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1 Introduction

Many industrial applications consist of repeated execu-

tion of the same task over a finite duration. A generic

example is a gantry robot executing a pick and place task

where the sequence of operations is: 1) collect the pay-

load from a fixed location, 2) transfer the payload over a

finite duration, 3) place the payload at a fixed location or

under synchronization on a moving conveyor, 4) return to

the starting location and 5) repeat 1)–4) as many times as

required or until a halt is required for maintenance or for

other reasons. Each execution is known as a trial over the

finite trial length. Once a trial is complete, all the infor-

mation generated during execution is available for use in

computing the control input for the next trial.

Iterative learning control (ILC) was developed for appli-

cations such as the gantry robot task briefly outlined above

where previous trial information is used to compute the con-

trol input to be applied on the next trial. The basic idea is

to improve performance from trial-to-trial and non-causal

temporal information can be used provided it is generated

in a previous trial. For example, at instant, say t, in trial

k + 1, k ≥ 0, information at t + λ, λ > 0, on trial k can be

used in the computation of the control input on subsequent

trials. The use of such information is the main distinguish-

ing feature of ILC.

The widely recognized starting point for ILC research is

[1], which considered a simple first order linear servomecha-
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nism system for speed control of a voltage-controlled direct

current servomotor. Since this first work, ILC has been

broadened in breadth and depth, for recent overviews of

the literature [2, 3]. Robust ILC design is an active topic

lately[4−7]. Applications of ILC included batch-to-batch

control[8, 9], traffic control[10, 11], point-to-point control[12],

and positioning control[13−14] .

In this paper, we exploit the natural 2D system structure

of ILC where one direction of information is from trial-to-

trial indexed by the subscript k and the other along a trial

indexed by p. The first work on treating ILC in a 2D system

setting is [15], where the Roesser state-space model is used.

This initial work has been followed by extensions to deal

with, e.g., uncertainty in the model of the dynamics and

uncertain initial conditions at the start of each trial[16]. In

[17], the 2D system setting for analysis and design has been

extended to nonlinear batch processes operating in a series

of piecewise affine operating regions and with industrial ap-

plications in mind, allowing the presence of constraints on

the input and output.

Given that the trial length is finite by definition, a more

natural model for ILC is a repetitive process[18]. These

processes are characterized by a series of sweeps, termed as

passes, through a set of dynamics defined over a fixed finite

duration known as the pass length. In particular, a pass is

completed and then the process is reset before the start of

the next pass. On each pass, an output, termed the pass

profile, is produced which acts as a forcing function on, and

hence contributes to, the dynamics of the next pass profile.

Repetitive processes have their origins in the coal mining

industry, references to the original work in the 1970s are

given in [18], where coal is extracted by a cutting machine

that makes repeated sweeps along the coal face. During any

sweep, the machine rests on the previous pass profile, the
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height of the stone/coal interface above some datum line.

The basic geometry confirms that coal cutting is a repetitive

process and other physical examples are again discussed in

[18] and the relevant cited references.

The explicit interaction between successive pass profiles

in a repetitive process can lead to oscillations that increase

in amplitude from pass-to-pass and these oscillations can-

not be removed by standard control action. A stability the-

ory for linear constant pass length repetitive processes has

been developed[18] that, in essence, requires that a bounded

initial pass profile produces a bounded sequence of pass

profiles. This theory is based on an abstract model of the

dynamics in a Banach space setting with the bounded prop-

erty defined in terms of the norm of the Banach space to

which the pass profile is assumed to belong. The repetitive

process setting has been used to design ILC laws that have,

in contrast to the 2D system based designs, been experimen-

tally verified on a gantry robot[19, 20], where the necessary

computations are linear matrix inequality (LMI) based.

In [21], the generalized Kalman-Yakubovich-Popov

Lemma is used to develop ILC design algorithms in the

repetitive process setting where frequency attenuation, the

physical interpretation of the stability property, is only im-

posed over finite frequency ranges selected by knowledge of

the particular application, again with experimental verifica-

tion. Also, the repetitive process setting has been used[22]

to develop results on how to make the most effective use of

previous trial information.

