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Ming-Xuan Sun
College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China

Abstract: Typical masking techniques adopted in the conventional secure communication schemes are the additive masking and

modulation by multiplication. In order to enhance security, this paper presents a nonlinear masking methodology, applicable to the

conventional schemes. In the proposed cryptographic scheme, the plaintext spans over a pre-specified finite-time interval, which is

modulated through parameter modulation, and masked chaotically by a nonlinear mechanism. An efficient iterative learning algorithm

is exploited for decryption, and the sufficient condition for convergence is derived, by which the learning gain can be chosen. Case

studies are conducted to demonstrate the effectiveness of the proposed masking method.
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1 Introduction

Chaotic behavior has been observed in a variety of dy-

namical systems, and received intensive researches both the-

oretically and experimentally. A chaotic system is nonlin-

ear, which exhibits sensitive, unpredictable and random-

seeming behavior. Nevertheless, its state variables are

bounded, and change with time in a deterministic manner.

Chaos is considered to be a desirable phenomenon for use

in potential applications to various fields, especially in se-

cure communication. Investigation on application of chaos

to cryptography was initiated by the work of synchronizing

drive-response chaotic systems in [1], which has witnessed

a rapid development in the recent years[2−4].

There are efficient schemes proposed for encrypting plain-

text data for transmission through open channels. Typical

additive chaotic masking generates the transmitted signal,

by adding the chaotic signal to the plaintext at the trans-

mitter as

s(t) = x(t) + p(t) (1)

where x is the chaotic mask, p is the plaintext, and s is the

information bearing signal to be transmitted. As s is ob-

tained and the synchronization occurs on the receiver side,

the plaintext p can be recovered by subtracting the synchro-

nized signal from s. Chaotic modulation by multiplication

is another useful masking method, described by

s(t) = x(t)p(t). (2)
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When the synchronization occurs on the receiver side, the

plaintext p can be reconstructed by dividing the synchro-

nized signal from s. Precautions have to be made for

avoiding the possible singularity problem as the synchro-

nized signal for x(t) may achieve zero at some time in-

stants. Related modulation schemes are the chaotic param-

eter modulation[5, 6], which uses the signal to be encrypted

to change the parameter of the chaotic transmitter.

In the aforementioned typical schemes, the inversion

computing for decrypting is simple as they are linear in

their arguments. The linearity nature leads to easy imple-

mentations of these schemes, but also allows ease of break-

ing. In the published literature, there exist efforts made for

enhancing security. One way is to increase nonlinearity of

the masking mechanism to be applied[7−8]. It is observed

that higher nonlinearity may lead to higher security. The

major difficulty, however, lies in the inversion computing

for decrypting.

Instead of the drive-response viewpoint, the concept of

synchronization was further explored in [9] to link the clas-

sical notion of observers from control theory. This moti-

vated attempts to apply such an observer-based synchro-

nization methodology to chaotic communication. As a syn-

chronization system is not available, parameter identifica-

tion methods are alternative for chaotic communication[10],

where parameter modulation is applied. Identification al-

gorithms, with nice performance for tracking time-varying

parameters, can be used to demodulate the signal of trans-

mission.

In this paper, we shall formulate the problem of secure

communication in terms of iterative learning[11−14] . An ini-

tial effort can be found in [15]. The learning algorithm

is efficient for estimating time-varying parameters spanned

over a finite time interval in a dynamical system. Nonlinear

masking is adopted in our schemes and the difficulty in the

inversion computing is avoided. The plaintext is assumed
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to be given over a pre-specified time interval. The learn-

ing algorithm uses only the transmitted signal s. Through

learning, the plaintext can be recovered from the cipher-

text. On the other hand, no synchronization occurs. The

iterative learning method is related with the inversion sys-

tem based approach[16−18]. However, our proposed learning

algorithm is simple and does not need inversion computing.

By comparing the proposed learning algorithm with the ex-

isting ones, it can been seen that 1) the unknowns to be es-

timated are not assumed to be slowly time varying, and 2)

the learning algorithm ensures the consistency of estimates.

In addition, a checkable convergence condition is given for

the learning gain selection. The organization of the paper

is as follows. For dealing with nonlinear masking, in Sec-

tion 2, chaotic secure communication is formulated in terms

of time-varying parameter identification problems, and the

iterative learning methodology is shown to be applicable to

solving such problems. Performance analysis for the pro-

posed learning algorithm is given in Section 3. Two fun-

damental techniques are suggested for enhancing security

of the iterative learning based communication in Section 4.

Numerical results are presented in Section 5, and Section 6

draws the conclusions.

2 A secure communication system

Iterative learning offers an efficient tool for estimating

time-varying unknowns in a dynamical system over a finite

interval. The problem of chaotic secure communication is

formulated based on this methodology of learning in this

section.

