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Observer Design—A Survey
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Abstract: This paper surveys the results of observer design for linear time-invariant (L-T-I) deterministic irreducible open-loop

systems (OLS), the most basic type of OLS. An observer estimates Kxxx(t) signal where K is a constant and xxx(t) is the state vector

of the OLS. Thus, an observer can be used as a feedback controller that implements state feedback control (SFC) or Kxxx(t)-control,

and observer design is therefore utterly important in all feedback control designs of state space theory. In this survey, the observer

design results are divided into three categories and for three respective main purposes. The first category of observers estimate signal

Kxxx(t) only with a given K, and this survey has four conclusions: 1) Function observer that estimates Kxxx(t) directly is more general

than state observer that estimates xxx(t), and may be designed with order lower than that of state observer, and the additional design

objective is to minimize observer order; 2) The function observer design problem has already been simplified to the solving of a single

set of linear equations only while seeking the lowest possible number of rows of the solution matrix, and an apparently most effective

and general algorithm of solving such a problem can guarantee unified upper and lower bounds of the observer order; 3) Because such a

single set of linear equations is the simplest possible theoretical formulation of the design problem and such theoretical observer order

bounds are the lowest possible, and because the general, simple, and explicit theoretical formula for the function observer order itself

do not exist, the theoretical part of this design problem is solved; 4) Because the function observer order is generically near its upper

bound, further improvement on the computational design algorithm so that the corresponding observer order can be further reduced,

is generically not worthwhile. The second category of observers further realize the loop transfer function and robustness properties of

the direct SFC, and the conclusion of this survey is also fourfold: 1) To fully realize the loop transfer function of a practically designed

Kxxx(t)-control, the observer must be an output feedback controller (OFC) which has zero gain to OLS input; 2) If parameter K is

separately designed before the observer design, as in the separation principle which has been followed by almost all people for over half

of a century, then OFC that estimates Kxxx(t) does not exist for almost all OLS′s; 3) As a result, a synthesized design principle that

designs an OFC first and is valid for almost all OLS′s, is proposed and fully developed, the corresponding K will be designed afterwards

and will be constrained by the OFC order as well as the OFC parameters; 4) Although the Kxxx(t)-control is constrained in this new

design principle and is therefore called the “generalized SFC” (as compared to the existing SFC in which K is unconstrained), it is

still strong enough for most OLS′s and this new design principle overcomes many fundamental drawbacks of the existing separation

principle. The third category of observers estimate Kxxx(t) signal at special applications such as fault detection and identification and

systems with time delay effects. Using directly the result of OFC that estimates Kxxx(t) of the second category, these observers can be

generally and satisfactorily designed.
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1 Why need an observer to fulfill the

stated tasks

1.1 System and observer definitions

State space control theory is based on the state space

model of the system. For a linear time-invariant (L-T-I)

deterministic system, its state space model is

dxxx(t)

dt
= Axxx(t) + Buuu(t) (1a)

yyy(t) = Cxxx(t) (1b)

where system state xxx(t), control input uuu(t) and output mea-

surement yyy(t) are vectors of dimensions n, p and m respec-

tively, and system parameters (A,B, C) are real constant

matrices with appropriate dimensions. For observer design

problems, the system is assumed controllable and observ-

able, or is assumed irreducible[1]. Equation (1a) describes
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the dynamic part of system (1) that determines xxx(t) from

its initial condition and control input uuu(t), while (1b) de-

scribes the static relation between xxx(t) and output yyy(t).

System order n is usually much higher than dimensions

p and m. For example a challenging circuit system can

have over 100 capacitors, but much less controlled volt-

age/current sources and voltage/current sensors. Further-

more, m is usually no less than p, because adding sensors

is usually much easier than adding dynamic control inputs.

State space model (A, B, C) provides much more infor-

mation about the system, especially its detail on the in-

ternal structure that involves with xxx(t), than the transfer

function model G(s) of the same system. For example, only

the polynomial matrix fraction description (MFD) form of

G(s) can be used effectively in design[1−3], while this form

of G(s) has a one-to-one parametric relation with a spe-

cial canonical form (with state matrix A) of state space

model[1, 4, 5]. The numbers of unknown parameters of state

matrices A and A are n × n and only (m or p) ×n, respec-

tively.

State space model is usually much more reliable and

never less reliable, than the transfer function model (in
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polynomial MFD form) of the same system, because the

transformation from A to A implies parameter compres-

sion from n × n to (m or p)×n, and the computation of

this parameter compression is usually and intrinsically very

unreliable[6, 7].

An observer is also an L-T-I system with the most general

state space model

dzzz(t)

dt
= Fzzz(t) + Lyyy(t) + TBuuu(t) (2a)

ωωω(t) = Kzzzz(t) + Kyyyy(t) (2b)

and with order r. All observer parameters are free to design

except B of (2a) and (1a). An observer is proper or strictly

proper if gain Ky in (2b) is none-zero or zero, respectively[1].

It is required in almost all feedback control applications

that observer output ωωω(t) converges to Kxxx(t) where K is a

constant, and be fed into the control input uuu(t) of system

(1). Observers do not have a gain to control input uuu(t) in

(2b) in all feedback control applications. Observer (2) is

the most general feedback controller of state space control

theory that implements Kxxx(t)-control.

1.2 Why need to estimate Kx(t)Kx(t)Kx(t) signal

State feedback control (SFC) is defined as uuu(t) =

−Kxxx(t), where K is a constant. The corresponding feed-

back system state matrix is A − BK. Hence an SFC is

based on the best information of current system state (xxx(t)),

and on the best information of system model and struc-

ture (Subsection 1.1). Notice that these advantages are

valid even if the constant gain K is generally constrained

by K = KC (K is free but rank (given C) ≡ q ≤ n)). For

example, a static output feedback control (SOFC) is defined

as uuu(t) = −Kyyyy(t), or K = KyC with rank (C) = m < n.

A stronger feedback control must improve better sys-

tem performance (mainly defined as stability and faster

and smoother transient response) and robustness (mainly

defined as low sensitivity against system model uncertainty

and input disturbance), because both system properties are

understandably critical. Among these two system proper-

ties, robustness/reliability is even more critical than per-

formance in feedback control because it is well known that

such control is aimed mainly at reducing sensitivity against

system model uncertainty and input disturbance, and at

the price of reduced performance. In other words, the main

purpose of feedback control is for improving system robust-

ness but not performance. In addition, because these two

system properties are contradictory to each other[8], an ef-

fective feedback control must adjust effectively the tradeoff

between these two system properties, based on actual de-

sign requirements.