In operation, an ILC control law requires, as in other ar-

eas, that actuators and sensors function properly, where

should a failure occur this can be total, in which case

the overall control scheme may fail, or partial. One way

to guard against such problems is to do a fault tolerant

design[23]. This topic has already been the subject of pro-

ductive research in ILC[24−26]. This paper contributes to

this general area by using the repetitive process setting to

analyze the effects of actuator faults, leading to LMI based

control law design algorithms with an extension to both

norm bounded and polytopic based robustness. A numeri-

cal case study is also given.

The next section gives the required background on repet-

itive processes and formulates the general problem consid-

ered, including the representation of the faults. Section 3

then considers nominal model based ILC design and Sec-

tion 4 extends the analysis to norm bounded and polytopic

uncertainty. In Section 5, a simulation based case study is

given using the model of an electric motor system used for

evaluating other ILC designs. Section 6 concludes the pa-

per by giving an overview of the new results obtained and

discussion of possible future research.

Throughout this paper, the null and identity matrices

of compatible dimensions are denoted by 0 and I respec-

tively. Also, X > 0 and X < 0 denote a symmetric positive

definite matrix and a symmetric negative definite matrix,

respectively. The symbol ∗ represents transposed entries in

a symmetric matrix and ρ(·) denotes the spectral radius of

its matrix argument.

2 Background and problem formula-

tion

Repetitive processes are characterized by a series of

sweeps, termed passes, through a set of dynamics defined

over a finite duration known as the pass length. On each

pass, an output produced termed the pass profile and the

sequence of operations is that a pass is completed and then

the process resets to the starting location and the next

pass can begin, either immediately or after some time has

elapsed. The pass profile produced on the previous pass

acts as forcing function on the next pass and hence con-

tributes to its dynamics. Variables in a repetitive process

are two dimensional functions and the notation used is of

the form yk(p), 0 ≤ p ≤ α − 1, k ≥ 0, where y is the scalar

or vector valued variable, α < ∞ is the pass length and the

subscript k denotes the pass number.

Let {yk} denote the sequence of pass profiles generated

by an example. Then, the control problem is that this se-

quence can contain oscillations that increase in amplitude

from pass-to-pass, i.e., with k. Repetitive processes have

their origins in the coal mining industry where coal is mined

by a series of passes along the coal face by a cutting machine

that rests on the previous pass profile during the completion

of the next pass. The original references are in [18], and in

this example, the oscillations in the pass profile sequence

are due, in the main, to the weight of the cutting machine.

In the absence of control action, the only option is to halt

productive work to enable their manual removal.

Pass-to-pass oscillations generated by a repetitive pro-

cess cannot be controlled by application of standard, or 1D,

control system theory and design since such an approach ig-

nores their 2D system structure, i.e., the finite pass length

and the resetting of the initial conditions before the start

of each new pass. A complete treatment of this aspect can

be found in [18] and the relevant cited references.

A stability theory for linear constant pass length repeti-

tive processes has been developed[18]. This is based on an

abstract model in a Banach space setting that includes wide

range of such linear repetitive processes. Given the control

problem, this theory demands that a bounded initial pass

profile produces as bounded sequence of pass profiles, with

boundedness defined in terms of the norm on the underly-

ing function space. Moreover, this property can be enforced

over the finite and fixed pass length, termed asymptotic

stability, or for all possible values of the finite pass length,

termed stability along the pass. This last property can be

analyzed by considering α → ∞ and this is the form of

repetitive process stability required in this paper.

The ILC design in this paper is based on discrete linear

repetitive processes whose state-space model over 0 ≤ p ≤
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α − 1, k ≥ 0, is

xk+1(p + 1) = AAAxk+1(p) + BBBuk+1(p) + BBB0yk(p)

yk+1(p) = CCCxk+1(p) + DDDuk+1(p) + DDD0yk(p) (1)

where on pass k, xk(p) ∈ Rn is the state vector, yk(p) ∈ Rm

is the pass profile vector and uk(p) ∈ Rr is the control in-

put vector. The boundary conditions, i.e., the pass state

initial vector sequence and the initial pass profile, are

xk+1(0) = dk+1, k ≥ 0,

y0(p) = f(p), 0 ≤ p ≤ α − 1 (2)

where the vector functions dk+1 and f(p) have known en-

tries. In this model, it is not assumed that the entries in

dk+1 are the same for each k but they are independent of the

previous pass dynamics. These boundary conditions are the

simplest possible but applications do exist where they must

be replaced by an alternative structure and, in particular,

the entries of a state initial vector could be set as functions

of sampling instants on each pass. This topic is also treated

in [18] where the abstract model based theory shows that

such state initial conditions alone can cause instability.

