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Abstract: The most common reason for blindness among human beings is Glaucoma. The increase of fluid pressure damages the

optic nerve which gradually leads to irreversible loss of vision. A technique for automated screening of Glaucoma from the fundal retinal

images is presented in this paper. This paper intends to explore the significance of both the approximate and detail coefficients through

wavelet packet decomposition (WPD). Decomposition is done with “db3” wavelet function and the images are decomposed up to level-3

producing 84 sub-bands. Two features, the energy and the entropy are calculated for each sub-band producing two feature matrices

(158 images × 84 features). The above step is purely a statistical measure based on WPD. To enhance the diagnostic accuracy, the

second phase considers the structural (biological) region of interest (ROI) in the image and then extracts the same features. It is worthy

to note that direct biological features are not extracted to eliminate the drawbacks of segmentation whereas the biologically significant

region is taken as biological-ROI. Interestingly, the detailed coefficient sub-bands (prominent edges) show more significance in the

biological-ROI phase. Apart from enhancing the diagnostic accuracy by feature reduction, the paper intends to mark the significance

indices, uniqueness and discrimination capability of the significant features (sub-bands) in both the phases. Then, the crisp inputs are

fed to the classifier ANN. Finally, from the significant features of the biological-ROI feature matrices, the accuracy is raised to 85%

which is notable than the accuracy of 79% achieved without considering the ROI.
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1 Introduction

Glaucoma is the fourth leading cause of blindness in

India and is more prevalent in the aged people. Unlike

cataract, the other major cause of blindness, the loss of

vision caused by glaucoma cannot be regained. Besides

old age, the other major cause for Glaucoma is family his-

tory, ethnic background, high intra-ocular pressure and high

blood pressure[1].

Mookiah et al.[2] discussed the impact of glaucoma in

human eyes: 1) Structural changes of the optic nerve head

(ONH) and the nerve fibre layer and 2) simultaneous func-

tional failure of the visual field. They have discussed the

manifestation of structural changes by a slowly diminishing

neuroretinal rim indicating the degeneration of the optic

nerve.

The cost of glaucoma diagnoses through optical coher-

ence tomography (OCT) and heidelberg retinal tomography

(HRT) is not affordable for the large affected population[3].

Conventional digital fundus imaging is a relatively less ex-

pensive technique.

State-of-the-art glaucoma detection requires mass screen-

ing. Mookiah and Faust[4] discussed the necessity to au-

tomate glaucoma detection. The cost is reduced by mass

screening. They have proposed that a small cost reduction

Regular paper
Manuscript received October 28, 2013; accepted April 2, 2014
Recommended by Associate Editor Giuliano Premier
c© Institute of Automation, Chinese Academy of Science and

Springer-Verlag Berlin Heidelberg 2015

per measurement will make a large difference. Furthermore,

they compared the other modalities like HRT imaging which

is very expensive because of skilled manpower and equip-

ment cost.

Acharya et al.[5] extracted a variety of features linked

to higher order spectra (HOS), co-occurrence matrix and

difference-vector from the fundus images. Their exhaustive

combination of features is classified by support vector ma-

chines, sequential minimal optimization and random forest.

The texture and higher order spectral features have evolved

as a remarkable feature set.

Discrete wavelet transform (DWT) is widely used to ex-

tract the texture features. DWT refers to the multi-band

decomposition of the given image and can retrieve up to

98% energy of the original signal[6]. In DWT, only the

previous approximation coefficients are decomposed. How-

ever, using wavelet packet decomposition (WPD), both

the approximate and detailed coefficients are decomposed.

Hence, WPD is widely used in image processing and pattern

recognition[7].

As mentioned in [8], the dominant texture features are

available in the detailed coefficient sub-bands, the WPD is

a better technique to extract the texture features than the

conventional DWT. They revealed that the dominant tex-

ture features are available in the horizontal bands which

belong to the detailed sub-bands. It implies that the de-

tailed coefficient sub-band is useful in discriminating types

of tumour from ultrasound images. In fact, the work in [8]

does not decompose the approximate coefficient sub-bands
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at all.