If both p and q are higher than one, then an SFC

can assign all n eigenvalues and eigenvectors of matrix

A−BK(= A−BKC) if q = n[9], and all n eigenvalues and

at least min{n − p, n − q} eigenvectors if n < p + q[5, 10, 11].

It is well known that system poles can determine most di-

rectly and accurately, and far more directly and accurately

than bandwidth, the system transient response and perfor-

mance. It is also well established that eigenvectors deter-

mine the sensitivities of their corresponding eigenvalues[6].

To summarize, an SFC can most directly and effectively

improve feedback system performance and robustness, and

is an ideal and by far the most effective form of feedback

control.

SOFC is a special form of SFC with q = m. Thus, only

systems (1) with n ≥ p + m are considered generally non-

trivial – only such systems require a more sophisticated dy-

namic controller such as an observer (SOFC is not effective

enough). This is also the reason that if an observer can only

estimate Cxxx(t) instead of Ixxx(t) (I = identity matrix) (see

Section 3), then it is desirable to maximize rank (C)(≡ q)

as to maximize the effectiveness of the corresponding SFC.

In actual practical design, it is only effective to optimize

a unified criterion that measures both system performance

and robustness. Apparently, a gauge of robust stability

called stability margin (defined as the sensitivity or likely-

hood to become unstable at system (state matrix) param-

eter variation) has been such a criterion ever since. Such

criterion in classical control theory is gain/phase margin,

and this criterion has been critical in all existing practi-

cal designs[12]. The most basic stability criterion is that

all system poles (λi, i = 1, · · · , n) have negative real parts

(Re(λi) < 0, i = 1, · · · , n), and the sensitivities of these

poles (s(λi), i = 1, · · · , n) are determined by their corre-

sponding eigenvectors[6]. As a result, in early 1990s, a new

stability margin that is in terms of all Re(λi)
′s and s(λi)

′s
was proposed as[5, 13]

min{s(λi)
−1|Re(λi)|}, 1 ≤ i ≤ n (3)

and is convincingly proved to be more generally accurate

than other existing stability margins of state space the-

ory. In this stability margin, the distance of variation of

λi to reach unstable region is |Re(λi)|, because a 0◦ direc-

tion of this variation is assumed. If we know a priori that

the direction of this variation is θi instead of 0◦, then min

{s(λi)
−1|Re(λi)|cos−1(θi)} should be even more accurate

than (3).

There are two obvious and distinct advantages of stability

margin (3) over the gain/phase margins. First, (3) is more

generally accurate than gain/phase margin. Stability mar-

gins by definition must be determined by state matrix only

as so in (3), while gain/phase margins are not only generally

inaccurate[14] especially when p > 1, but also determined

by loop transfer function in which the state matrix is mixed

up with un-relevant system parameters such as B and C of

(1). Second, stability margin (3) can be much more easily

and effectively maximized than gain/phase margin. While

existing computational algorithms of [9] can assign eigenval-

ues/vectors generally and effectively, the gain/phase margin

is well known very difficult to be increased generally and ef-

fectively.

As a proof of all said in this subsection, the superiority

of SFC was demonstrated in reality, when optimal SFC was

applied to rocket control in former Soviet Union during the

1950′s[15]. Apparently, this application success promoted



52 International Journal of Automation and Computing 12(1), February 2015

state space control theory most effectively. Because most

systems have n > m and cannot have all n elements of xxx(t)

measured directly, an observer is therefore needed to esti-

mate Kxxx(t) and to implement SFC (or Kxxx(t)-control)[16].

Section 2 surveys the results of observers (2) that esti-

mate Kxxx(t) as its only purpose. The first observer that

provides the estimation of xxx(t) is the well know Kalman

filter[17], whose estimation has an additional property of

minimum variance. At deterministic cases with zero vari-

ance and zero measurement noises, the remaining design

freedom is fully used to minimize the observer order.

This order reduction is possible if the observer estimates

Kxxx(t) directly instead of xxx(t), and such an observer is

named “function (or functional) observer”. For thirty years

since the last survey of observer design[18], very significant

progress was made in function observer design problem and

the problem is claimed essentially solved[19].

1.3 Why need to further realize the SFC′s
loop transfer function

A state observer estimates system state xxx(t). Multiply

this signal by a previously and separately designed gain (K)

and feed it into the control input of OLS (1), the observer

feedback system is designed and is designed inherently ac-

cording to the well known separation principle[20]. Further

analysis on this feedback system revealed the well known

separation property that the feedback system poles are the

same as the eigenvalues of two separate matrices A−BK

and F of observer (2)[18].

Because system poles determine corresponding system

performance such as stability, separation property guaran-

tees the performance of observer feedback system in par

with the performance of the corresponding SFC system and

observer system. People also assumed the similar robust

properties, but almost all real applications of the 1960s and

1970s showed very different robust properties, between the

designed SFC system and the actual corresponding observer

feedback system.

In 1978, John Doyle pointed out the reason of this dif-

ference in robust properties – the loop transfer functions of

these two feedback systems are different[21]. Therefore, it is

essential that an observer not only estimates signal Kxxx(t),

but also has the loop transfer function L(s) of its corre-

sponding feedback system equal to −K(sI − A)−1B, the

loop transfer function of Kxxx(t)-control.

Section 3 surveys all design results of this line of ob-

servers, initiated by[21] and named as “loop transfer recov-

ery” (LTR)[22]. All subsequent works except that of the

author of this survey involve with state observers and in-

trinsically separation principle, and these results are unfor-

tunately invalid to most OLS (1) (such as non-minimum

phase systems), require large observer gain L which is for-

bidden in robust control (high gain always means high sen-

sitivity), and L(s) �= −K(sI−A)−1B (the name “recovery”

implies L(s) = −K(sI − A)−1B only approximately at the

best). However, a synthesized design principle (as opposite

to the separation principle) developed in the early 1990s,

can guarantee L(s) = −K(sI − A)−1B at almost all OLS

conditions[5, 23].