As discussed above, stability of these processes is defined

in terms of the contribution of the previous pass profile to

that on the next pass. For processes described by (1) and

(2), the pass-to-pass coupling is described by the convolu-

tion operator, denoted by Lα, for a standard linear system

with state-space model matrices {AAA,BBB0,CCC,DDD0}. Hence the

contribution from pass k to pass k + 1 can be written as

yk+1 = Lαyk, k ≥ 0. Also, let yk ∈ Eα, where Eα is a

suitably chosen Banach space with norm denoted by || · ||
and let the same symbol denote the induced norm on the

bounded linear operator Lα.

Asymptotic stability for linear repetitive processes is

equivalent to the existence of finite real scalars Mα > 0

and λα ∈ (0, 1) such that ||Lk
α|| ≤ Mαλk

α, k ≥ 0. For exam-

ples, described by (1) and (2), asymptotic stability requires

that ρ(DDD0) < 1 and if this condition holds, the sequence

of pass profiles produced will converge in k to a standard

discrete linear system, termed the limit profile, with state

matrix AAAlp = AAA + BBB0(I − DDD0)
−1CCC. However, consider the

special case when AAA = 0.5,BBB = 1,BBB0 = −0.5 + β, CCC = 1

and DDD0 = 0. Then AAAlp = β and hence the limit profile is

unstable in p, i.e., along the pass when |β| ≥ 1.

The existence of examples such as the one given above

is due to the finite pass length, a property of the process

and not an assumption imposed for analysis purposes. Sta-

bility along the pass prevents such examples from arising

by imposing the stability property for all possible values of

the finite pass length. This property requires the existence

of finite real scalars existence of finite real scalars M∞ > 0

and λ∞ ∈ (0, 1), which are independent of α, such that

||Lk
α|| ≤ M∞λk

∞, k ≥ 0. The following result characterizes

stability along the pass of examples described by (1) and

(2).

Lemma 1[18]. A discrete linear repetitive process de-

scribed by (1) and (2) is stable along the pass if and only

if 1) ρ(DDD0) < 1, 2) ρ(AAA) < 1, and 3) all eigenvalues of

G(z) = CCC(zI − AAA)−1BBB0 + DDD0 have modulus strictly less

than unity for all |z| = 1.

Note that the intuitively obvious condition 2) in this re-

sult is also only a necessary condition for stability along

the pass as the simple example given above demonstrates.

Condition 3) in this result requires frequency attenuation

of the complete spectrum of the previous pass profile.

The systems considered in this paper have the following

state-space model in the ILC setting

xk(p + 1) = Axk(p) + Buk(p)

yk(p) = Cxk(p)

xk+1(0) = dk+1, 0 ≤ p ≤ α − 1 (3)

where on trial k, xk(p) ∈ Rn is the state vector, yk(p) ∈ Rm

is the output vector, uk(p) ∈ Rr and the entries in dk+1 are

known constants. Also let uk,i(p), 1 ≤ i ≤ r, denote the en-

tries in uk(p) and let uF
k,i(p) denote an input and actuator

signal with possible failures. Then, the failure model used

in this paper is[24]

uF
k,i(p) = γiuk,i(p), i = 1, 2, · · · , r (4)

where

0 ≤ γ
i
≤ γi ≤ γi, i = 1, 2, · · · , r (5)

The scalars γ
i
(γ

i
≤ 1) and γi(γi ≥ 1) in this failure

model are assumed to be known. The scalar γi is unknown

but assumed to vary within a known range. If γ
i

= γi,

the fault-free case is recovered, i.e., uF
i = ui. Also, γi = 0

is the case when the actuator experiences complete failure

and γi > 0 corresponds to a partial failure, i.e., partial

degradation of the actuator.