More than the decomposition style, DWT or WPD, the

choice of suitable wavelet filter is important. The promi-

nence of the Daubechies wavelets for the WPD based fea-

ture extraction is evident from the work done in [9]. Huang

and Aviyete[9] iterated the prominence of the “db” wavelet

base in their mutual information based sub-band selection

(MISS) for WPD based feature extraction.

The work done by Dua et al.[10] establishes the discrim-

inatory potential of the Daubechies (db3) wavelet base in

glaucoma diagnoses. Based on the p-value, “db3” wavelet is

chosen from a set of wavelet bases. Further, the difference

between two adjacent orders of the same wavelet function

is insignificant as they are analogous to each other[11].

Koh et al.[12] developed an automated glaucoma detec-

tion system using discrete wavelet transform (DWT) based

features. The work relies on the information content in

the relative energy and entropy based features. They have

discussed the superiority of statistical methods of feature

extraction over the segmentation methods.

Regarding WPD, since more number of features are ex-

tracted, feature selection is a crucial issue. In general, in

feature selection methods like principle component analysis

and linear discriminant analysis, it is required to decompose

all the sub-bands in both the training and testing phases,

whereas in the feature selection among the wavelet compo-

nents, the image can be decomposed only for the significant

sub-bands[9].

In [13], entropy feature is extracted and the discrimina-

tion capability of the features is measured. The features

that possess the discrimination capability are only decom-

posed further. In this way, any significant sub-band with

insignificant parent will not be given due-significance. The

work in [9] broadly classifies the feature selection among the

wavelet features into two methods. Firstly, the dependency

is measured among the sub-bands only if the sub-bands be-

long to the same family[14] . Secondly, all the features are

extracted and the significance is measured globally[15].

If the statistical dependence between the sub-bands is

not considered, the classification performance is degraded.

In [16], the sub-band selection is based on the entropy cost

function, where the entropy variation caused by the chil-

dren nodes is compared with that of the parent node. In

[17], only one sub-band is selected from each subset (fam-

ily) based on the dependency measured whereas the pro-

posed methodology clearly shows that the sub-bands from

the same family are significant.

An image is decomposed only for the sub-bands selected

by the feature selection[17]. After feature selection is done,

in wavelet packet decomposition, it is not required to de-

compose all the sub-bands.

In this work, the 2D discrete wavelet packet transform is

implemented using the “db3” wavelet base for the fundus

images up to level 3 producing 84 sub-bands.

We have used Daubechies wavelets to extract the sta-

tistical features from the images. The wavelets form an

orthonormal basis. The energy spectrum is concentrated

around the low frequencies[18], which make them appropri-

ate for texture based classification task.

Energy and entropy are the two features measured for all

the sub-bands for both the phases.

The methodology incorporated in this work to measure

the significance globally is convincing, as the statistical de-

pendence occurs in all the families. In other word, the vari-

ation of entropy caused by the inclusion of a particular fea-

ture “f” is degraded by its own family and the capability

of each feature to increase the entropy overcoming its own

family is measured as uniqueness.

2 Proposed glaucoma detection in fun-

dal retinal images

The block diagram of the proposed technique is given

in Fig. 1. It shows the different phases involved and the

operations in each phase.

Fig. 1 Block diagram of the proposed technique

2.1 Inputs

The fundus images are collected from the rim-one

database for both the normal and glaucoma images. The

statistical phase considers the statistical features for the en-

tire spatial span of the image. To enhance the diagnostic

accuracy, in the second phase, the optical disc region (bio-

logical ROI) is segmented in the images and the statistical

features are extracted from the biological region of interest

alone.

2.1.1 Wavelet based segmentation

In [2], segmentation is done by grey level threshold of red

and green components of the fundus images to segment the

disc and cup respectively. In this work, the idea to threshold

in the wavelet domain is extended instead of the grey levels

in spatial domain. The steps are sequentially as follows.

