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Abstract: In a low energy moon return mission, due to the weak stability of the orbit, it is necessary to implement an accurate

orbital maneuver to guarantee a successful return. During the process of getting the optimal thrust control with these two kinds of

methods, it is hard to guess the initial value of the co-states in the indirect method while a large amount of calculation is needed to

insure the precision in the direct method. To solve the problem, in this paper a combined method is given which has the merit of

both direct and indirect methods. In this method, the virtual satellite method (VSM) and the Gauss pseudo-spectral method (GPM)

are applied, while the fuel optimal control strategy is computed with GPM to carry out a soft rendezvous between the spacecraft

and a hypothetical virtual satellite running on the nominal low energy return orbit so that the spacecraft will enter the return orbit

accurately. Compared with the direct and indirect methods, this combined method can avoid guessing the initial value of the co-states

and the complexity of calculation is acceptable. According to the simulation results, the spacecraft is inserted to the target return

orbit with a high accuracy and also the optimization is very effective.
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1 Introduction

With the exploration of the moon, the idea of building

permanent or semi-permanent stations on moon′s surface

to exploit lunar resources has been put on agenda by many

countries. Moon is very rich in mineral resources, if these

can be taken back to the earth, which can alleviate the

burden of resource depletion on the earth. But a problem

we have to notice is that how to bring the huge amount of

goods back to earth effectively[1, 2]. So far, the main way we

use to design return orbit from moon is the patched conic

scheme in which a spacecraft firstly escapes from the moon′s
influence sphere along a hyperbolic orbit, then comes into

earth′s influence sphere and finally reentries the earth′s at-

mosphere at the perigee[3]. This return method costs only

3 – 7 days to complete the whole task and so it is very suit-

able for manned missions. However, this return way has

to spend too much fuel on pushing the spacecraft into the

hyperbolic orbit so that it is not economical for the freight.

Because generally the goods′ quality is stable, so there is

no need to bring them back to the earth in such a short

time. In this case, saving fuel is a better choice than saving

time. In 2005, Ivashkin[4] proposed a new method to design

the return trajectory by making use of the multi-body dy-

namics. In his approach, the spacecraft is pushed to a large

elliptical orbit around the moon and escapes from the earth-

moon L2 libration point. Then the orbit perigee′s altitude
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is reduced gradually by sun′s gravity till the spacecraft goes

into earth′s atmosphere. The whole return process is just

opposite to the Hiten′s mission and it will cost about 100

days while over 25% fuel is saved at the same time[5]. Nev-

ertheless, this new method exposes another problem that

the designing of the optimal return orbit indicates an im-

pulsive transfer which is not realizable actually, so we need

transform this impulse into a finite thruster strategy which

can finish the same transfer mission. Generally, it is a

typical two-point boundary value problem and its solution

can be divided into two categories, which include the di-

rect method and the indirect one. For the direct method,

such as GPM, because of the long transfer time, it needs

thousands of Gauss points to guarantee the interpolation′s
accuracy so that the computation is often slow and easy to

diverge. As a result, the application of GPM is restricted to

a short period and simple dynamic model case[6, 7]. Liu et

al.[8, 9] designed the transfer orbit to the Mars by using elec-

tric propulsion and rapid transfer orbit near the earth, but

the dynamic model was a two body problem. Begüm and

Rao[10] designed an aero assisted orbital transfer trajectory

but the time period is only over 200 s at most for each phase.

For the indirect method, such as the Pontryagin maximum

principle, because of the strong nonlinear feature involved

in this system, the domain of convergence is so narrow that

it would take a long time to integrate the whole orbit. To

solve the problem, the virtual satellite method is proposed,

in which a “virtual satellite” is assumed to be running on

the target orbit. The spacecraft would carry out an orbital

maneuver to make soft rendezvous with the virtual satel-

lite. If the terminal speed and position error between the

spacecraft and the virtual satellite becomes zero, the space-

craft will enter the target orbit accurately. One advantage
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of the virtual satellite method (VSM) is that it only needs

to integrate the phase of soft rendezvous, which can reduce

the amount of calculation sharply. The other one is that

the terminal index is very simple. We only guarantee the

relative position and the relative velocity to be zero[11, 12].

