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Abstract: In this paper, an iterative learning control algorithm is proposed for discrete linear time-varying systems to track iteration-

varying desired trajectories. A high-order internal model (HOIM) is utilized to describe the variation of desired trajectories in the

iteration domain. In the sequel, the HOIM is incorporated into the design of learning gains. The learning convergence in the iteration

axis can be guaranteed with rigorous proof. The simulation results with permanent magnet linear motors (PMLM) demonstrate that

the proposed HOIM based approach yields good performance and achieves perfect tracking.
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1 Introduction

The idea of iterative learning control (ILC) was generated

firstly by Uchiyama in 1978[1]. The basic objective of ILC

is to overcome the imperfect knowledge of the plant using

previous tracking information and to achieve output track-

ing through repetition[2−5]. This makes ILC schemes par-

ticularly useful in applications with repetitive tasks, such

as robot manipulator[6], tracking problem of the taking-off

and landing planes[7], freeway traffic control[8], waste-water

treatment[9], piezoelectric positioning stage system[10], heat

flux boundary control[11], etc. The ILC algorithm has

been developed widely from classical ILC[12], higher-order

ILC[13,14], robust ILC[15,16], optimal ILC[17] to adaptive

ILC[18−22] for the last two decades.

In the conventional ILC, the desired trajectories are as-

sumed to be invariant from iteration to iteration. How-

ever, the tracking tasks can be different in different iter-

ations sometimes. For instance, a robot arm is scheduled

to move objects tracking one trajectory in the time inter-

val [0, T ], then it may move objects tracking another tra-

jectory in the next working process. And another exam-

ple of a robot manipulator moving an object of mass m

in the odd cycles and another object of mass 2m in the

even cycle, as was explained in [23]. All these iteration

varying problems are called non-repetitiveness in general.

Thus, it is helpful that ILC could be designed to harness

the non-repetitiveness. Considering the non-repetitiveness
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of the dynamic system, it can be divided into two circum-

stances: known variation pattern and unknown variation

pattern of non-repetitiveness. To reflect known variation

pattern of non-repetitiveness, an effective approach is to in-

corporate a high-order internal model (HOIM) to describe

the non-repetitiveness in iteration domain. For instance,

the iteration-varying desired trajectories in a robot ma-

nipulator can be formulated by an HOIM. In [24], a sur-

vey on HOIM applications of different ILC problems was

given. According to the internal model principle[25], the

generator of known variation pattern of non-repetitiveness

must be involved in the ILC controller to improve track-

ing performance. To reflect iteration varying property of

reference trajectories, a high-order internal model (HOIM)

was introduced to describe the variations along the iter-

ation axis in [26]. An HOIM-based ILC has been stud-

ied recently for iteration-varying reference trajectories for

continuous-time linear time-varying systems, and both the

initial resetting condition and extension to nonlinear cases

are also explored[27]. And for continuous-time nonlinear

systems, an HOIM-based P-type ILC scheme was presented

for tracking iteration-varying trajectories[28] . In [27, 28],

time-weighted norm method was used to prove the learning

convergence in the iteration axis. Moreover, for nonlinear

system with time-iteration-varying parameters, an HOIM-

based ILC was proposed and composite energy function was

used to derive convergence properties of the method[29].

In real implementation, it is necessary to discretize the

system dynamics. Researchers have devoted a lot of ef-

forts on ILC for discrete-time systems. A 2-D system the-

ory based ILC has been studied for discrete linear time-

invariant systems[30]. A unified learning scheme was con-

sidered for the initial shift problem of nonlinear systems

with well-defined relative degree[31]. In [32], a feed-forward

ILC method was designed and updated by past control data
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in the previous trials for a class of discrete-time nonlinear

time-varying systems with initial state error, input distur-

bance and output measurement noise. Another ILC de-

sign was proposed to overcome the uncertainties and distur-

bances for discrete time nonlinear dynamic system[33]. And

an adaptive ILC scheme was presented to deal with time-

varying parametric uncertainties for discrete-time system

and can achieve point-wise convergence over a finite interval

under random initial states and iteration-varying reference

trajectory[34]. Yu et al.[35] presented ILC for discrete-time

systems with unknown control directions under the frame-

work of adaptive ILC. An adaptive iterative learning con-

trol method combining with an n-step ahead predictor was

employed for a class of nonlinear output feedback discrete-

time systems with random initial conditions and iteration-

varying desired trajectories[36] .