The remaining of this subsection shows why designing

L(s) directly is far less effective in improving feedback sys-

tem performance and robustness, than designing SFC (and

its associated −K(sI−A)−1B), as partly explained already

in Subsection 1.2. Because the results of LTR of the 1980s

have not been satisfactory as described in the previous para-

graph, and because robustness is most critical in feedback

control, people turned away from modern/state space con-

trol theory and back to the classical control theory, and

turned to the direct design of L(s).

The design of L(s) to increase gain/phase margins is

known to be ineffective, as described in Subsection 1.2. So

people resorted to the design of L(s) aimed at minimizing

the sensitivity function (I − L(s))−1[12]
. The most inter-

ested work of this line is named H∞, or to[24]

min[max{‖(I − L(jω))−1‖∞}], 0 ≤ ω ≤ ∞. (4)

In fact, reference [24] which initiated H∞ problem ap-

peared in the same special issue of IEEE Transactions on

Automatic Control as [12], with [12] (LTR) as its first pa-

per, and the subject that has the most papers in the control

systems theory area during the 1980s and 1990s is appar-

ently robust control.

However, the H∞ design (4) has the following two criti-

cal disadvantages. First, unlike SFC design which not only

maximizes a far more accurate robust stability margin (3)

but also assigns all feedback system poles, design (4) itself

does not address at all system performance which is not only

critical but also contradictory to robustness. Merely adding

a bandwidth requirement as a constraint to (4) in problem

formulation does not advance at all the basic theory and

basic understanding of classical control, and makes an al-

ready very difficult problem (4) even more difficult. In fact,

no really solid analytical results have been developed that

can significantly simplify the design of (4). Second, unlike

the observer feedback design with aims which were rooted

on deep and solid analytical understandings of Subsection

1.2 and which were inherited with distinct advantages of

Subsection 1.1, the design of (4) by definition aims at the

norms (or gains) only but not the phase, and thus “missing

a very important aim” (quote of Prof. Sheldon S-L Chang

during a 1982 faculty interview). The work on both gain

and phase is also virtually impossible in other direct designs

of L(s).

Nonetheless, these two critical disadvantages of H∞ de-

sign were apparently missed by many people. And as a

result, these people cannot appreciate the significance of

this line of observer design. As a matter of fact, reference

[23] was rejected recently at SCL with a single-sentenced

reason that “robust control design should still be resorted

to H∞”!

Finally, we will use a well known example to further em-

phasize the importance of designing both gain and phase of

L(jω). This example is about the ideal L(jω) of quadratic
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optimal control which is guaranteed only by SFC with

rank (C) = n[25]. This ideal L(jω) is proven to satisfy

Kalman Inequality[26] and thus must have values only out-

side of the unit circle that is centered at −1 point. Because

large gain |L(jω)| is bad, the real ideal values of this L(jω)

must be near the origin, and these values must have phase

angles between 0◦ to ±90◦!

2 Results of observers that estimate

the Kx(t)Kx(t)Kx(t) signal

2.1 Design requirements and formulation

For a general observer (2), proposed in 1963−1966[16, 27],

to generate Kxxx(t) signal with a constant K and constant

[KzKy] in (2b), it is only obvious that the observer state

zzz(t) must converge to Txxx(t)(zzz(t) → Txxx(t)) for a constant T

in (2a) and as zzz(t) − Txxx(t) = eF t[zzz(0) − Txxx(0)]. It can be

simply proved that the necessary and sufficient condition of

this convergence is[27]

TA − FT = LC, F is stable (5)

and the number of rows of T equals the observer order.

Once this convergence zzz(t) → Txxx(t) is achieved, it is only

obvious from (2b) that ωωω(t) converges to Kxxx(t) if and only

if

K = KzT + KyC = [Kz : Ky ][T ′ : C′]′ ≡ KC. (6)

For example, a state observer estimates Ixxx(t) (or K =

I), and the corresponding C in (6) must be square with

rank(C) = n, or the state observer order (number of rows

of T ) must be n − m. For strictly proper (Ky = 0) state

observers such as Kalman filters, (6) becomes I = KzT and

the observer order (number of rows of T ) must be n. In

fact, the Kalman filter state space model is dxxx(t)
dt

= Axxx(t)+

Buuu(t) + L[yyy(t) − Cxxx(t)], simply equivalent to F = A − LC

and T = I as in the general observer model (2a), and simply

showing (5) is satisfied. As a Kalman filter can be designed

for all observable systems, (5) and (6) can be satisfied for

all observable systems and for any K.

In addition, because matrix A − LC is the exact dual of

A−BK[5], arbitrarily given observer poles can be assigned

to matrix A − LC for all observable systems (1). Because

observer performance such as convergence and convergence

rate must also be guaranteed, and because further design

objectives such as order reduction[28, 29] and LTR[30, 31] can-

not be helped effectively by observer pole selection, the

observer poles are arbitrarily given in almost all existing

designs with very few exceptions.

As (6) is a single set of linear equations which sepa-

rately and fully determines parameter [KzKy ] of the static

output part of the observer (2b), (5) is far more compli-

cated and determines fully the far more important dynamic

part [F, T, L] of the observer (2a). This may be the reason

that (5) was named the “observer equation” or “Luenberger

equation” in a lot of literature[32].

These state observer design results have been covered in

almost all first courses of state space control theory since

the 1960s [1, 2, · · · ]. However, no textbooks except [5] and

its first edition presented any significant and satisfactory

development from these early results, despite of the fact

that observer design is the feedback controller design in

state space control theory.

One of the main reasons of this situation is that few peo-

ple derived or used the solution of (5) that is general, de-

coupled, and with remaining freedom expressed in a form

that is really usable. For example, in some literature, only

the so called “Sylvester equation” TA − FT = C (instead

of (5)) is studied and the corresponding solution does not

exist if A and F share common eigenvalues. This result is

certainly not general in light of the expected arbitrary pole

assignment, and this deficiency is caused by the missing of

design freedom L of (5)[33]. The rows of solution (F, T, L)

of (5) must also be completely decoupled because a decou-

pled design solution has many technical and computational

advantages[5, 34]. For example, a designer can freely design

the observer order (or the number of rows of (F, T, L)) only

if these rows are decoupled. Isn′t it true that in any real

good controller design methodology, this most important

parameter (order) of the controller must be completely free

to be designed? In fact, this special feature of observer or-

der design/adjustment freedom is a key breakthrough that

enabled all significant developments of observer design, as

described in the rest of this survey.