Introduce the notation

Γ = diag{γ1, γ2, · · · , γr} (6a)

Γ = diag{γ1, γ2, · · · , γr} (6b)

Γ = diag{γ
1
, γ

2
, · · · , γ

r
} (6c)

to give

uF
k = [uF

k,1, u
F
k,2, · · · , uF

k,r]
T = Γuk. (6d)

Hence, the system described by (3) with actuator faults

of the form considered in this paper can be described by

the state-space model

xk(p + 1) = Axk(p) + BΓuk(p)

yk(p) = Cxk(p)

xk+1(0) = dk+1, 0 ≤ p ≤ α − 1. (7)

Also, let yr(p) denote the supplied reference vector.

Then, the tracking error on trial k is

ek(p) = yr(p) − yk(p). (8)

The control design problem is to determine a fault-

tolerant ILC law such that trial-to-trial error convergence
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occurs in k, i.e., limk→∞ ||ek|| = 0, where || · || is a con-

venient norm, in the presence of actuator failures. More-

over, the control input applied on each trial must satisfy

limk→∞ ||uk − u∞|| = 0, where u∞ is termed the learned

control.

The following structure for the computation of the cur-

rent trial input permits the use of previous trial data

uk+1(p) = uk(p) + Δuk+1(p) (9)

i.e., the control input on the previous trial plus a correction

term Δuk+1(p). Introduce, for analysis purposes only,

ηk+1(p + 1) = xk+1(p) − xk(p) (10)

and set

Δuk+1(p) = K1ηk+1(p + 1) + K2ek(p + 1) (11)

where K1 and K2 are compatibly dimensioned matrices to

be designed. Then, the controlled dynamics can be refor-

mulated as

ηk+1(p + 1) = Axk+1(p − 1) + BΓuk+1(p − 1)−
Axk(p − 1) − BΓuk(p − 1) =

(A + BΓK1)ηk+1(p) + BΓK2ek(p)

ek+1(p) = yd(p) − yk+1(p) =

ek(p) + yk(p) − yk+1(p) =

− C(A + BΓK1)ηk+1(p)+

(I − CBΓK2)ek(p) (12)

or

ηk+1(p + 1) = ̂Aηk+1(p) + ̂Bek(p)

ek+1(p) = ̂Cηk+1(p) + ̂Dek(p) (13)

where

̂A = A + BΓK1, ̂B = BΓK2,

̂C = −C(A + BΓK1), ̂D = I − CBΓK2.

The state-space model (13) is that of a discrete lin-

ear repetitive process of the form (1) with the input term

deleted from both the state and pass profile updating equa-

tions. On trial k + 1, the ILC error ek+1(p) is the pass

profile vector and ηk+1(p) is the current state vector.

In the next section, repetitive process theory is applied

to ILC design, where for the remainder of this paper, pass

is used instead of trial to conform with repetitive process

literature.

3 ILC design

Introduce the notation

Σ = diag{σ1, σ2, · · · , σr} (14a)

Σ0 = diag{σ10, σ20, · · · , σr0} (14b)

with

σi =
γi + γ

i

2
, i = 1, 2, · · · , r (15a)

σi0 =
γi − γ

i

γi + γ
i

, i = 1, 2, · · · , r. (15b)

Also, from (6) and (15), an unknown matrix Γ0 exists

such that

Γ = (I + Γ0)Σ (16)

and

|Γ0| ≤ Σ0 ≤ I (17)

where

Γ0 = diag{γ10, γ20, · · · , γr0} (18)

and

|Γ0| = diag{γ10|, |γ20|, · · · , |γr0}.

The analysis that follows will make extensive use of the

Schur′s complement formula and the following result.

Lemma 2[27]. Assume X, Y , Z = ZT are real matri-

ces with compatible dimensions. Then, for any matrix Δ

satisfying ΔTΔ ≤ I , the inequality

Z + XΔY + Y TΔTXT < 0

holds if and only if there exists a positive scalar ε such that

Z + εXXT + ε−1Y TY < 0.