As a summary of the above discussions, ILC for discrete-

time systems tracking iteration-varying desired trajectories

is definitely an important issue in practical applications.

In this work, an HOIM-based P-type ILC law is proposed

for a class of discrete linear time-varying systems with the

relative degree of one, and a sufficient condition is derived

under which the convergence of the learning process is guar-

anteed. The effectiveness of the proposed ILC algorithm is

illustrated by means of simulation results with permanent

magnet linear motors (PMLM).

2 Problem formulation

Consider a discrete linear time-varying system with the

relative degree of one as{
xk (t+ 1) = A (t)xk (t) +B (t)uk (t)

yk (t) = C (t) xk (t)
(1)

where the subscripts k and t denote the iteration number

and discrete time index, matrix A (t) ∈ Rn×n, B (t) ∈
Rn×m, C (t) ∈ Rm×n are uniformly bounded for all t ∈
[0, T ], state xk (t) ∈ Rn, uk (t) and yk (t) are input and out-

put vectors of the k-th iteration, uk (t) ∈ Rm, yk (t) ∈ Rm,

C (t+ 1)B (t) is full column rank, and the system is mini-

mum phased.

In this work, we consider the iteration-varying reference

trajectories yrk+1 (t) which are related to the reference tra-

jectories of the past iterations. The variations of desired

trajectories along the iteration axis can be expressed by a

high-order internal model as

yrk+1 (t) = h1y
r
k (t) + h2y

r
k−1 (t) + · · · + hmy

r
k−(m−1) (t)

(2)

where hi, i = 1, 2, · · · ,m, are coefficients of a polynomial

S (z) = zm − h1z
m−1 − h2z

m−2 − · · · − hm. (3)

From (2), we can see that the trajectory of the (k + 1)-th

iteration is related to the trajectories of the past m itera-

tions and the HOIM is essentially an auto-regression model

in the iteration domain. Then, we consider a shift oper-

ator ω−1[37] which was introduced with the property that

ω−1yrk+1 (t) = yrk (t), ∀t ∈ [0, T ]. Equality (2) can be rewrit-

ten as

yrk+1 (t) = H
(
ω−1

)
yrk (t) (4)

where polynomial H
(
ω−1

)
= h1 + · · · + hmω

−m+1 is used

to describe the high-order internal model.

Definition 1. The λ-norm[38] is defined for function

f (t) as ‖f (t)‖λ = sup
t∈[0,T ]

e−λt ‖f (t)‖. And the λ-norm for

function H
(
ω−1

)
fk (t) is defined as∥∥H (

ω−1) fk (t)
∥∥
λ

=

|h1| ‖fk (t)‖λ + · · · + |hm| ‖fk−m+1 (t)‖λ . (5)

Let ek+1 (t) = yrk+1 (t)− yk+1 (t) be the tracking error at

the time instant t ∈ [0, T ] of the (k + 1)-th iteration. The

control objective is to find a control input sequence uk+1 (t)

for plant (1) such that the output errors ek+1 (t) converge

to zero as k → ∞. For the known variation pattern of

desired trajectories, the ILC law must embed the charac-

teristic of variation according to internal model principle.

To achieve this aim, a P-type ILC which employs the m-th

order internal model (4) is given as

uk+1 (t) =h1uk (t) + h2uk−1 (t) + · · · + hmuk−(m−1) (t)+

γ1ek (t + 1) + γ2ek−1 (t+1) + · · ·+
γmek−(m−1) (t+1) =

H
(
ω−1

)
uk (t) + Γ

(
ω−1

)
ek (t + 1) (6)

where Γ
(
ω−1

)
= γ1 + γ2ω

−1 + · · · + γmω
−m+1 and γj is

the learning gain. From (6), we can see that to harness the

non-repetitiveness in the desired trajectories, the ILC law

has to be high-order in the iteration direction.