Fortunately, such a closed-form solution of (5) was de-

rived in the middle of 1980s[34, 35], and is described in the

following. For simplicity of presentation, only distinct and

real observer poles (eigenvalues of F ) λi(i = 1, 2, · · · ) are

used. For general eigenvalue cases, this solution can easily

be generalized[5, 34, 35]. Let F be in Jordan form Λ (diagonal

in this eigenvalue case). Let the system parameters (A, C)

be simply transformed so that C = [C1 : 0] and so that

(5) can be separated into two parts. While the left part of

m columns of (5), (TA − ΛT )[Im : 0]′ = LC1, can always

be satisfied by free parameter L for any T , the solution T

that always satisfies the right n − m columns of (5) can be

simply expressed as

ttti = ccciDi (7)

where ttti(i = 1, 2, · · · ) is the i-th row of T , the m-

dimensional row ccci is the complete remaining freedom of

ttti, and the m × n dimensional basis vector matrix Di of ttti

can always be computed from the corresponding right n−m

columns of (5), Di[A − λiI ][0 : In−m]′ = 0[5, 34, 35].

The dual version of this solution is vvvi = Diccci, where vvvi

is the i-th column of solution matrix V of the dual of (5),

AV − V Λ = BK. In 1985, general and effective algorithms

for SFC robust eigenstructure assignment were developed

and were based and enabled by this solution[9].

The next natural significant improvement of the design

of observers that estimate Kxxx(t) signal, is observer order

reduction. This design task is satisfactorily achieved only

by using the above solution (7) of (5), and is surveyed in
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the next subsection.

2.2 Results of function observer design for
reduced order

Function observers estimate the Kxxx(t) signal directly in-

stead of Ixxx(t) as in the state observers, and has minimized

order. Therefore, mathematically, this design is to compute

the solutions of (5) and (6) with minimized number of rows

of solution (F, T, L) of (5) and (6).

Physically speaking, because the number of signals of

Kxxx(t) (say p, if Kxxx(t) is an SFC signal) is less than n,

the number of signals of xxx(t), function observer order may

be less than the state observer order (n or n−m if strictly

proper or proper). Mathematically in (2b) and (6), because

rank (K) (say p, if K is an SFC gain) is less than n, the

number of rows of T may be less than the number that

makes matrix C rank n (n or n − m for strictly proper or

proper state observers).

Function observer design problem was proposed in

1966[27], and was actively studied and reported until

1986[1, 2, 18, 28, 29, 36−40]. However, none of these results used

the above solution (7) of (5), and none derived general de-

sign solution except [1, 2, 40], which were based on polyno-

mial MFD only. The generally guaranteed upper bound of

observer order of [1, 2] is p(ν1 − 1), where ν1 is the largest

observability index of system (1). It can be assumed with-

out loss of generality that the m observability indices of

system (1) are in descending order, or ν1 ≥ · · · ≥ νm and

by definition ν1 + · · · + νm = n.

In 1985, the above solution (7) of (5) was used and sub-

stituted into (6) for the first time[41]. Because C = [C1 : 0],

as for the solution of (5), (6) can be similarly separated

into two parts. While the left part of m columns of (6) can

always be satisfied by the free parameter Ky for any T , the

right n − m columns of (6) can now be expressed as[41]

K = Kzdiag{ccc1 · · ·cccr}[D′
1 : · · · : D′

r]
′ (8)

where K and Di(i = 1, · · · , r) are the right n −m columns

of K and Di(i = 1, · · · , r) of (7), respectively. Our design

problem is now simplified to solve (8) only with minimum

value of r (or minimum observer order).

Equation (8) is really a single set of linear equations, be-

cause the unknown variables of (8) are at the same side of

the equation. Although these unknown variables have a spe-

cial data structure of two parts (Kz and {ccc1, · · · , cccr}), Kz

is the full remaining freedom of (2b) after Ky while

{ccc1, · · · , cccr} is the full remaining freedom of (2a) and (5).

This equation is concluded as the simplest possible theoreti-

cal formulation of functional observer design problem[42, 43].

This is also the most significant progress on the theoreti-

cal formulation of the design problem, and this progress is

enabled only by the use of this new solution (7) of (5).

Mathematically, this basic and simple problem (8) is cov-

ered in first linear algebra courses of undergraduate engi-

neering programs such as[44], as a dual problem of kkk = Dccc,

where kkk and ccc are column vectors and ccc is unknown with

minimized dimension (r). The apparently most effective al-

gorithm of this mathematical problem is to upper echelon-

ize matrix [D : kkk] until the linear dependency of kkk on some

(say r) columns of D is revealed, and then the unknown

solution ccc can be computed by simple back-substitution[44].

Likewise, the design algorithm of [41] for problem (8)

lower echelonizes repeatedly a working matrix [D′
1 : · · · :

D′
n−m : K′]′ until the linear dependency of the rows of K

on the rows of Di(i = 1, 2, · · · ) is gradually revealed. The

unknown solutions {ccc1, · · · , cccr} and then the corresponding

row of Kz can be computed by back-substitution, every

time a row of K is revealed to be linearly dependent on the

rows of Di(i = 1, 2, · · · , r). Like the conclusion of [44], this

is apparently the most effective algorithm for the problem

(8).

Reference [45] further improved the algorithm of [41] by

adding the adjustment of positions of the Di matrices in

that working matrix, and proved that the algorithm can

guarantee an observer order upper bound of

min{n − m, (υ1 − 1) + · · · + (υp − 1)} (9)

and a lower bound of 0. For strictly proper observers

where (8) becomes K = Kzdiag{ccc1, · · · , cccr}[D′
1 : · · · : D′

r]
′,

the corresponding observer order upper bound becomes

min{n, υ1+· · ·+υp} and the lower bound becomes 1. These

bounds are unified and are the lowest ever since 1986. This

situation is not surprising because later analysis proved that

these bounds are the lowest possible bounds of function ob-

server order[42, 43].

Finally, [19] most formally and rigorously proved the

above claims of [42, 43], and then made the following two

further clear-cut claims: 1) Just like the minimum value of

r is a function of every given data of the problem kkk = Dccc,

there is no analytical formula for the minimal observer or-

der (r) itself from problem (8). Thus, (8) and (9) are the

best possible theoretical result of minimal order function

observer design problem, and the theoretical part of this

problem is solved. 2) Just like the minimal value r of the

problem kkk = Dccc is generically near its upper bound (= di-

mension of kkk), the actual observer order r is generically near

its upper bound say (9). Thus, further improvement of com-

putational algorithm to seek value of r which is even lower

than its upper bound is generically not worthwhile, and thus

the whole design problem is essentially solved. This is a

significant progress from the early authoritative conclusion

that this design problem is “difficult” and “unsolved”[1, 2].