The conditions of Lemma 1 can be used to test the sta-

bility of the controlled dynamics (13) and also have well

defined physical interpretations. In particular, condition

1) of this result shows that ILC pass-to-pass error conver-

gence is independent of the state initial vector sequence

assumed in this work. However, if the initial state vec-

tor is a function of points along the previous trial, e.g.,

xk+1(0) = dk+1 + Lyk(α − 1), then repetitive process sta-

bility theory[18], shows this term alone can cause instability

and hence pass-to-pass error divergence would occur. Con-

dition 2) of Lemma 1 guarantees that state dynamics along

any pass are bounded independent of the pass length and

condition 3) imposes frequency attenuation over the com-

plete spectrum of the previous pass error.

An alternative to Lemma 1 is to use a Lyapunov function-

based interpretation of stability[18], which results in LMI

based design where the computations to be completed in-

volve only matrices with constant entries. This approach

is based on a sufficient, but not necessary, set of stability

conditions, but designs in this setting have been experimen-

tally verified[19, 20]. The following is the first new result of

this paper.

Theorem 1. The discrete linear repetitive process rep-

resentation of the ILC dynamics (13) is stable along the
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pass if there exists a scalar λ > 0 and matrices X1 > 0,

X2 > 0, R1 and R2 such that the following LMI is feasible:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−X1 ∗
0 −X2

AX1 + BΣR1 BΣR2

−CAX1 − CBΣR1 X2 − CBΣR2

ΣR1 ΣR2

∗ ∗ ∗
∗ ∗ ∗

−X1 + λBΣ2
0B

T ∗ ∗
−λCBΣ2

0B
T −X2 + λCBΣ2

0B
TCT ∗

0 0 −λI

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0.

(19)

If this LMI is feasible, the control law matrices K1 and K2

can be computed using

K1 = R1X
−1
1

K2 = R2X
−1
2 . (20)

Proof. Consider the candidate Lyapunov function

Vk(p) = V 1
k (p) + V 2

k (p) (21)

where

V 1
k (p) = ηT

k+1(p)P1ηk+1(p)

V 2
k (p) = eT

k (p)P2ek(p).

with Pi > 0, i = 1, 2 and increment

ΔVk(p) = ΔV 1
k (p) + ΔV 2

k (p) =

V 1
k (p + 1) − V 1

k (p) + V 2
k+1(p) − V 2

k (p) =
[

ηT
k+1(p) eT

k (p)
]

×

(ΦTPΦ − P )

[

ηk+1(p)

ek(p)

]

(22)

where Φ =

[

̂A ̂B
̂C ̂D

]

, P = diag{P1, P2}. Then, (13) is

stable along the pass if there exists P > 0 such that

ΦTPΦ − P < 0. (23)

An obvious application of the Schur′s complement for-

mula to (23) yields

⎡

⎢

⎢

⎢

⎣

−P1 ∗ ∗ ∗
0 −P2 ∗ ∗
̂A ̂B −P−1

1 ∗
̂C ̂D 0 −P−1

2

⎤

⎥

⎥

⎥

⎦

< 0. (24)

Next, introduce

X1 = P−1
1 , X2 = P−1

2

and pre-(left) and post-(right) multiply (24) by

diag{X1, X2, I, I} to obtain

⎡

⎢

⎢

⎢

⎣

−X1 ∗ ∗ ∗
0 −X2 ∗ ∗

AX1 + BΓK1X1 BΓK2X2 −X1 ∗
−CAX1−CBΓK1X1 X2−CBΓK2X2 0 −X2

⎤

⎥

⎥

⎥

⎦

< 0.

(25)

Also, from (16),

Λ + HΓ0F + FTΓT
0 HT < 0 (26)

where
⎡

⎢

⎢

⎢

⎣

−X1 ∗ ∗ ∗
0 −X2 ∗ ∗

AX1 + BΣK1X1 BΣK2X2 −X1 ∗
−CAX1−CBΣK1X1 X2−CBΣK2X2 0 −X2

⎤

⎥

⎥

⎥

⎦

H =
[

0 0 BT −BTCT
]T

F =
[

ΣK1X1 ΣK2X2 0 0
]

.