The first level approximate wavelet coefficients of the im-

ages are extracted. As most of the energy is preserved in the

approximate coefficient sub-bands, we choose the same sub-

band (level-1) for carrying out the segmentation by thresh-
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olding. Fig. 2 (a) shows an image corresponding to the first

level approximate coefficients of the glaucoma image.

Fig. 2 Wavelet based segmentation

The value of the wavelet approximate coefficients corre-

sponding to the disc region and the surrounding regions are

inspected manually for both the classes. Several thresh-

olds are experimented and the optimal threshold suitable

to both the classes is selected. Since the size of the disc

is not extracted, as a direct biological feature, we have not

spent the computational heads towards the accuracy in seg-

mentation. Eventually, the optical disc is segmented with

minimal neighboring pixels. On the other hand, the inclu-

sion of optical disc completely in the ROI is ensured.

The final metrics show that the texture features of the

optical disc (with minimal neighborhood) is more dominant

in classifying than the same features of entire image.

Fig. 2 (b) shows the first level approximate coefficient im-

age segmented for optical disc (with least neighborhood) by

using the optimal threshold.

The segmented images of the first level approximate coef-

ficients are subjected to inverse wavelet transform to recon-

struct the segmented optical disc (with least-neighborhood)

in the original image.

Fig. 2 (c) shows the images corresponding to segmented

optical disc with neighborhood by using the optimal thresh-

old.

2.2 Pre-processing phase

Initially, the fundus images corresponding to both the

statistical and biological-ROI phases are pre-processed so

as to make the images fit for further processing. Through

pre-processing, the noise is reduced and image is enhanced.

Grey scale conversion and histogram equalization are car-

ried out in this phase.

2.2.1 Grey scale conversion

A grey-scale image is an image which is composed exclu-

sively of shades of grey, varying from black at the weakest

intensity to white at the strongest. This range is repre-

sented in an abstract way ranging from 0 (total absence,

black) to 1 (total presence, white).

2.2.2 Histogram equalization

It improves the dynamic range of the histogram of the

image and assigns the intensity values of the pixels in the

input image such that the output image contains uniform

distribution of intensities thus enhancing the feature extrac-

tion process.

2.3 Wavelet packet decomposition

The 2D-discrete WPD of an image I(x, y) is accom-

plished with the “db3” wavelet base. The decomposition

is done for 3 levels for both the phases, yielding 84 sub-

bands. Energy and entropy are the two features measured

for all the sub-bands in both the phases.

Four sub-images are obtained for every decomposition,

the approximate and detailed (horizontal, vertical, diago-

nal) coefficients are given respectively from (1) to (4).

I l
k(i,j) =

∑

x

∑

y

h(x)h(x)I l−1
k
4 ,(x+2i,y+2j)

(1)

I l
k+1(i,j) =

∑

x

∑

y

h(x)g(x)I l−1
k
4 ,(x+2i,y+2j)

(2)

I l
k+2(i,j) =

∑

x

∑

y

g(x)h(x)I l−1
k
4 ,(x+2i,y+2j)

(3)

I l
k+3(i,j) =

∑

x

∑

y

g(x)g(x)I l−1
k
4 ,(x+2i,y+2j)

. (4)

The transfer functions h(·) and g(·) represent the low-pass

and high-pass filter kernels. In (1)–(4), i and j are the

translational variables along the horizontal and vertical di-

rections respectively.

The wavelet packet tree in Fig. 3 shows the level-1 de-

composition. The L(Z) and H(Z) are the low pass and

high pass filters correspondingly. The output of level-1 de-

composition consists of 4 sub-bands (A, H,V and D) which

are the approximate, horizontal, vertical and diagonal coef-

ficients respectively. Unlike DWT, here all the 4 sub-bands

of level-1 are decomposed producing 16 sub-bands at level-2

and 64 sub-bands at level-3. Thus, 84 sub-bands are ex-

tracted for both the statistical and biological-ROI phase of

all the images.

Fig. 3 Wavelet packet decomposition tree (shown for 1 level)

The evidence for the ability of the WPD to discriminate

texture better than discrete wavelet transform is [8]. Tsia-

paras et al.[8] concluded that the dominant texture features

exhibit horizontal directionality.