With respect to the system dynamics (1) and desired

trajectories (4), we have the following assumptions:

Assumption 1. Initialization is satisfied throughout re-

peated trainings, i.e.,

xk+1 (0) = H
(
ω−1

)
xk (0) . (7)

Assumption 2. The matrix Q (t) is defined with bound

bQ = supt∈[0,T ]Q (t) ( Q ∈ {A,B,C} ).

Assumption 3. The polynomial S (z) is stable or crit-

ically stable which means that all roots of S (z) = 0 are

within the unit circle or at least one root is lying on the

unit circle.

Remark 1. If all the roots of S (z) = 0 are within the

unit circle, the polynomial is stable and the desired tra-

jectories expressed by HOIM will converge to zero as the

iteration number approaches infinity. If at least one root is

lying on the unit circle, the polynomial is stable and the de-

sired trajectories will vary periodically and never converge

to zero. For example, there are two characteristic roots of

the polynomial S1 (z) = z2 − 2 cos(0.1)z + 1 lying on the

unit circle. The desired trajectories generated by S1 (z)

are yrk+1 (t) = 2 cos(0.1)yrk (t) − yrk−1 (t) , k = 2, 3, · · · . Ac-

cording to z-transform, we have yrk (t) = A1(t) cos(0.1k) +

A2(t) sin(0.1k), where A1 (t) and A2 (t) are time-varying
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coefficients which are iteration independent and only de-

termined by initial values. It can be seen clearly that

the second-order internal model constructed by S1 (z) will

change periodically and never converge to zero in iteration

domain.

3 Learning convergence analysis

In this section, we will discuss the convergence property

of the proposed HOIM-based ILC.

Theorem 1. For the discrete linear time-varying system

(1), given the HOIM-based desired trajectories (4), we con-

sider that the Assumptions 1 – 3 are satisfied. If the learning

gain γj is chosen such that the asymptotic stability of the

following polynomial is guaranteed

P (z) = zm − ζt,kz
m−1 − · · · − ζt,k−m+1 (8)

where ζt,j = ‖hk+1−j −C (t+ 1)B (t) γk+1−j‖, t ∈ [0, T ],

j ∈ [k, · · · , k −m+ 1], then the output error ek (t) con-

verges to zero in [0, T ] as k → ∞ under the HOIM-based

ILC law (6), i.e., limk→∞ ek (t) = 0.

Proof. First substituting desired trajectories (4) to the

(k + 1)-th tracking error ek+1 (t+ 1), we obtain

ek+1 (t+ 1) =H
(
ω−1) yrk (t+ 1) − yk+1 (t+ 1)−

H
(
ω−1

)
yk (t+ 1) +H

(
ω−1

)
yk (t+ 1) =

H
(
ω−1) ek (t+ 1) − yk+1 (t+ 1) +

H
(
ω−1) yk (t+ 1) . (9)

Considering the system dynamics (1), we get

yk+1 (t+ 1) = C (t+ 1) xk+1 (t+ 1) (10)

and

yk (t+ 1) = C (t+ 1) xk (t+ 1) . (11)

Then, substituting (10) and (11) to (9) yields

ek+1 (t+ 1) = H
(
ω−1) ek (t+ 1) +

H
(
ω−1)C (t+ 1) xk (t+ 1) − C (t+ 1) xk+1 (t+ 1) .

(12)

From the HOIM-based ILC law (6), we get

ek+1 (t+ 1) = H
(
ω−1

)
ek (t+ 1)−

C (t+ 1)B (t) Γ
(
ω−1

)
ek (t+ 1) − C (t+ 1)A (t)×[

xk+1 (t) −H
(
ω−1) xk (t)

]
. (13)

Taking the norms of (13) and considering Assumption 2, it

can be derived that

‖ek+1 (t+ 1)‖ ≤ ∥∥H (
ω−1) −C (t+ 1)B (t) Γ

(
ω−1)∥∥×

‖ek (t+ 1)‖ + bCbA
∥∥xk+1 (t) −H

(
ω−1

)
xk (t)

∥∥ . (14)

To evaluate xk+1 (t) − H
(
ω−1

)
xk (t), from plant (1), we

have

xk+1 (t+ 1) −H
(
ω−1

)
xk (t+ 1) =

A (t) xk+1 (t) +B (t)uk+1 (t)−
H

(
ω−1) [A (t) xk (t) + B (t)uk (t)] . (15)