It should be mentioned that the above significant and

clear-cut results were largely missed by the research com-

munity. The claims of [19, 42, 43] were repeatedly rejected

before publication that was already many years after 1986.

In addition, about a decade and half after 1986, some new

results appeared[46, 47]. According to [19], these results re-

formulated without simplification the original problem for-

mulation (5) and (6) (such as merely combining (5) and (6)

together or merely reformulating the solvability of (6) as

rank [K′ : C′] = rank[C′]), proposed only exhaustive nu-

merical search to compute the solution of the complicated
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reformulation, and cannot even achieve the analytical re-

sult of p(ν1 − 1) of 1980[2]. The claim of [46] that it offered

the only design solution to the minimal order functional

observer design problem, is based only on the assumption

that numerical search can yield the minimal order, and is

obviously erroneous and misleading.

The design result of [41, 45] not only is significant and

clear-cut theoretically, but also offers significant practical

advantage in observer order reduction. This is especially

true when p 	 m and the observability indices are similar to

each other, because in these cases the guaranteed observer

order upper bound (9) is significantly lower than the state

observer order n − m. For example, if n = 120, m = 20,

p = 3, and υ1 = · · · = υm = 6, then n−m = 100, while our

functional observer order is guaranteed not exceeding 15!

This order reduction of function observers is achieved by

fully using the remaining freedom {ccc1, · · · , cccr} of (5) (or

of (2a)) in (8) (or in (2b)). In Section 3, this remaining

freedom will be fully used, instead, for an all important goal

– realize the loop transfer function of its Kxxx(t)-control.

3 Observers that further realize the

loop transfer function of its SFC

3.1 Under separation principle, LTR ob-
server design is unsatisfactory

As analyzed in Subsection 1.3, if an observer generates a

Kxxx(t) signal for the purpose of realizing this Kxxx(t)-control,

then it must also have its observer feedback system loop

transfer function L(s) equal −K(sI − A)−1B, the loop

transfer function of this Kxxx(t)-control.

Basic system analysis shows the following for the feed-

back system of observer (2) satisfying (5) and (6). L(s)

at the node uuu(t) equals −[I − Kz(sI − F )−1TB]−1[Ky +

Kz(sI − F )−1L]G(s). At a virtual node ωωω(t) which is be-

fore the feedback of uuu(t) into the observer (2a), the loop

transfer function LKx(s) equals −Kz(sI−F )−1TB− [Ky +

Kz(sI −F )−1L]G(s) and this loop transfer function equals

−K(sI − A)−1B[5, 48]. Therefore, our problem is to make

L(s) equal to LKx(s).

The difference between L(s) and LKx(s) is obviously at

the term Kz(sI − F )−1TB, which is the loop gain of the

feedback of uuu(t) into the observer. If this feedback, with

gain TB of (2a) and loop gain Kz(sI − F )−1TB, equals

zero, then and only then L(s) = LKx(s)[5, 30].

However in practice, parameter Kz must be designed only

for a satisfactory feedback system matrix A − BK = A −
B[Kz : Ky][T ′ : C′]′ (the existing SFC design does not even

allow the constraint K = [Kz : Ky ][T ′ : C′]′), and certainly

cannot allow the additional constraint Kz(jωI−F )−1TB =

0 for all ω as well as (5). Therefore, Kz(jωI − F )−1TB

should be made 0 for all ω and for all K
[5]
z . Also because

jωI − F must be non-singular for all ω, L(s) = LKx(s) if

and only if in addition to satisfy (5) and (6)[5, 30]

TB = 0. (10)

It is also obvious that the feedback of uuu(t) into the ob-

server is really eliminated, or the term TBuuu(t) of (2a)

is eliminated if and only if TB = 0 (but not Kz(jωI −
F )−1TB = 0 for all ω). In actual computation, the re-

maining freedom of solution (7) of (5), {ccc1, · · · , cccr}, can

be used to simply achieve TB = 0 in the formulation diag

{ccc1, · · · , cccr}[D′
1 : · · · : D′

r]
′B = 0.

All LTR results since [22] acknowledged condition

Kz(jωI − F )−1TB = 0 for all ω, but apparently not condi-

tion (10) except that of the author of this survey. In fact,

condition (10) is theoretically not as necessary as condition

Kz(jωI − F )−1TB = 0 for all ω (because some special val-

ues of (Kz, F, T ) can be cooked (not practically designed)

so that Kz(jωI−F )−1TB = 0 for all ω without TB = 0[49])

has been a main reason and sometimes the only reason to

reject papers like [23] in the past 20 years.

In the past 20+ years, people also expressed strong doubt

on the effect of TB = 0, i.e., the loss of feedback information

of uuu(t) which is needed in Kalman filtering and the simpli-

fication of observer structure (2a) to an output feedback

controller (OFC) (output feedback only and no more in-

put feedback). But OFC has been the dominant controller

structure of the well established classical control designs

because they achieved robustness, while Kalman filter or

state observer based feedback system has no guarantee of

robustness at all in deterministic sense (this is also why uuu(t)

is missing in (2b))!

To summarize, the whole design problem is simplified as

to satisfy (5), (6) and (10).

Unfortunately, general exact solution or satisfactory ap-

proximate solution of this problem does not exist under sep-

aration principle, which implies that (6) must be satisfied

for a separately designed and arbitrarily given K. Because

all remaining design freedom (7) of (5) will now be used for

satisfying (10) instead of for minimizing the observer order,

guaranteeing (6) for an arbitrarily given K implies rank

(C) = n, or the observer must be a state observer (capa-

ble of estimating xxx(t)). Nonetheless, all LTR results except

that of the author of this survey are state observers with

rank (C) = n, and are certainly designed under separation

principle.

The exact solution of (5), (10), and rank (C) = n is equiv-

alent of an “unknown input observer” (UIO), if B is defined

as the only gain to the only unknown input in (1a)[50]. Un-

known input observer was proposed in the early 1970s[50]

and its necessary and sufficient condition was derived in

1980 as 1) minimum-phase (all transmission zeros are sta-

ble); 2) rank(CB) = p; and 3) m ≥ p[51, 52]. Almost all OLS

(1) cannot satisfy these three conditions.