2.1 Nonlinear masking

In our cryptographic scheme, the transmitter adopts a

chaotic system of the form

ẋ = f(x, α) (3)

where x ∈ Rn is the state vector of the system, and α is the

parameter chosen for the masking purpose, satisfying that

αmin ≤ α ≤ αmax. The system could exhibit chaotic behav-

ior as the parameter α varies within the region. A typical

chaotic system is given in [19]. The nonlinear function f is

assumed to be smooth on Rn.

Let p(t) denote the plaintext to be transmitted, which

is assumed to satisfy that αmin ≤ p(t) ≤ αmax. Here, we

simply replace α with p(t) in (3) to obtain

ẋ = f(x, p). (4)

The transmitted signal is constructed in the way of

s = g(x, p) (5)

where x is the state given by (4). The nonlinear function g

is chosen by designer such that s is bounded. The design of

function g is an important procedure to enhance the degree

of security. This will be clarified further in Section 4 and is

justified in Section 5.

2.2 Iterative learning decryption

The duration of the plaintext p(t) is assumed to be fi-

nite, i.e., t ∈ [0, T ] and T > 0 is finite. Given a tolerance

error bound ε, the recovery objective on the receiver side

is to find text pk(t), t ∈ [0, T ] and k = 0, 1, 2, · · · , where k

indicates the iteration index, so that as iteration increases,

the error between pk(t) and p(t) will be within the toler-

ance error bound, i.e., |p(t) − pk(t)| ≤ ε, t ∈ [0, T ]. In

this paper, we shall develop a learning algorithm to gen-

erate the texts pk(t), t ∈ [0, T ]. p(t) can be recovered

from the ciphertext via learning. Throughout this pa-

per, let us denote by |a| the absolution value for a scalar

a, and |a| = max1≤i≤n |ai| for an n-dimensional vector

a = [a1, · · · , an]T. The λ-norm for a time function b(t)

is defined as |b|λ = supt∈[0,T ]{e−λt|b(t)|}, λ > 0.

The learning procedure is presented as follows:

Given the transmitted signal s(t), t ∈ [0, T ], the initial

estimate p0(t), t ∈ [0, T ], the initial condition x0 and the

tolerance error ε:

1) Set k = 0 and pk(t) = p0(t), t ∈ [0, T ].

2) Put xk(0) = x0.

3) Obtain sk(t), t ∈ [0, T ], by solving the following dif-

ferential equations:

ẋk = f(xk, pk) (6)

sk = g(xk, pk). (7)

4) Calculate the error signal s(t) − sk(t), t ∈ [0, T ].

5) Stop the procedure if |s(t) − sk(t)| ≤ ε, t ∈ [0, T ],

otherwise go to 6).

6) Produce pk+1(t), t ∈ [0, T ], by using the update law

pk = sat(pk−1) + γ(s − sk) (8)

with learning gain γ to be designed.

7) Increase k by 1, k ⇐ k + 1, and goto 2) to repeat the

procedure.

In (8), sat is the saturation function defined as, for a

scalar b,

sat(b) =

⎧
⎪⎨

⎪⎩

b̄1, if b < b̄1

b, if b̄1 ≤ b ≤ b̄2

b̄2, if b > b̄2

(9)

where b̄ = {b̄1, b̄2} represents the lower and upper bounds,

satisfying that b̄1 < b̄2. Case b̄1 �= −b̄2 indicates the asym-

metric case. The saturation bounds are chosen appropri-

ately such that the message signal p lies within them. The

use of the saturation function aims to ensure the bounded-

ness of pk.

As for (8), the closed-loop learning is suggested for ex-

ploiting the advantage of feedback. However, this method

has the defect that the intrinsic time delay exists when ob-

taining sk, which would cause performance degradation due

to the error between the actual signal and the estimated

one. It will be shown that performance improvement can

be made theoretically, provided that the estimation error is

sufficiently small.
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We emphasize the flexibility of choice for learning algo-

rithms, and that the learning law (8) is by no means ex-

clusive. Open-loop learning, using only the data from last

cycle instead of the current cycle, can be applicable when

one wants the message to be recovered off-line. A fully-

saturated learning law is given as

pk+1(t) = sat
(
p∗

k+1(t)
)

(10)

p∗
k+1(t) = sat

(
p∗

k(t)
)

+ γ
(
s(t) − sk(t)

)
. (11)

3 Performance analysis

Without any loss of generality, the state variables of the

chaotic system undertaken are assumed to be bounded and

there exists subset X ⊂ Rn such that xk(t) ∈ X for all

t ∈ [0, T ] and for all k. As the learning law that we apply

is partially saturated, the boundedness of pk(t) is ensured

as well. In order word, there exists subset P ⊂ R such that

pk(t) ∈ P for all t ∈ [0, T ] and for all k.