However, the VSM has some disadvantages, too. Because

the optimal direction of the thruster is achieved by the max-

imum principle, it is hard to guess the initial value of the

costate when target orbit is extremely different from the

initial orbit. For the optimization of the low energy return

orbit, we have to find a way to make full use of VSM′s ad-

vantages and avoid its disadvantages. A direct yet effective

way is the integration of GPM and VSM. There are 2 ad-

vantages for the integration. Firstly, with GPM, we can

evade the guess of the costate in VSM. Besides, the time

for rendezvous is much shorter than that for the whole re-

turn progress, it needs only dozens of Gauss points to get

an accurate solution. So in this paper, VSM and GPM are

combined to get the optimal thrust strategy for the space-

craft to transfer to the nominal low energy return orbit.

2 Dynamic model and nominal trajec-

tory

2.1 Dynamic model of the spacecraft

To “cut down” the energy for returning to the earth, it is

necessary to use the gravitation assistance of the moon and

sun because the elliptical movement of moon could help

the spacecraft to escape from its influence sphere with a

lower energy and sun′s gravity can lower the perigee of the

spacecraft passively[13,14]. So the dynamic model of the

spacecraft should be an elliptical four-body model which is

shown in Fig. 1.

Fig. 1 The elliptical four-body model

Firstly, the dynamic model of the spacecraft is studied in

the earth-moon rotating frame (EMRF), of which the ori-

gin is at the mass center of the earth and the moon. The

z-axis points to the direction of the moon′s orbital angular

momentum. The y-axis completes the right-handed coor-

dinate system. The differential equations of the spacecraft

can be given as

r̈ = −ω̇r × r − ωr × (ωr × r) − 2ωr × v−
μe

r3
ep

rep − μm

r3
mp

rmp −
(

μs

r3
s

rsp − μs

r3
so

rso

)
(1)

where ωr is the rotating angular velocity of EMRF, rep, rmp

and rsp are the position vectors from the earth, moon and

sun to the probe, μe, μm and μs are the gravitational con-

stants of earth, moon and sun. rso is the position vector

from sun to the origin of EMRF.

In the dynamic equation, the distances from the moon to

the earth and to the sun are not constant. And the main

bodies′ movement can be described with the real ephemeris

data.

2.2 Nominal optimal return trajectory

Let′s assume that the spacecraft initially locates in a

moon-equatorial circular orbit with a height of 100 km. To

get a nominal low energy return trajectory, the spacecraft

will go away from the initial orbit with an impulse along

the tangential direction of the orbit so that it inserts into

a large elliptical orbit with a semi-major axis of 28 000 km

and the orbit energy of −1.608 0 km2/s2. Then, we just

need to decide the departure time and the maneuver′s ini-

tial selenocentric longitude. Fig. 2 shows the distribution

map of terminal perigee′s radius corresponding to different

launch times and initial longitudes.

Fig. 2 Terminal perigee of the spacecraft

From Fig. 2, we can see that within a month as the ini-

tial launch time varies, we get four regions in the distribu-

tion map. In region B, the spacecraft cannot escape from

moon′s influence sphere. In region C, the spacecraft es-

capes via earth-moon L1 point but is not able to approach

the earth closely enough to enter the atmosphere. And

in region D, the spacecraft just escapes via earth-moon L2

point and goes into the deep space, never comes back. Only

region A indicates low energy return trajectories, in which

the spacecraft escapes from L2 point and approaches the

earth-sun L2 point, then the perigee declines gradually to

a small value with which the spacecraft could return to the

earth eventually. When the launch energy becomes lower,

the region A will shrink to a point and the corresponding

trajectory is the optimal one. In this paper, a nominal low

energy return orbit is given via the genetic algorithm, be-

cause of its advantages on global searching and convergence

abilities[15, 16], in which the launch time, initial selenograph-

ical longitude and total impulse are the design variables and
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the weighted sum of launch energy and terminal radius of

perigee are the target function. By solving the optimiza-

tion problem in January of 2020, we can get the optimal

nominal return orbit that is shown in Table 1.