For example, the probability of a transmission zero is sta-

ble/unstable can reasonably be assumed as 1
2
, because the

stable and unstable regions are about half and half. So the

probability of minimum phase with n−m transmission zeros

is only
(

1
2

)n−m
= 0.125, 0.0625, · · · as n − m = 3, 4, · · ·[5].

We recall systems with rank(CB) = p and m = p always

have n − m transmission zeros[53], and that observers are

needed only for non-trivial systems which have n 
 m



56 International Journal of Automation and Computing 12(1), February 2015

(Subsection 1.1). Condition rank(CB) = p is also unsat-

isfied by many important systems such as airborne systems

even if m > p.

The main approximate solution of this problem of (5),

(10) and rank(C) = n is called “asymptotic LTR”. Asymp-

totic LTR is achieved by asymptotically increasing the in-

put noise level while designing a Kalman filter[22], or by

asymptotically increasing the time scale while designing a

state observer[54, 55]. Through this way, the correspond-

ing observer gain L is asymptotically increased so that

the effect of gain TB is overwhelmed in (2a). This tech-

nique was also known in Kalman filter design[56]. But large

gain L is always prohibitive in practice especially in robust

control[57−59]. Large gain L will cause instability if OLS is

non-minimum phase, so this LTR result is not general (see

the previous paragraph). Even at a very large gain L, L(s)

is still very different from LKx(s) at low frequency, and even

for very simple and typical example of [22, 60].

Another approximate LTR solution computes directly

L(s) so that ‖L(jω)−LKx(jω)‖∞ is bounded[61]. However,

there is apparently no limit on this bound itself–it can be

very large[62], and there is no consideration on the phase

of L(jω) − LKx(jω) at all. Clearly, the reason for this un-

guaranteed result is that LKx(jω) is arbitrarily given (or is

separation principle itself)[5].

There is another approximate solution to the same prob-

lem, which is aimed directly at minimizing TB by select-

ing the n − m observer poles clustered around the exist-

ing stable transmission zeros while designing a function

observer[30, 48]. However, this pattern of observer poles will

result in a near singular matrix C which in turn will result

in a large observer output gain K while trying to satisfy

(6).

3.2 All drawbacks are overcome under a
new and synthesized design principle

In 1990 and in an 86◦F room one summer afternoon,

while stuck by the dilemma that making TB = 0 would

make rank(C) < n, it suddenly occurred to this author

that rank(C) needs not to be n (or observer order needs

not be fixed at n − m), that SFC gain K needs not to be

pre-designed (it can be designed afterwards and indirectly

by designing K in the form of (6) (K = KC) using the

existing SOFC methods), and separation principle need not

to be adhered after all!

With only (5) and (10) need to be satisfied without re-

quiring n−m linearly independent rows of T , the exact so-

lution becomes valid for almost all OLS′s (1). Let zi be the

i-th eigenvalue of a diagonal matrix F , and let ttti and llli be

the corresponding rows of matrices T and L (i = 1, · · · , r).

Then (5) and (10) can be expressed together as

[ttti : llli][A − ziI : B] = 0.

[ −C : 0] (11)

Obviously, exact solution [ttti : llli] exists if and only if either

m > p, or zi is a (stable) transmission zero of OLS (1)[1].

Because the number of rows of T is free to design, exact

solution of (5) and (10) exists if and only if either m > p or

system (1) has at least one stable transmission zero[63−69] .

This condition is satisfied by almost all OLS (1). The

paragraph following (1) explained that m ≥ p is true for

almost all systems (1). At m = p, the system generically

have n−m transmission zeros[53] . Based on the same argu-

ment on the probability of minimum-phase for systems with

m = p, the probability of at least one stable transmission

zero among n−m transmission zeros is 1 − ( 1
2
)n−m and is

almost 100 % if n − m > 3!

Now, the first general OFC that can estimate the Kxxx(t)

signal is claimed in [66]. This controller has the key advan-

tage of full realization of the critical robust property of this

all-powerful Kxxx(t)-control (K = KC).

To make this KCxxx(t)-control as effective as possible, in

addition to (5) and (10), rank(C)(= r + m) or r should

be maximized (see the 4th paragraph of Subsection 1.2),

and this maximization can be guaranteed by the algorithms

of [9] because (5) and (10), or diag{ccc1, · · · , cccr}[D′
1 : · · · :

D′
r]

′B = 0 is very simple and is the same form on which

the algorithms of [9] are based[63−69]. This means that if

the OLS (1) satisfies the three conditions of UIO[51, 52], then

rank(C) = n (or r = n−m) is guaranteed. It is also proven

that separation property holds as long as (5) is satisfied[60].

Thus, this synthesized design also guarantees the perfor-

mance of its results (see the first two paragraphs of Subsec-

tion 1.3).

The second main step of this synthesized design is the

design of K based on the already designed parameter

C (= [T ′ : C′]′, rank (C) ≡ q = r + m) in the form of

(6) (K = KC). This design is the same as the existing

SFC design if rank(C) = n, and is the same as the existing

SOFC if rank(C) < n (see the first four paragraphs of Sub-

section 1.2). This KCxxx(t)-control is therefore named the

“generalized state feedback control”[5, 63−69].

The observer order r, or the number of linearly indepen-

dent rows of T , is free to design based on the actual OLS

conditions and actual design requirements, and contrary to

many people, this is not a disadvantage at all! For example,

if the actual design requirement is only partial eigenvector

assignment or only p + q > n (or q > n − p)[5, 10, 11], then a

lower observer order r < n − m but r > n − p − m can be

eventually chosen even if rank(C) = n or r = n − m is al-

ready achieved. A lower order r means a simpler controller

as well as easier making of TB = 0 because less equations

to satisfy (easier robust realization). On the other hand, if

another actual design requirement requires a high value of

r (say r = n − m) which is not achievable (say the condi-

tions for UIO are not met), then our design still can set r

equal that desired high value while satisfying TB = 0 only

approximately in least-square sense (or to realize LKx(s)

only approximately)[69, 70]. To summarize, this synthesized

design can adjust the levels of feedback system performance

and robustness effectively by adjusting order r[5, 69].