In addition to establishing the discriminatory significance

of the detailed coefficient (wavelet) sub-bands, this work

makes a deeper venture to mark the significance indices of

individual sub-bands. Then, a crisp set of significant sub-

bands is used for classification.

2.3.1 Energy feature

The energy of each sub-band I(x, y) provides a measure

of the response of the image to the specific scale and orien-
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tation of the filters[17].

The energy is calculated for each sub-band as

E(β) =
1

p2 + q2

∑

x=p

∑

y=q

|I(x, y)|2 (5)

where β is one of the 84 sub-bands with p-rows and q-

columns. Energy is calculated also for phase-2, discarding

the pixels outside the biological-ROI.

2.3.2 Entropy feature

The measurement of the randomness of the grey levels

of a sub-band I(x, y) provides a qualitative measure of the

texture.

Entropy(β) = −
p×q∑

i=1

pi log2pi. (6)

In (6), the entropy is measured for all the pixels, i = 1 to

(p × q), and pi is the probability of occurrence of the i-th

pixel.

Entropy is calculated also for phase-2, discarding the pix-

els outside the biological-ROI.

3 Feature extraction, significance mea-

surement and feature reduction

3.1 Feature extraction

Four feature matrices are available namely, the energy

feature matrices and the entropy feature matrices for both

the statistical and biological-ROI phases of operation. The

corresponding MAT-files are

1) Energy feature matrix of statistical phase;

2) Entropy feature matrix of the statistical phase;

3) Energy feature matrix of biological-ROI phase;

4) Entropy feature matrix of biological-ROI phase.

All the four matrices are 158 × 85 of size.

3.2 Significance measurement

The feature reduction is based on 2 significant measures,

the uniqueness of a feature with respect to the other fea-

tures and the discrimination capability of the feature to

categorize between the classes.

Krishnan and Faust[4] removed the features that are not

random enough among the set, i.e., the features that do not

increase the entropy above a threshold by their inclusion in

the set. In this work, we term those features that signifi-

cantly increase the entropy, by their inclusion, as “unique”.

Huang and Aviyente[9] assessed whether the two classes

have different mean for each feature. In this work, the fea-

tures with significant mean-difference between the classes

are termed as “discriminatory significant”.

A set of n features is given as

F =
n⋃

j=1

fj . (7)

Uniqueness of a particular feature f is measured by cal-

culating the variation of entropy caused by the inclusion of

that particular feature to the feature set. First, the whole

entropy ENT is measured calculating the entropy of all the

features as a feature vector,

ENT = entropy

(
n⋃

j=1

fj

)
. (8)

As there are m images (i = 1, · · · , m) and m = 158, the

whole entropy is calculated for all the images. Thus, a

whole entropy vector is created as

ENT i = {ENT 1, ENT 2, · · · ,ENTm} . (9)

Then, the uniqueness of a particular feature fp, 1 ≤ p ≤ n

is calculated by eliminating that particular feature fp for all

the images and then calculating the entropy. Considering

f ′
p as the feature set excluding the p-th feature fp,

Entropy(f ′
p) = Entropy

[
p−1⋃

j=1

fj and
n⋃

j=p+1

fj

]
. (10)

Entropy(f ′
p)i is the entropy vector, then is evaluated for all

the i images without the feature fp. The uniqueness of any

feature fp is defined as

Uniqueness(fp) = ENT i − Entropy (f ′
p)i. (11)

Discrimination capability is the measure of a particular

feature to categorize between the classes.

Let Fi be any of the feature matrices. It is the row-

wise appending of the feature-vectors F specified in (7). To

evaluate the discrimination capability of the features, each

feature matrix is broken into two. This is accomplished by

indexing the clinically determined normal and glaucoma-

tous images with different values.

Based on the index, the feature matrices Fi are termed as

Fnorm and Fglauc that correspond to normal and glaucoma-

tous images. The discriminatory significance of j-th feature

(between the classes) is measured in (12) as Discr(Fj).