From Lemma 2, it follows that (26) holds if there exists

a positive scalar λ > 0 such that

Λ + λHΣ2
0H

T + λ−1FTF < 0. (27)

Using the Schur′s complement formula, (27) is equivalent

to
[

Λ + λHΣ2
0H

T ∗
F − λI

]

< 0. (28)

Finally, introducing

R1 = K1X1, R2 = K2X2

completes the proof. �

4 Robustness

4.1 Norm bounded uncertainty

Consider the following discrete-time linear system in the

ILC setting with actuator faults and possibly time-varying

uncertainties

xk(p + 1) = (A + ΔA)xk(p) + BΓuk(p)

yk(p) = Cxk(p)

xk+1(0) = dk+1, 0 ≤ p ≤ α − 1 (29)

where ΔA represents admissible uncertainties that are as-

sumed to satisfy

ΔA = H1ΔF1 (30)

where H1 and F1 are known constant matrices of appropri-

ate dimensions and Δ is an unknown constant matrix or a

matrix function satisfying

ΔTΔ ≤ I. (31)
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Using (9)−(11) and following the analysis of the previ-

ous section, the controlled ILC dynamics with faults are

described by the uncertain discrete linear repetitive process

state-space model

ηk+1(p + 1) = ( ̂A + Δ ̂A)ηk+1(p) + ̂Bek(p)

ek+1(p) = ( ̂C + Δ ̂C)ηk+1(p) + ̂Dek(p) (32)

where Δ ̂A = ΔA and Δ ̂C = −CΔA.

Theorem 2. The discrete linear repetitive process repre-

sentation of the ILC dynamics (32) is stable along the pass

if there exist scalars λ > 0, ε > 0 and matrices X1 > 0,

X2 > 0, R1, R2 such that the following LMI is feasible:
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−X1 ∗ ∗
0 −X2 ∗

AX1 + BΣR1 BΣR2 −X1 + λBΣ2
0B

T

−CAX1 − CBΣR1 X2 − CBΣR2 −λCBΣ2
0B

T

ΣR1 ΣR2 0

0 0 εHT
1

F1X1 0 0

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

−X2 + λCBΣ2
0B

TCT ∗ ∗ ∗
0 −λI ∗ ∗

−εHT
1 CT 0 −εI ∗
0 0 0 −εI

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0. (33)

If this LMI is feasible, the control law matrices K1 and K2

are given by K1 = R1X
−1
1 and K2 = R2X

−1
2 .

Proof. In addition to the proof for Theorem 1, it is

required to show that

Π + HHHΔFFF + FFFTΔTHHHT < 0 (34)

where

Π =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−X1 ∗
0 −X2

AX1 + BΣR1 BΣR2

−CAX1 − CBΣR1 X2 − CBΣR2

ΣR1 ΣR2

∗ ∗ ∗
∗ ∗ ∗

−X1 + λBΣ2
0B

T ∗ ∗
−λCBΣ2

0B
T −X2 + λCBΣ2

0B
TCT ∗

0 0 −λI

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

HHH =
[

0 0 HT
1 −HT

1 CT 0
]T

FFF =
[

F1X1 0 0 0 0
]

.

From Lemma 2, it follows that (34) holds for all Δ satis-

fying (31) if there exists a positive scalar ε > 0 such that

Π + εHHHHHHT + ε−1FFFTFFF < 0 (35)

which, on applying the Schur′s complement formula, is

equivalent to

⎡

⎢

⎣

Π ∗
[

ε
1
2HHHT

ε−
1
2FFF

]

− I

⎤

⎥

⎦
< 0. (36)

Finally pre-multiplying and post-multiplying (36) by

diag{I, I, I, I, I, ε
1
2 I, ε

1
2 I} gives the LMI of (33). �

4.2 Polytopic uncertainty

Polytopic uncertainty assumes that the matrices defin-

ing the system state-space model lie in a convex bounded

uncertain domain Ω of the form

Ω =
{[

A
(

ξ(k, p)
)

, B
(

ξ(k, p)
)]

∣

∣

∣

∣

[

A
(

ξ(k, p)
)

, B
(

ξ(k, p)
)]

=

N
∑

i=1

ξi(k, p)(Ai, Bi), ξi ≥ 0,
N

∑

i=1

ξi(k, p) = 1
}

(37)

where Ai, Bi are the corresponding matrix vertices and

N denotes their number.