Table 1 Parameters of the optimal return trajectory

Parameter Value

Launch time (date) 13:15 2020/01/07

Initial longitude (degree) 219.86

Launch energy (km2/s2) −1.8272

Total impulse (m/s) 614.25

Total transfer time (day) 91

Terminal radius of perigee (km) < 1000

With the optimized parameters, the spacecraft will be in-

jected into the low energy return orbit. From Fig. 3, we can

see that the spacecraft will get far from the earth-moon sys-

tem firstly after escaping from cislunar orbit and the max-

imum range from the earth is about 1.5 million kilometers.

Then, the spacecraft will turn to the earth and finally reen-

try the atmosphere. The whole return process costs about

91 days, over 10 times than traditional methods, while over

25% of energy is saved.

Fig. 3 Optimal return trajectory

We have to notice that the optimal returning trajectory

is generated with an assumption that the spacecraft inserts

into the target orbit with an impulsive maneuver which is

not realizable. So it is necessary to transform it to a series

of finite thrust controls. Because the whole return process

costs about 100 days, the integration of whole orbit will

cost a long time, so calculation becomes a core factor which

seriously limits the efficiency of the optimization process.

To solve the problem, GPM/VSM is used to calculate the

optimal thruster strategy and its steps are developed in the

next chapter.

3 Obtaining the optimal thruster strat-

egy with GPM/VSM

3.1 Virtual satellite method

Because the thrust arc is really a small part compared to

the whole return trajectory, a lot of calculations in the opti-

mization process will be performed if the post boost trajec-

tory is included in the integration. To avoid this problem,

the virtual satellite method is introduced. In the virtual

satellite method, it is assumed that there is a virtual satel-

lite S1 running on the target orbit, as shown in Fig. 4, and

the real spacecraft S starts off from the initial orbit and

implements a finite thrust control to rendezvous with S1.

In order to describe the relationship between the virtual

satellite and the spacecraft clearly, the rendezvous coordi-

nates frame is described first. The frame′s origin locates

at S1 while the x axis points to the center of moon, the

z axis points to the direction of the orbit′s angular mo-

mentum and the y axis completes a right-handed Cartesian

coordinate system. In the rendezvous frame, the dynamic

equation describing the spacecraft′s relative motion with

respect to S1 is given below, where the disturbance from

earth′s and sun′s gravity has been taken into account.

ρ̈ =

(
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ω̇ × ρ + 2ω × ρ̇ + ω × (ω × ρ) +
Fu

m
(2)

where ρ denotes the relative position of the spacecraft Rmp,

Rep, and Rsp are the vectors from the moon, earth and sun

to the virtual satellite, respectively, Rmp = ‖RRRmp‖, Rep =

‖RRRep‖, Rsp = ‖RRRsp‖, rmp = ‖RRRmp + ρ‖, rep = ‖RRRep + ρ‖
and rsp = ‖RRRsp + ρ‖. ω is the angular velocity of the ren-

dezvous frame with respect to the inertial frame. F and m

are the thrust force and the spacecraft′s mass, and u de-

notes the control direction. In the simulation, because the

nominal trajectory is given previously, the motion of the

virtual satellite is a function of time when the initial state

is fixed. So the rendezvous trajectory of the spacecraft is

only affected by the control u. We also need to choose a

proper initial states for the virtual satellite and real space-

craft to start the simulation.

Fig. 4 Optimal return trajectory

To perform the optimization, we should firstly construct

the state function of real spacecraft as below, which involves



L. Yue et al. / Finite Thrust Transfer Strategy Designing for Low Energy Moon Return Based on GPM/VSM 493

the spacecraft′s mass m as a state.

Ẋ =

⎡
⎢⎣

ρ̇

v̇

ṁ

⎤
⎥⎦ =

⎡
⎢⎣

v

ρ̈

ṁ

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎣

v

f (ρ, v, t) +
Fu

m
F

Isd

⎤
⎥⎥⎥⎥⎦ (3)

where X = [ ρ v m ]T denotes the spacecraft′s state,

Isg denotes the specific impulse.