Discr(Fj) = mean(Fnorm)j − mean(Fglauc)j . (12)

3.3 Feature reduction

In the feature reduction process for all the 4 matrices,

the features are arranged in the order of decreasing signif-

icance discarding the insignificant features. The discard is

done such that individual features with the significance in-

dex above the mean of the significance indices of all the

features are considered. The percentage of the significance

is calculated by assigning the maximum value of 100% to

the feature with maximum significance.

Table 1 shows the features with the energy of the in-

tensities of the sub-bands which are arranged in the order

of decreasing significance with maximum significant feature

(AAA) to the least significant feature (HAD), as the in-

significant features below the same are discarded. Columns

4 and 5 give the percentage of significance (uniqueness and

discrimination, respectively). The last column shows the

usefulness of a sub-band as a parent.

Table 2 shows the feature reduction done to the entropy

features. The average of the 2 significance indices (unique-

ness and discrimination capability) is not calculated as the

significance lies in the complementary sub-bands.
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Table 1 Feature reduction for energy feature matrix of statistical phase

(U is uniqueness of the energy feature, D is discriminatory significance of energy feature)

Wavelet sub-band U D U(%) D (%) Average (U (%) & D (%)) Significance-furtherdecomposition

AAA 0.022 21.50 100 100 100 Level 4 not estimated

AA 0.022 9.45 100 43.95 71.97 100%

A 0.022 4.51 100 20.99 60.49 75%

HD 0.019 0.004 88.5 0.019 44.28 50%

AVV 0.016 0.025 73.2 0.11 36.66 Level 4 not estimated

AAV 0.015 0.049 66.7 0.22 33.50 Level 4 not estimated

AVA 0.014 0.002 63.9 0.009 31.97 Level 4 not estimated

HAH 0.0124 0.001 56 0.005 28.03 Level 4 not estimated

AAH 0.012 0.005 53.51 0.025 26.76 Level 4 not estimated

AHD 0.011 0.008 49.570 0.038 24.80 Level 4 not estimated

AHH 0.010 0.032 44.830 0.152 22.49 Level 4 not estimated

AHA 0.009 0.008 43.368 0.040 21.70 Level 4 not estimated

HHA 0.009 0.014 42.304 0.068 21.18 Level 4 not estimated

VVV 0.009 0.0001 41.915 0.0004 20.95 Level 4 not estimated

VAV 0.009 0.0018 41.267 0.008 20.63 Level 4 not estimated

ADD 0.008 0.0062 38.546 0.028 19.29 Level 4 not estimated

HHH 0.007 0.0084 34.870 0.039 17.45 Level 4 not estimated

VVA 0.007 0.0005 34.341 0.002 17.17 Level 4 not estimated

ADV 0.007 0.0045 33.743 0.020 16.88 Level 4 not estimated

AV 0.007 0.0028 33.483 0.013 16.74 100%

HDV 0.007 0.0033 32.911 0.015 16.46 Level 4 not estimated

VVH 0.007 0.0075 32.735 0.034 16.38 Level 4 not estimated

AVD 0.007 0.0085 31.224 0.039 15.63 Level 4 not estimated

Table 2 Feature reduction for entropy feature matrix of statistical phase

(U is uniqueness of the entropy feature, D is discriminatory significance of entropy feature)

Wavelet sub-band U D U (%) D (%) Significance-further decomposition

ADH – 0.31 – 100 Level 4 not estimated

AD – 0.31 – 100 100 %

VVH – 0.29 – 94.43 Level 4 not estimated

VDH – 0.29 – 92.98 Level 4 not estimated

ADA – 0.29 – 92.19 Level 4 not estimated

ADV – 0.28 – 89.66 Level 4 not estimated

AVH – 0.28 – 89.00 Level 4 not estimated

HDV – 0.27 – 85.62 Level 4 not estimated

VD – 0.26 – 82.49 100%

VV – 0.25 – 81.16 50%

HAD – 0.25 – 80.22 Level 4 not estimated

VDD – 0.25 – 79.87 Level 4 not estimated

VDA – 0.2463 – 77.81 Level 4 not estimated

ADD – 0.2401 – 75.86 Level 4 not estimated

VVD – 0.23 – 75.32 Level 4 not estimated

AA 0.058 – 100 – Level 4 not estimated

A 0.058 – 100 – Level 4 not estimated

Table 3 Feature reduction for energy feature matrix of biological-ROI phase

Wavelet sub-band U D U (%) D (%) Significance (%)