Taking the norms of (15) yields∥∥xk+1 (t+ 1) −H
(
ω−1) xk (t+ 1)

∥∥ ≤∥∥A (t)
[
xk+1 (t) −H

(
ω−1) xk (t)

]∥∥ +∥∥B (t)
[
uk+1 (t) −H

(
ω−1

)
uk (t)

]∥∥ . (16)

Applying Assumption 2 and substituting (6) into (16), we

have ∥∥xk+1 (t+ 1) −H
(
ω−1) xk (t+ 1)

∥∥ ≤
bA

∥∥xk+1 (t) −H
(
ω−1

)
xk (t)

∥∥ +

bB
∥∥Γ

(
ω−1) ek (t+ 1)

∥∥ . (17)

When t = 0, the above inequality can be rewritten as∥∥xk+1 (1) −H
(
ω−1) xk (1)

∥∥ ≤
bA

∥∥xk+1 (0) −H
(
ω−1) xk (0)

∥∥ +

bB
∥∥Γ

(
ω−1

)
ek (1)

∥∥ . (18)

Taking Assumption 1 into account, we have∥∥xk+1 (1) −H
(
ω−1

)
xk (1)

∥∥ � bB
∥∥Γ

(
ω−1

)
ek (1)

∥∥ . (19)

Similarly, when t = 1, we get∥∥xk+1 (2) −H
(
ω−1

)
xk (2)

∥∥ ≤
bA

∥∥xk+1 (1) −H
(
ω−1) xk (1)

∥∥ +

bB
∥∥Γ

(
ω−1) ek (2)

∥∥ . (20)

Substituting (19) into (20), it can be obtained that∥∥xk+1 (2) −H
(
ω−1) xk (2)

∥∥ ≤
bAbB

∥∥Γ
(
ω−1

)
ek (1)

∥∥ + bB
∥∥Γ

(
ω−1

)
ek (2)

∥∥ . (21)

Following the same procedure, we can now conclude that

for t ∈ [0, T ],∥∥xk+1 (t) −H
(
ω−1) xk (t)

∥∥ ≤
t−1∑
j=0

bt−1−j
A bB

∥∥Γ
(
ω−1

)
ek (j + 1)

∥∥. (22)

Substituting (22) into (14), we have

‖ek+1 (t+ 1)‖ ≤∥∥H (
ω−1

) − C (t+ 1)B (t) Γ
(
ω−1

)∥∥ ‖ek (t+ 1)‖+

bC

t−1∑
j=0

bt−jA bB
∥∥Γ

(
ω−1) ek (j + 1)

∥∥. (23)

Multiplying both sides of (23) by e−λ(t+1), we can derive

from the definition of λ-norm that

sup
t∈[0,T ]

e−λ(t+1) ‖ek+1 (t+ 1)‖ ≤
∥∥H (

ω−1
) −C (t+ 1)B (t) Γ

(
ω−1

)∥∥ ‖ek‖λ +

sup
t∈[0,T ]

e−λ(t+1)bBbC

t−1∑
j=0

bt−jA

∥∥Γ
(
ω−1) ek (j + 1)

∥∥. (24)
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Since

sup
t∈[0, T ]

e−λ(t+1)bBbC

t−1∑
j=0

bt−jA

∥∥Γ
(
ω−1

)
ek (j + 1)

∥∥ ≤

a2
∥∥Γ

(
ω−1

)
ek

∥∥
λ

t−1∑
j=0

at(1−λ)a(λ−1)j ≤

a2 1 − aT (1−λ)

a(λ−1) − 1

∥∥Γ
(
ω−1

)
ek

∥∥
λ

(25)

where a = max {e, bA, bB , bC}, by expressing the HOIM in

the above inequality, we can derive

a2 1 − aT (1−λ)

a(λ−1) − 1

∥∥Γ
(
ω−1

)
ek

∥∥
λ

=

a2δ |γ1| ‖ek‖λ + · · · + a2δ |γm| ‖ek−m+1‖λ (26)

where δ = 1−aT (1−λ)

a(λ−1)−1
. Then, we have

∥∥H (
ω−1) − C (t+ 1)B (t) Γ

(
ω−1)∥∥ ‖ek‖λ =

‖h1 − C (t+ 1)B (t) γ1‖ ‖ek‖λ + · · ·+
‖hm − C (t+ 1)B (t) γm‖ ‖ek−m+1‖λ . (27)