Given the initial states of the spacecraft, our task is to

design the optimal control strategy making the terminal

relative position and relative velocity zero. In a traditional

VSM, the control strategy is generated via the maximum

principle, but it is hard to guess the initial value of the

co-states and the optimization is easy to diverge when the

system is of strong nonlinearity. To improve the robust-

ness and efficiency of the optimization, the Gauss pseudo-

spectral method is applied to get the optimal result.

3.2 Gauss pseudo-spectral method

In the Gauss pseudo-spectral method, an optimal control

problem′s time span, states and control are discretized to

the corresponding optimal variables at a series of Legendre-

Gauss points (LG points). These discrete optimal vari-

ables should satisfy certain constrains. Therefore, the op-

timal control problem is transformed into a non-linear pro-

gramming problem which we can deal with by appropriate

approaches such as the sequential quadratic programming

(SQP) method.

Firstly, the time needs to be transformed into another

style so as to fulfill the discretization.

t =
tf − t0

2
τ +

tf + t0
2

, τ ∈ [−1, 1] . (4)

The state can be expressed approximately based on N+1

Lagrange interpolating polynomials Li (τ ) , τ = 0, · · · , N

as

x(τ ) ≈ X(τ ) =
N∑

i=0

X(τi)Li(τ ) (5)

where Li(τ ) =
N∏

j=0,j �=i

τ−τj

τi−τj
, τk(k = 1, · · · , N) denote the

Legendre-Gauss points and τ0 = −1 . The LG points are

the roots of Legendre polynomials PK , which can be ex-

pressed as PK (τ ) = 1
2KK!

dK

dτK

[(
τ 2 − 1

)K
]
.

Similarly, the control is discretized at a series of LG

points like

u(τ ) ≈ U(τ ) =

N∑
i=1

U(τi)L
∗
i (τ ) (6)

where L∗
i (τ ) =

N∏
j=1,j �=i

τ−τj

τi−τj
.

To get the dynamical constrains, we differentiate the

state expression in (5) and obtain

ẋ(τ ) ≈ Ẋ(τ ) =

N∑
i=0

X(τi)L̇i(τ ). (7)

In the Gauss pseudo-spectral method, the system should

satisfy the dynamic constrains in (7) at each LG point. At

LG points, the differential of each Lagrange polynomial can

be expressed in a differential approximation matrix D ∈
RN×N+1, whose elements can be calculated via

Dki = L̇i(τk) =⎧⎪⎪⎨
⎪⎪⎩

(1 + τk)ṖK(τk) + PK(τk)

(τk − τi)[(1 + τi)ṖK(τi) + PK(τi)]
, i �= k

(1 + τi)P̈K(τi) + 2ṖK(τi)

2[(1 + τi)ṖK(τi) + PK(τi)]
, i = k

(8)

where i = 0, 1, · · · , N and k = 1, 2, · · · , N .

Based on the differential approximation matrix D, the

dynamical constrains can be rewritten into algebraic con-

straints as

N∑
i=0

DkiXi − tf − t0
2

f(Xk, Uk, τk; t0, tf ) = 0 (9)

where Xk ≡ X(τk), Uk ≡ U(τk), k = 1, · · · , N , and f is the

dynamic equation of the spacecraft.

According to the Gauss integral expression, the terminal

state can be calculated as

Xf = X0 +
tf − t0

2

N∑
k=1

ωkf(Xk, Uk, τk; t0, tf ) (10)

where X0 ≡ X(−1) and the Gauss weight ωk could be got-

ten by the expression

ωi =

∫ 1

−1

Li (τ ) dτ =
2

(1 − τ 2
i )

[
ṖK (τi)

]2 , i = 1, · · · , K.

(11)

Also, the cost function can be approximated as

J = φ(X0, t0, Xf , tf ) +
tf − t0

2

N∑
k=1

ωkf(Xk, Uk, τk; t0, tf ).

(12)

The boundary constrains are

Φ(X0, t0, Xf , tf ) = 0. (13)

And the path constrains are

C(Xk, Uk, τk; t0, tf ) � 0, k = 1, · · · , N. (14)

A non-linear programming problem is defined in which

(12) is the cost function, (9), (10) and (13) are equation con-

strains and (14) includes all path constrains. So far, we have

transformed the parameter optimization problem into a cor-

responding non-linear programming problem which can be

solved via the SQP approach.