AAA 0.083 0.13 93.47 100 96.73

AA 0.0825 0.06 92.80 46.17 69.48

A 0.088 0.02 100 22.28 61.14

Table 3 shows similar feature reduction done to the en-

ergy feature of the biological-ROI phase. Only 3 sub-bands

are significant. Tables 4 and 5 show the similar feature re-

duction done to the entropy feature of the biological-ROI



398 International Journal of Automation and Computing 12(4), August 2015

phase. Thirty-nine sub-bands (forty-six percentage of the

sub-bands obtained by 3-level decomposition) are signifi-

cant. Like the entropy features of phase-1, the average of

the 2 significance indices (uniqueness and discrimination

capability) is not calculated as the significance lies in the

complementary sub-bands.

Table 4 Feature reduction for entropy feature matrix of

biological-ROI phase-uniqueness

Wavelet sub-band U U (%)

DAA 0.0329 100

DAD 0.0318 96.65

DA 0.0304 92.40

DD 0.0304 92.40

DHH 0.0304 92.40

DAH 0.0302 91.79

DAV 0.0299 90.88

DHA 0.0298 90.57

DH 0.0291 88.44

DVV 0.0291 88.44

DV 0.029 88.14

DVD 0.029 88.14

VHA 0.0289 87.84

DVA 0.0289 87.84

HVA 0.0285 86.62

HVV 0.0285 86.62

D 0.0279 84.80

DHD 0.0275 83.58

DVH 0.0271 82.37

H 0.0269 81.76

VH 0.0267 81.15

V 0.0265 80.54

HV 0.0262 79.63

VHH 0.0259 78.72

DHV 0.0257 78.11

DDD 0.0252 76.59

HAV 0.0227 68.99

VAH 0.0211 64.13

DDV 0.0207 62.91

VA 0.019 57.75

HA 0.0186 56.53

DDH 0.0173 52.58

Table 5 Feature reduction for entropy feature matrix of

biological-ROI phase-discriminatory significance

Wavelet sub-band D D (%)

AAA 0.202 100

AA 0.200 98.96

AAV 0.176 87.19

AVA 0.167 82.69

AAD 0.161 79.82

AAH 0.159 78.83

AVV 0.158 78.48

Thus, the four feature matrices (energy, entropy feature

matrices of the statistical and biological-ROI phases, as

listed in Section 3.1) are feature reduced using (11) and

(12). The number of features selected out of these feature

matrices are 23, 17, 3, 39, respectively. The four feature

reduced matrices are concatenated column-wise to get a

significant feature matrix (158 × 82). Then, each feature

vector in the matrix is normalized before classification.

4 Classification by ANN

Artificial neural networks (ANN) are used for the clas-

sification task. In this work, 85 input layers and 20 hid-

den layers are used in the gradient descent algorithm. In

[19], conjugate gradient descent algorithm is employed and

classification of normal and glaucomatous images is done.

Gradient descent is a first-order optimization algorithm. To

find the local minimum of a function using gradient descent,

steps are taken proportional to the negative of the gradient

of the function at the current point. In order to train the

neural networks, the gradient G of the loss function is com-

puted with respect to each weight Wji of the network. It

shows the fact that small change in that weight will affect

the overall error Er. Initially, loss function is divided into

separate terms for each point s in the training data.

Er =
∑

s

Es
r (13)

Es
r =

1

2

∑

k

(ts
k − ys

k) (14)

where k ranges over the output units of the network for the

actual output y and the target t. The gradient is split into

separate components for each training point as

G =
∂Er

∂wij
=

∑

s

∂Es
r

∂wij
. (15)

Using the chain rule to decompose the gradient into two

factors, we get

∂Er

∂wki
=

∂E

∂yk

∂yk

∂wki
= −(tw − yw)yi. (16)

The subscripts j, i and k index the input, hidden and the

output layers, respectively, and tw and yw refer to the tar-

get and the actual outputs respectively at the hidden layer.