Although the KCxxx(t)-control can be constrained, there

are good reasons to believe that this control is effective
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enough for most OLS conditions and most design require-

ments, because rank(C) = r + m > m. The following

example may show some light on this conclusion[23].

This example includes all the 5th order systems with two

inputs and two outputs (p = m = 2). Many important

practical systems such as aircrafts and engines have a 5th

order model. We will assume 3 (= n − m) transmission

zeros in this example[53] and the probability of minimum-

phase and exact LTR is therefore only 12.5 %. Because

m× p < n, the SOFC of this OLS is too weak to guarantee

acceptable properties (such as stability and arbitrary pole

assignment)[71], and this example is definitely non-trivial.

Because m = p, our synthesized design guarantees the

full realization of a KCxxx(t)-control with rank(C) = q =

m + r, where r is the number of OLS stable transmission

zeros[5, 23, 63−69]. The probability that this control is very

effective (able to have partial eigenvector assignment or bet-

ter, or q + p > n and r > n − p − m = 1) is 50%, while

the probability that this control is effective (able to as-

sign generically all poles or better, or q × p > n[71] and

r > n
p
− m = 0) is 87.5 %[23]. Thus, this KCxxx(t)-control is

effective enough for most systems of this example.

Finally, the only remaining and the most severe criticism

of this synthesized design principle, that the corresponding

generalized KCxxx(t)-control is allowed to be constrained and

weaker than the existing ideal Kxxx(t)-control (correspond-

ing to rank(C) = n and under separation principle) when

rank(C) = n cannot be achieved along with (5) and (10)

(such as the 87.5 % systems of the above example), is an-

swered in the following with a more philosophical point of

view.

If (10) cannot be achieved and the critical loop trans-

fer function/robustness property of the ideal Kxxx(t)-control

cannot be actually realized, then the optimality of this ideal

Kxxx(t)-control is, as demonstrated in reality ever since the

1960s, all but lost, and the ultimate purpose of observers

of realizing the Kxxx(t)-control is all but failed! Under sep-

aration principle, the Kxxx(t)-control is designed not only

assuming the ideal information of full measurement of xxx(t)

which is actually unavailable, but also disregard important

OLS conditions (such as the conditions to have UIO) and

totally disregard the parameters of the observer which actu-

ally implements this control, and then force the realization

of this unrealistically designed “ideal” Kxxx(t)-control for all

OLS′s. This is the fundamental reason of the failed realiza-

tion of the Kxxx(t)-control for almost all OLS′s[5, 23].

In human history, if a social policy or a social system

(like Kxxx(t)-control) that does not fit the actual (say back-

ward) condition of the country (like OLS), disasters almost

always happen when such a policy/system is implemented,

no matter how ideal and lofty that policy/system is.

Although the new synthesized design principle abandons

the ideal Kxxx(t)-control in the case that control cannot be

truly realized anyway, a flexible/general KCxxx(t)-control

(rank(C) is all flexible/general from m to n) is fully re-

alized. This control can fully adjust its strength (or con-

straint) according to different system conditions and differ-

ent design requirements. This control fully and wisely uses

the design freedom of observer (2) including its order and

the information of OLS (1) (both are substantially better

than their counter parts in classical control theory, see Sub-

section 1.1), and is therefore far more effective than other

forms of control, and is effective enough for most OLS con-

ditions and most design requirements. This development

makes the control of modern/state space control theory far

more effective and far more useful in applications, and far

more effective than that of the classical control theory.

4 Observers that generate Kx(t)Kx(t)Kx(t) signal

in other special applications

This section surveys the observers that generate Kxxx(t)

signal in two special applications, i.e., fault detection/ iden-

tification and systems with time-delays. In both applica-

tions, Kxxx(t) is estimated while eliminating the unknown

and undesirable effects such as fault signal fff(t) and time-

delay signal fff(t − τ ). Because both undesirable signals are

modeled as additional input disturbances in systems model

(1a) with gain say Bd, the new and general solution of the

matrix equation pair (5) and (10) (with B replaced by Bd)

of Subsection 3.2 can be used directly to derive satisfac-

tory and far more satisfactory design solutions to these two

applications.

4.1 Observers for input fault detection
and identification

The normal observers or normal feedback controllers of

Sections 2 and 3 are designed to achieve robustness against

system model uncertainties and system input disturbance

that are frequent but minor. For example, both sensitiv-

ity function [I − L(s)]−1[12]
and sensitivity of eigenvalues

s(λ)[6] were defined under the assumption that the cor-

responding parameter change is minor. On the contrary,

faults happen only accidentally but are severe and ma-

jor. Therefore, fault detectors additional to the normal

observer/controller are needed to detect and identify the

fault occurrence.

In [72, 73], fault can be commonly categorized as input

(actuator) fault and output (sensor) fault, with the input

fault far more complicated since it affects directly the dy-

namic of the system (1a). This paper surveys the results

dealing with input fault only.

The effect of the fault is modeled as an additional in-

put term Bdfff(t) in system model (1a), where the unknown

signal fff(t) is called “fault signal” with dimension say p,

and is non-zero or zero if the fault occurs or not, while Bd

is a known and given gain to fff(t). For example, if there

are two possible groups of p1 and p2 faults represented by

fault signals fff1(t) and fff2(t) (of dimensions p1 and p2), then

Bdfff(t) = [Bd1 : Bd2][fff1(t)
′ : fff2(t)

′]′ with p = p1 + p2. In

reality, the number of fault groups is often more than two.

For example, we can consider the same system having p

groups of single faults.
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The task of fault detection is very simple – all we need

is a single detector output ω(t) that is normally (fault free)

zero and will become non-zero when fault occurs. For this

task, the fault detector (2a) needs only to achieve a con-

vergence zzz(t) → Txxx(t) or to satisfy (5), because (6) can

always be satisfied if K = 0 (the rows of T are allowed to

be linearly dependent). A threshold on the zero/nonzero

determination of this ω(t) can be established against model

uncertainty and measurement noise, and the level of fff(t)

for which the corresponding ω(t) can surpass that thresh-

old and be detected, is also derived[5, 74−76] .

Like the situation that further realizing the loop trans-

fer function is much more difficult than signal estimation,

the further task of fault identification is many degrees more

difficult than the mere task of fault detection. Fault iden-

tification requires identify among all possible fault groups,

which group of faults has occurred (in the above example of

only two fault groups, identify actually which fault signal,

fff1(t) or fff2(t), is non-zero, not just a lump fff(t)).