The uncertain discrete linear repetitive process model for

ILC in the presence of polytopic uncertainty is

ηk+1(p + 1) = ̂A
(

ξ(k, p)
)

ηk+1(p) + ̂B
(

ξ(k, p)
)

ek(p)

ek+1(p) = ̂C
(

ξ(k, p)
)

ηk+1(p) + ̂D
(

ξ(k, p)
)

ek(p) (38)

where

̂A
(

ξ(k, p)
)

= A
(

ξ(k, p)
)

+ B
(

ξ(k, p)
)

ΓK1

̂B
(

ξ(k, p)
)

= B
(

ξ(k, p)
)

ΓK2

̂C
(

ξ(k, p)
)

= −C
[

A
(

ξ(k, p)
)

+ B
(

ξ(k, p)
)

ΓK1

]

̂D
(

ξ(k, p)
)

= I − CB
(

ξ(k, p)
)

ΓK2.

Theorem 3. The repetitive process representing the

ILC dynamics (38) is stable along the pass if there exists a

scalar λ > 0 and matrices X1 > 0, X2 > 0, R1, R2 such

that the following LMI is feasible:
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−X1 ∗
0 −X2

AiX1 + BiΣR1 BiΣR2

−CAiX1 − CBiΣR1 X2 − CBiΣR2

ΣR1 ΣR2

∗ ∗ ∗
∗ ∗ ∗

−X1 + λBiΣ
2
0B

T
i ∗ ∗

−λCBiΣ
2
0B

T
i −X2 + λCBiΣ

2
0B

T
i CT ∗

0 0 −λI

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0

(39)

for i = 1, 2, · · · , N.

If this LMI is feasible, the control law matrices K1 and

K2 are given by K1 = R1X
−1
1 and K2 = R2X

−1
2 .
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Proof. The uncertain process is stable along the pass if

this property holds for every vertex. The proof now follows

identical steps to that of Theorem 1 for each matrix vertex.

�

5 Case study

Consider the following model of an electric motor system

given in [22] and references therein

ẋ(t) = Acx(t) + Bcu(t)

y(t) = Ccx(t) (40)

where

Ac =

⎡

⎢

⎣

−VB
J

− 3npφmg

2J
0

0 − 1
γ

0
ωb
2π

0.81 0

⎤

⎥

⎦

Bc =

⎡

⎢

⎣

0
1
γ

0

⎤

⎥

⎦

Cc =
[

0 0 1
]

with the following nominal motor parameters

VB = 0.0625, J = 0.0267, np = 2

γ = 6.8 × 10−4, φmg = 0.9102, ωb = 315.315. (41)

Also, this model has been sampled at Ts = 0.02 s to give a

state-space model of the form (3). The pass length is 2 s,

the reference signal is

yr(t) = sin(πt) + 0.5 sin(2πt) + 0.5 sin(3πt) (42)

and zero boundary conditions are assumed. Also, pass-to-

pass error convergence is measured by the root mean square

formula

ER(k) =

√

√

√

√

1

α

α−1
∑

p=0

eT
k (p)ek(p). (43)

Assume that there exists an unknown actuator fault Γ

but it is known that 0.7 = Γ ≤ Γ ≤ Γ = 1.3, and hence

from (14) and (15), Σ = 1, Σ0 = 0.3. The design is now

illustrated by considering different scenarios of faults and

uncertainty.

5.1 Scenario 1: Constant fault and nomi-
nal model

The controlled nominal process has been simulated with

Γ = 1.3 until k = 20 when a constant fault caused a switch

to Γ = 0.7, and then at k = 40, a further switch returned

Γ to its starting value.

Application of Theorem 1 results in the control law ma-

trices given in the first row of Table 1. The simulation

results for the controlled dynamics are shown in Fig. 1.
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Fig. 1 Simulation results for the Scenario 1 design

Table 1 Control law matrices

K1 K2

Scenario 1 [−0.0099 −0.0007 −0.0079] 0.0029

Scenario 2 [−0.0098 −0.0007 −0.0068] 0.0014

Scenario 3 [−0.0080 −0.0007 −0.0062] 0.0023

5.2 Scenario 2: Time-varying fault and
model with norm-bounded uncertain-
ties

The controlled processes with norm-bounded uncertainty

has been simulated with Γ = 0.7 until k = 20 when

the constant fault switched to the time-varying fault Γ =

1 + 0.3 sin(p), and then at k = 40, a further switch to

Γ = 1 + 0.3 cos(p) occurred. The matrices defining the un-

certainty were taken as H1 = diag{0.1, 0.1,−0.05}, F1 = I

and Δ = diag{δ1, δ2, δ3}, where δ1, δ2 and δ3 vary randomly

between −1 and 1. Application of Theorem 2 gave the con-

trol law matrices shown in the second row of Table 1. The

simulation results for the controlled dynamics are shown in

Fig. 2.

