. (66)

These give us the largest disturbance rejection when the

system is saturated or not. If ‖w‖2
2 ≤ α, α = 1

t∗ , then the

trajectory of the system will never abandon ξQ−1(α). See

the ellipsoid in Fig. 2. It shows the 4-level disturbance rejec-

tion by the bold ellipsoid and 1-level disturbance rejection

by the dot curve.

Fig. 1 Region of attraction

Fig. 2 Disturbance rejection
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7 Conclusions

In this paper, the Lyapunov′s second method has been

used for the fractional-order linear system with saturation

to obtain the sufficient stability condition. A set of tools for

performing local stability and performance analysis for the

systems have been presented. This method could be used

for fractional-order linear systems with any nonlinear ele-

ments that are Lipschitz in x. Our results are formulated in

terms of LMI and lead to efficient computations. Also, the

proposed LMI method is used for estimating the region of

disturbance rejection of fractional order linear system with

saturation element. Optimization problems are proposed

for estimation of region of attraction and disturbance re-

jection. Finally, an illustrative example is shown for the

effectiveness of the presented method when the given sys-

tem is saturated or not.
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