To find the gradient G for the entire data set, summation

at each weight is taken for all the data points. Subse-

quently, small proportion μ (called the learning rate) is

subtracted out of G from the weights to perform gradi-

ent descent. Steepest gradient algorithm is carried out by

initialising all weights to small random values. Then for

all weights wij , Δwij is set as zero. Then for each data

point, the weights are modified according to the equation

Δwij = Δwij + (ti − yi)yj . Once this is carried out for all

the data points, the weight is set as wij = wij + μΔwij .

The algorithm terminates once it is sufficiently near the

minimum of the error function where G = 0, and then it

can be concluded that the algorithm has converged.
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5 Results and discussions

5.1 Analysis about the energy feature ma-
trix of the statistical phase

Column 1 of Table 1 shows the wavelet features. Out of

the 84 features, only 23 features (27%) are selected as sig-

nificant. Only the approximate coefficients of all the 3 lev-

els (A, AA, AAA) exhibit the discriminatory significance.

Though the remaining 20 significant features exhibit least

discrimination capability, their combined uniqueness will be

able to discriminate. The features that exhibit discrimina-

tion form the subset of the features that exhibit uniqueness.

The last column of Table 1 shows the significance of each

sub-band as a parent, i.e., the value of 100% significance of

AA means that all its children (AAA, AAH, AAV, AAD)

are significant.

5.2 Analysis about the entropy feature
matrix of the statistical phase

Column 1 of Table 2 shows the wavelet features that are

significant. Out of the 84 features, only 17 features (20%)

are selected as significant. The approximate coefficients of

levels 1 and 2 have the same maximum uniqueness (A, AA)

whereas the level 3 approximate coefficient (AAA) is not

unique.

Entropy feature matrix has produced 15 sub-bands with

enough discrimination. Measuring the discrimination capa-

bility, the entropy feature matrix has produced significant

sub-bands from both the approximate and detailed coeffi-

cients.

The sub-bands that exhibit uniqueness and discrimina-

tion are complementary.

5.3 Analysis about the energy feature ma-
trix of the biological-ROI phase

After incorporating the region of interest in the images,

as shown in Table 3, the number of sub-bands, with sig-

nificant energy features, drastically reduced to three. This

provides a subjective insight that the energy of intensities

of the segmented optical disc does not vary significantly

between different wavelet sub-bands of the same image and

also between a normal image and diseased image.

5.4 Analysis about the entropy feature
matrix of the biological-ROI phase

Contrary to the property of the energy features of the seg-

mented optical disc, as shown in Tables 4 and 5, the entropy

features produce 32 unique sub-bands and 7 sub-bands are

of discriminatory significance. Totally, 49% of the entropy

features of the biological-ROI phase are significant giving an

insight that the entropy is significant in the biological-ROI

phase. The entropy difference as in (11) varies significantly

between the detailed coefficient sub-bands of the same im-

age. In other word, the entropy features of the detailed

co-efficient sub-bands are unique. The entropy also varies

between the approximate co-efficient sub-bands of the nor-

mal and diseased images, i.e., the entropy features of the

approximate co-efficient sub-bands are discriminatory.

Table 6 provides a summary of inferences quoted in Sec-

tion 5. Inferring Table 6 for the biological-ROI phase, only

3 and 39 sub-bands are significant from the energy and the

entropy features respectively. Thus, a crisp feature set (fea-

ture to image ratio is 26%) is fed to the classifier.

The importance of considering both the structural and

statistical content of an image in the phase-2 of our work

can be emphasized by comparing with other works that

solely rely on either structural or statistical content of an

image. The work done in [20] solely relies on the cup-to-

disc ratio (structural content) and produced a specificity of

87%. The work done in [3] solely relies on the statistical

content of an image which produced an accuracy of 82.5%.