Substituting (26) and (27) into (24), we can obtain that

‖ek+1‖λ ≤ ‖h1 −C (t+ 1)B (t) γ1‖ ‖ek‖λ+

a2δ |γ1| ‖ek‖λ + · · ·+
‖hm−C (t+ 1)B (t) γm‖ ‖ek−m+1‖λ +

a2δ |γm| ‖ek−m+1‖λ . (28)

Now, we can write the above inequalities from t = 0 to

t = T . When t = 0, we have

‖ek+1 (1)‖λ � ρ0,k ‖ek (1)‖λ+· · ·+ ρ0,k−m+1 ‖ek−m+1 (1)‖λ .
(29)

And when t = T , we get

‖ek+1 (T + 1)‖λ ≤ ρT,k ‖ek (T + 1)‖λ + · · ·+
ρT,k−m+1 ‖ek−m+1 (T + 1)‖λ (30)

where ρi,j = ‖hk+1−j − C (i+ 1)B (i) γk+1−j‖ +

a2δ |γk+1−j |, i ∈ [0, 1, · · · , T ], j ∈ [k, k − 1, · · · , k −m+ 1].

Thus, we can deduce that⎡
⎢⎣ ‖ek+1 (1)‖λ

· · ·
‖ek+1 (T + 1)‖λ

⎤
⎥⎦ ≤ Fk

⎡
⎢⎣ ‖ek (1)‖λ

· · ·
‖ek (T + 1)‖λ

⎤
⎥⎦ + · · ·+

Fk−m+1

⎡
⎢⎣ ‖ek−m+1 (1)‖λ

· · ·
‖ek−m+1 (T + 1)‖λ

⎤
⎥⎦ (31)

where Fj =

⎡
⎢⎢⎢⎣
ρ0,j 0 · · · 0

0 ρ1,j · · · 0

· · · · · · · · ·
0 0 · · · ρT,j

⎤
⎥⎥⎥⎦.

From (31), we can see that the convergence of ‖ek+1‖λ is

determined by Fs, s ∈ [k, k − 1, · · · , k −m+ 1]. Consider

δ in (26), we can see that δ is arbitrarily small with suffi-

ciently large λ. Thus, we can obtain that the convergence

of ‖ek+1‖λ is determined by P (z) = zm − ζt,kz
m−1 − · · · −

ζt,k−m+1, where ζt,j = ‖hk+1−j −C (t+ 1)B (t) γk+1−j‖,
t ∈ [0, T ], j ∈ [k, · · · , k −m+ 1]. If all eigenvalues of

P (z) are inside the unit circle, we have limk→∞ ‖ek‖λ =

0, and from the definition of λ-norm, we get that

supt∈[0,T ] ‖ek (t)‖ → 0 as k → ∞. Hence, the convergence

of ek (t) → 0 is obtained as k → ∞. �

4 Simulation example

Consider a direct current motor control problem for ve-

locity tracking. The dynamics of a permanent magnet linear

motor (PMLM)[39,40] can be described by

⎧⎪⎨
⎪⎩
ẋ (t) = v (t)

u (t) = k1ψf ẋ (t) +Ri (t) + Li̇ (t)

fl (t) = mv̇ (t) + ffri (t) + frip (t) + floa (t) + fw (t)

(32)

where x (t) and fl (t) are the motor position and the devel-

oped force, v (t) is rotor velocity, u (t), i (t), R and L are

the voltage, current, resistance and inductance of stator,

k1 = π
τ
, τ is pole pitch, ψf is the flux linkage, m is the ro-

tor mass, ffri (t), frip (t) and floa (t) denote the frictional,

ripple and applied load forces respectively, the term fw (t)

includes other uncertainties and disturbances.