4 Simulation and results

4.1 Steps of optimization

The detailed steps to get the optimal thruster strategy

are summarized below:



494 International Journal of Automation and Computing 12(5), October 2015

1) Generate the nominal trajectory of the virtual satel-

lite.

2) Set the time of the virtual satellite orbit′s perilune

point to be zero.

3) Set the time constrain to be t ∈ [−T
2
, T

2

]
, where T is

the orbit period of the spacecraft.

4) Set the path constrain to be r > 173 8 km.

5) Set the boundary constrain to be r0 = 183 8 km, v0 =

1.633 km/s, r · v0 = 0 and ρf = ρ̇f = 0.

Substitute the above data into the GPM solver and get

the results.

Then, the simulation is carried out with computer. After

several iterations, we can get the optimal control strategy

and the transfer trajectory of the spacecraft to its target

orbit.

4.2 Simulation results

In the simulation of the low energy return mission, it is

assumed that the spacecraft′s initial mass is 500 kg and its

single thruster has a propulsive force of 490 N with a specific

impulse of 3000 m/s.

Substituting these initial values into the GPM solver, the

design variables include the start time, end time, initial

state of the spacecraft, initial thrust angle and its rate of

change. The number of LG points is 50, and with 8 times of

iterations, we can get an accurate result. Besides, with an

Intel Pentium 2.9 GHz machine and Matlab 8.0 program-

ming environment, the computation only takes less than

1min to get the result.

Simulation shows that the transfer starts at moment

−290 s when the virtual satellite′s true anomaly is 212.3

degrees. The spacecraft′s maneuver history is shown in

Fig. 5.

Fig. 5 Optimal control strategy

Fig. 5 indicates that during the whole transfer process

the thrust′s direction changes smoothly, which is easier to

implement in actual operation than direction′s abrupt and

huge change.

With the action of thrust, orbit elements and the

spacecraft′s mass will change, too. As the result, the space-

craft is transferred into a large elliptical orbit from its orig-

inal orbit within 600 s and its mass has declined by 93 kg,

as shown in Fig. 6.

Fig. 6 Time history of orbit parameters

Fig. 7 gives the whole transfer sketch in which the space-

craft transfers from the original orbit to its target orbit.

Fig. 7 Transfer trajectory from initial to target orbit

The distance from the spacecraft and the virtual satellite

to the moon′s center varies along the spacecraft′s seleno-

centric longitude. Their relationship is shown in Fig. 8. It

is obvious that the spacecraft′s moon-center longitude has

changed about 34 degrees during the transfer.

From Fig. 9, we can see that the relative distance between

the spacecraft and virtual satellite comes to a small value

with the control. At the transfer′s end point, the relative

distance and relative velocity between the real craft and the

virtual satellite is too small, i.e., the relative distance is less

than 20 m and relative velocity less than 0.1m/s to fail the

return mission. The actual orbit is close to the nominal one,

as shown in Fig. 10, and the probe will successfully return

to the earth.
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Fig. 8 Two spacecraft′s selenocentric distances′ change with

corresponding longitudesx

Fig. 9 Time history of the relative distance

Fig. 10 Nominal and actual return trajectories

5 Conclusions

An elliptical four-body dynamic model is constructed and

then used to analyze the existence of low energy moon re-

turn trajectory, which is more economical than the tradi-

tional return method. Fortunately, we get an economical

and nominal optimal return orbit in this case. However,

it needs a huge and non-realizable impulse to transfer the

spacecraft from selenocentric circular orbit to the target low

energy return orbit. The VSM and GPM are combined to

design the finite thrust control strategy which could be used

to substitute the non-realizable impulse. In the VSM, the

control model is constructed in the rendezvous coordinates

system, which has two advantages: the final index is very

simple and the huge amount of calculation can be cut be-

cause we only need optimize the thrust arc. Finally, the

GPM is introduced to solve the optimal control problem

and get the optimal result, which can avoid guessing the

co-states′ initial value in the maximum principle. All steps

of the optimization are listed. The simulation results show

that the GPM/VSM can offer us the optimal control strat-

egy with a high accuracy and efficiency. The final error is

small enough to guarantee the successful return.
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