Intrinsically, fault detection and identification is very

much like illness detection and diagnosis – becoming ill (like

fault occurrence) can be detected by patient (just feel ab-

normal), while it takes the expertise of a doctor to diagnose

from all possible diseases which disease actually occurred

and then prescribe the corresponding remedy (fault con-

trol in our case). Going back to more general situation,

the effect of germs (like noise and system variations) is ev-

erywhere and ever present but minor, a robust person (or

robust system) can handle it normally and most of time.

Only a severe illness (or a fault that can cause ω(t) to sur-

pass its threshold) requires a special prescription (or fault

control) to cure.

A group of fault detectors is required for fault identi-

fication, with each fault detector able to identify the oc-

currence of only one group of faults, or have its output

become nonzero if and only if that group of faults occurs.

We call such a fault detector “robust fault detector” since

it is supposed to be robust (output remains zero) toward

the occurrence of all other groups of faults. For example to

identify if only fff1(t) or only fff2(t) is nonzero, two robust

fault detectors are needed (outputs are ω1(t) and ω2(t), re-

spectively). Output ωi(t) becomes nonzero if and only if

fff i(t) is nonzero (i = 1, 2).

It is obvious that to achieve this stated task, in addition

to satisfy the convergence or (5), each robust fault detec-

tor (Fi, Ti, Li, i = 1, · · · , the number of fault groups) must

satisfy TiBdi = 0 or (10), where Bdi is the given gain to all

the faults for which this i-th fault detector is supposed to

be robust. In the two-fault example, T1Bd2 must be zero

and T2Bd1 must be zero.

The solution of this design requirement is already de-

scribed in (11) of Subsection 3.2. Among the two sufficient

conditions for the existence of exact solution, the simpler

condition m > p (p is the column rank of Bdi) was used to

derive a far more satisfactory design solution[77] to a 4th

order and four-state-fault water tank fault detection and

identification system, first proposed in [78].

Once the fault identification is achieved, the subsequent

fault control against the identified fault(s) is relatively easy

(just like the prescription of remedy is relatively easy if the

diagnosis is specific). One advantage of this fault detector

result of [77] is that it provides estimation information (like

Tixxx(t), i = 1, · · · , the number of fault detectors) in addi-

tion to the fault detection and identification. Once a fault

situation is identified and based on the priori knowledge of

that specific fault situation, one can select and gather the

still (relatively) reliable signals among these Tixxx(t) signals

to form a signal say Txxx(t) and apply a corresponding and

effective fault control KCxxx(t)-control for that specific fault

situation[5, 75, 76].

4.2 Observers for systems with time-delay
effects

The time-delay effects can be modeled as an additional

input term Bdfff(t − τ ) in system model (1a), where fff(t −
τ ) is unknown with time delay τ while Bd is given with

column rank say p, just like the model of unknown-input

systems and the model of fault systems of Subsection 4.1.

For example, [79] modeled this Bdfff(t−τ ) signal as Adxxx(t−
τ ).

Obviously, to estimate a required signal Kxxx(t) for this

system, observer (2) must satisfy (5), (6) and (10) (TBd =

0)[79]. Thus, the result of Section 3 can be used directly

to form a far more satisfactory solution to this problem[80],

while [79] did not advance beyond the formulation (5), (6)

and (10) at all and did not provide a real solution (just like

[47]). Reference [79] also has basic errors such as the claim

that the necessary condition of having an exact solution is

m > p (should be m ≥ p), as pointed out by [80]. Reference

[80] was previously rejected.

5 Conclusions

Observer is a L − T − I system that generates a Kxxx(t)

signal where K is a constant. Therefore, state space feed-

back controller design is observer design, if Kxxx(t)-control is

implemented. Section 1 shows that this form of control is

by far the most effective, among all basic forms of feedback

control.

To estimate Kxxx(t) for a separately designed and given

K (under separation principle), only function observer may

have order lower than state observer order (n − m or n

for proper and strictly proper observers). Section 2 indi-

cates that based on a general and decoupled solution (7) to

the most important observer design equation (5), the mini-

mal order function observer design problem was essentially

solved in 1986[19] .

Subsection 1.3 proves that in addition to the generation

of feedback control signal Kxxx(t), the observer must also

realize the loop transfer function or the robust property of

that Kxxx(t)-control. Subsection 3.1 proves that to achieve

this goal in practice, one must satisfy (10), or design the

observer gain (TB) to system input to be 0, or to make
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the observer an output feedback controller which has been

dominant in classical control theory. Subsection 3.1 also

shows that under separation principle of more than half of

a century, satisfactory solution to this problem does not

generally exist.

Subsection 3.2 shows a synthesized design principle in

which K is now designed based on the key observer pa-

rameter T and the system parameter C. With a now fully

adjustable observer order and based on the solution of (5) as

described in Section 2, exact solution to (5) and (10) exists

for almost all systems[81]. The clear and fundamental rea-

sons for the superiority[23] of this synthesized principle over

the existing separation principle are discussed. Because ro-

bustness is the most critical property of feedback control,

this development improves the state space control theory

so decisively that the theory becomes really and generally

useful now, and becomes far more effective than classical

control theory.

Section 4 describes the direct application of the solution

of (5) and (10) in two more special observer design prob-

lems, i.e., fault detection/identification and systems with

time-delay effects[81]. The dual version of this solution of

(5) and (10) also made the solution of the critical SOFC (or

generalized state feedback control) design procedure from

numerical to analytical, and this analytical solution made

the remaining design freedom as clear as that of [9] and

thus made the eigenvector assignment possible[5, 10, 11, 81].

We expect more applications of this all important matrix

equation pair[81].

Observer design has been covered in almost all first

courses of state space control theory and often at under-

graduate level. Many research results were published on

this basic and all important topic of state space control

theory for more than half of a century, but very few of

them (except the extension to MIMO systems[1−3] of the

early 1980s) were significant and satisfactory enough to be

added to the general textbooks. This survey concentrates

on the observer design results that are not merely problem

formulations, but general, simple, and effective actual de-

sign solutions that can improve significantly the whole feed-

back control theory. It is expected that these results will

be added to the new and general textbooks as attempted

in [5], be extended to more general OLS′s such as [82], and

find many more successful practical applications.
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