Using DQ decomposition theory, we transform the

PMLM model (32) by neglecting all the uncertainties and

nonlinearities fw (t). We assume that ffri (t) + frip (t) +

floa (t) = 0 and id ≡ 0 to simplify the system. Considering

fl = k2ψf iq (t), where k2 = 1.5π
τ
, we have

{
uq (t) = k1ψf ẋ (t) +Riq (t) + Lq i̇q (t)

k2ψf iq (t) = mẍ (t) .
(33)

Since i̇q (t) = m
...
x (t)

(k2ψf)
, substituting it into (33), we get

uq (t) =
m

...
x (t)

k2ψf
+

Rm

k2ψf
ẍ (t) + k1ψf ẋ (t) . (34)

Neglecting the third order differential part of (34), we ob-

tain

uq (t) =
Rm

k2ψf
ẍ (t) + k1ψf ẋ (t) . (35)

Considering id ≡ 0 and replacing uq by u, we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ (t) = v (t)

v̇ (t) = −k1k2ψ
2
f

Rm
v (t) +

k2ψf
Rm

u (t)

y (t) = v (t) .

(36)

With the discrete time interval Δ = 10ms, the operation

cycle is N = {0, 1, · · · , 100}. Discretizing the system by the
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Euler method yields

⎧⎪⎨
⎪⎩

x (t+ 1) = v (t)Δ + x (t)

v (t+ 1) = −Δ
k1k2ψ

2
f

Rm
v (t) + v (t) + Δ

k2ψf

Rm
u (t)

y (t) = v (t)

(37)

where τ = 0.031 m, R = 8.6 Ω, m = 1.635 kg and

ψf = 0.35 Wb, respectively. It is easy to find that

(37) can be described as a kind of system as (1) with

A =

[
1 Δ

0 1 − Δ
k1k2ψ

2
f

Rm

]
, B =

[
0

Δ
k2ψf

Rm

]
and C =[

0 1
]
. From (37), we can see that the product of the

output/input coupling matrix CB = 0.0378 is full column

rank.

The iteration-varying trajectory is given by

yrk+1 (t) = 2 cos (10Δ) yrk (t) − yrk−1 (t) . (38)

And the desired trajectories of the first iteration and second

iteration are

yr1 (t) = −0.2Δ2 (
60Δt3 − 30Δ2t4 − 30t2

)
yr2 (t) = −0.2Δ2

(
60Δt3 − 31Δ2t4 − 28t2

)
. (39)

The HOIM-based iterative learning control is designed as

uk+1 (t) =2 cos (10Δ)uk (t) − uk−1 (t)+

35ek (t+ 1) − 28ek−1 (t+ 1) . (40)

We choose the learning control gain as γ1 = 35 and

γ2 = −28 so that ‖2 cos (10Δ) − CBγ1‖ = 0.667 < 1 and

‖−1 − CBγ2‖ = 0.058 < 1. The corresponding characteris-

tic polynomial is z2 − 0.667z − 0.058 with two eigenvalues

inside the unit circle.

Fig. 1 shows that the desired trajectories are chang-

ing in the iteration domain continuously. Let ek,max =

maxt∈[0,T ] |ek (t)| be maximum absolute tracking error of

time interval t ∈ [0, T ] of the k-th iteration. The tracking

results of HOIM-based ILC are illustrated in Fig. 2. The

effectiveness of HOIM can be clearly seen.

Fig. 1 Iteratively varying reference trajectory

Fig. 2 The maximum absolute tracking error along the iteration

axis

To show the time-domain behavior, Fig. 3 gives the track-

ing profiles at the 4th, 7th and 20th iterations. It can be

seen from Fig. 3 that the 7th tracking profile is close to the

reference trajectory and the 20th output curve coincides

with tracking trajectory. The HOIM based control scheme

shows the perfect tracking performance for the discretized

PMLM systems (32) to track iteration-varying desired tra-

jectories shown in Fig. 1.

Fig. 3 Tracking profiles of the HOIM-based ILC for the 4th, 7th

and 20th iterations

5 Conclusions

An HOIM-based ILC scheme is proposed for a class of

discrete-time linear time-varying (LTV) systems with rel-

ative degree of one to track iteration-varying desired tra-

jectories. It is shown that under some sufficient conditions

on the learning operators, the convergence of the learning

system can be guaranteed. The proposed ILC algorithm is

applied to the tracking control of PMLM. Simulation results

confirm the efficacy of the proposed ILC method.
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