5.3 Scenario 3: Time-varying fault and
model with polytopic uncertainties

In the motor model, φmg and J are considered as uncer-

tain parameters of the form

φmg = ξ1φmg1 + ξ2φmg2

J = ξ1J1 + ξ2J2 (44)

where (φmg1, J1) = (0.5, 0.016), (φmg2, J2) = (1.5, 0.036),

ξ1 + ξ2 = 1, ξ1 and ξ2 are uncertain variables lying within

[0, 1].

This gives a polytopic uncertainty with two vertices de-

fined by the matrices:

Vertex 1:

A1 =

⎡

⎢

⎣

0.9248 0.0591 0

0 0 0

0.9655 0.0595 1

⎤

⎥

⎦ , B1 =

⎡

⎢

⎣

86.9355

0

87.5465

⎤

⎥

⎦ .

Vertex 2:

A2 =

⎡

⎢

⎣

0.9659 0.0822 0

0 0 0

0.9865 0.08 1

⎤

⎥

⎦
, B2 =

⎡

⎢

⎣

120.8769

0

119.1818

⎤

⎥

⎦
.

The controlled system has been simulated with

(φmg, J) = (0.5, 0.016) and Γ = 0.7 until k = 20 when the

parameters were switched to (φmg, J) = (1.5, 0.036) and

Γ = (1 + 0.3sin(p)), and finally at k = 40, a further switch

occurs to (φmg , J) = (0.5, 0.016) and Γ = (1 + 0.3cos(p)).

Application of Theorem 3 gave the control law matrices

shown in the third row of Table 1. The simulation results

for the controlled dynamics are shown in Fig. 3.

From Figs. 1–3, it is seen that the tracking performance

along the pass direction experiences degradation when the

value of fault changes at k = 20 and k = 40. However,

the tracking performance quickly recovers over subsequent

passes.

Given the control law matrices K1 and K2, the control

law for implementation on pass k can, after routine manip-

ulations of (9), be written as

uk(p) = uk−1(p) + K1

(

xk(p) − xk−1(p)
)

+

K3

(

yr(p + 1) − yk−1(p + 1)
)

(45)

where the second term on the right-hand side is phase-lead

ILC, i.e., information that is non-causal in the temporal do-

main. The first term on the right-hand side is activated by

the difference in the state vectors on two successive passes

and an obvious extension is to seek to replace the state

vectors with their pass profile counterparts. Finally, there

are alternative 2D systems based designs that could be em-

ployed, e.g., [28], but the form of the control law to be im-

plemented is much less transparent in terms of actual imple-

mentation. Moreover, the analysis in [22] uses a repetitive

process model that has no 2D discrete linear systems coun-

terpart. Finally, the repetitive process setting for design

can be undertaken for differential dynamics, i.e., where de-

sign by emulation is the preferred or only option for a given

application. This uses the theory of differential repetitive

processes and again there is no 2D systems model counter-

part or lifted model. In comparison to [24], the major
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Fig. 2 Simulation results for the Scenario 2 design

advance in this paper is the robustness analysis and control

law design.

6 Conclusions

This paper has considered the relevant applications prob-

lem of ILC design in the presence of actuator faults. The

new results have been derived by writing the dynamics in

each case as a discrete linear repetitive process, resulting

in LMI based computations. It has also been shown that

the results extend in a natural manner to norm bounded

and polytopic uncertainty. The performance has been il-

lustrated by a simulation case study on an electric motor

system used in other ILC designs. These results provide a

firm basis for onward development and eventual experimen-

tal verification.
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Fig. 3 Simulation results for the Scenario 3 design
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