Since both statistical and structural content of the images

are considered, the proposed algorithm has overcome the

above said results with the specificity of 100% and the ac-

curacy of 85%.

The importance of the detailed co-efficient sub-bands is

evident from the comparison with our previous work [16].

An accuracy of 81% is produced without decomposing the

detailed coefficient sub-bands. In this work, a 4% raise in

accuracy is achieved (in comparison with [16]), by decom-

posing the detailed coefficient sub-bands also.

Table 7 provides a summary of the results achieved in

glaucoma diagnoses by other researchers using conventional

discrete wavelet transform, complex wavelet transform and

wavelet packets. Several other segmentation based methods

are also compared.

6 Performance evaluation

The bar chart in Fig. 4 shows the results of the algorithm

for the statistical (STAT) and B-ROI phases with the three

metrics, i.e., accuracy, sensitivity and specificity. In order

to find these metrics, we first compute some of the terms

like, true positive (TP), true negative (TN), false negative

(FN) and false positive (FP).

Fig. 4 Performance evaluation graph for the statistical and

biological-ROI phase



400 International Journal of Automation and Computing 12(4), August 2015

Table 6 Summary of conclusions

Phase-1 (statistical phase) Phase-2 (biological-ROI phase)

Feature reduction–40/168 features (24%) Feature reduction–41/168 features (24%)

Energy (23/84) 27% Entropy (17/84) 20% Energy (3/84) 3% Entropy (39/84) 46%

U D U D U D U D

Number of significant fea-

tures

23 3 2 15 3 3 32 7

Comparison between U &

D significant sub-bands

D is a subset of U U & D are com-

plementary

U & D have the

same 3 features

U & D are com-

plementary

Number of approximate

& detailed coefficients

A-14 A-3 A-2 A-6 A-3 A-3 A-0 A-7

D-9 D-0 D-0 D-9 D-0 D-0 D-32 D-0

Table 7 Comparison of other glaucoma detection techniques

Reference Features Classifier
Performance

measure

Performance

measure of the

proposed method

[19]

Higher order spectra and

complex wavelet

transform

ANN (conjugate

gradient descent)

Accuracy: 81% Accuracy: 85%

Sensitivity: 87% Sensitivity: 82%

Specificity: 87% Specificity: 100%

[20] Cup-to-disc ratio CDR threshold
Sensitivity: 87%

Specificity: 82%

[3]
Cup-to-disc ratio, blood

vessel orientation
ANN

Sensitivity: 100%

Specificity: 80%

[8]

Discrete wavelet trans-

form, wavelet packets and

gabor transform

SVM and probabilistic

neural networks
Average accuracy: 82.5%

[2]

Higher order spectra and

discrete wavelet

transform

SVM (support vector

machines)

Accuracy: 95%

Sensitivity: 93.3%

Specificity: 96.67%

Zhu et al.[21] described the metrics as follows. Sensitivity

is the proportion of true positives that are correctly iden-

tified by a diagnostic test. It shows how good the test is

at detecting a disease. Specificity is the proportion of the

true negatives correctly identified by a diagnostic test. It

suggests how good the test is at identifying normal (nega-

tive) condition. Accuracy is the proportion of true results,

either true positive or true negative, in a population. It

measures the degree of truthfulness of a diagnostic test on

a condition. These can be expressed in the terms of TP,

FP, FN and TN by

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Accuracy =
TN + TP

TN + TP + FN + FP
.

From the bar chart in Fig. 4, it is evident that the algorithm

yields 78% accuracy, 85% sensitivity and 75% specificity in

the statistical phase. Considering the biological-ROI alone

in the next phase, the performance is raised to 85% accu-

racy, 82% sensitivity and 100% specificity.

7 Conclusions

This work emphasizes on the significance of the de-

tailed coefficient sub-bands in the feature extraction pro-

cess. This work also proposes a novel method of select-

ing the biological-ROI and then evaluating the statistics.

The accuracy can be further improved by designing opti-

mal wavelet filter coefficients.
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