In practice, the signal s is acquired with the presence

of measurement noise. In order to examine the effect of

measurement noise, as well as the intrinsic time delay in

obtaining sk, we consider the learning law in the form of

pk = sat(pk−1) + γ(s − sk) + ηk (12)

where ηk indicates a variable related to measurement noise

as in obtaining s, and the estimation error for sk. In addi-

tion, we rewrite the learning law (10) and (11) to be

pk+1(t) = sat
(
p∗

k+1(t)
)

(13)

p∗
k+1(t) = sat

(
p∗

k(t)
)

+ γ
(
s(t) − sk(t)

)
+ ηk. (14)

The initial condition is usually used as a security key in

the conventional chaotic secure communication systems. It

is expected that any initial condition error will result in fail-

ing to decrypt the confidential information. We shall also

examine the effect of the initial condition error on perfor-

mance of the proposed method.

To make the problem more feasible, the following as-

sumptions are imposed.

Assumption 1. xk(0) is set to x0+ε0 at the beginning of

each cycle, where ε0 is the initial condition error satisfying

|x0 − xk(0)| = ε0.

Assumption 2. ηk is assumed to satisfy

|ηk| ≤ εη

where εη > 0.

Assumption 3. gp(x, p)(= ∂g(x,p)
∂p

) �= 0 for all x ∈ X

and for all p ∈ P .

Assumption 4. f(x, p) is local Lipschitz in both x and

p, i.e., there exists lf > 0 such that

|f(x′, p′) − f(x′′, p′′)| ≤ lf (|x′ − x′′| + |p′ − p′′|)

for any x′, x′′ ∈ X and for any p′, p′′ ∈ P .

Assumption 5. g(x, p) is local Lipschitz in both x and

p, i.e., there exists lg > 0 such that

|g(x′, p′) − g(x′′, p′′)| ≤ lg(|x′ − x′′| + |p′ − p′′|)

for any x′, x′′ ∈ X and for any p′, p′′ ∈ P .

Under Assumption 1, the initial condition of the receiver

is set to x0 + ε0, while the initial condition of the trans-

mitter is set to x0. The convergence result of the iterative

learning based secure communication system is stated in

the following theorem.

With the aid of the following lemma (see Appendix A for

the proof), we can establish the convergence of the partially-

saturated learning algorithm.

Lemma 1. For real numbers a and b, if b̄1 < a < b̄2,

then

|a − sat(b)|r ≤ |a − b|r (15)

where r > 0 is a given real number.

Theorem 1. Consider the system consisting of the

transmitters (4) and (5), and the receivers (6) and (7), sat-

isfying Assumptions 1−5. Let the learning law (12) be ap-

plied with the learning gain chosen to satisfy, for all xk ∈ X

and for all p̄k ∈ P ,
∣
∣
∣
∣

1

1 + γgp(xk, p̄k)

∣
∣
∣
∣ ≤ ρ < 1. (16)

Then,

lim
k→∞

sup |p − pk|λ ≤ ε̄

1 − ρ̄

with ε̄, ρ̄ and p̄k are to be specified.

Proof. See Appendix B. �
The robustness property of the learning algorithm, given

in Theorem 1, is particularly desirable due to its iterative

nature. This property ensures the boundedness of the error

p−pk, and the achieved error bound depends on the bounds

of measurement noise and initial condition error. The ro-

bustness result fully characterizes the effect of measurement

noise and initial condition error, implying that the recovery

of the message will not be easy if the signal to noise ratio

is not designed appropriately, or the initial condition is not

known exactly.

The convergence result in the absence of uncertainties is

presented in Corollary 1.

Corollary 1. Let the system, consisting of the trans-

mitters (4) and (5), and the receivers (6) and (7), satisfy

Assumptions 1−5. The learning law (12) is applied with

the learning gain chosen to satisfy (16). Then, the error

p(t)−pk(t) converges to zero on [0, T ] uniformly as k → ∞,

when ε0 = 0 and εη = 0.

Proof. The proof is straightforward by that for

Theorem 1. �
By Corollary 1, the zero-error convergence over the en-

tire interval can be guaranteed in the absence of the uncer-

tainties. This implies that exact decryption over the entire

interval [0, T ] is achieved. We would like to note that the

proposed method yields such complete recovery of message,
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whereas the message recovery by most existing methods is

in an asymptotic manner. The complete recovery through

learning is useful to enhance the security by designating the

starting time of the message in the transmitted signal.

For the open-loop learning, we have the following robust-

ness and convergence results.

Theorem 2. Consider the system consisting of the

transmitters (4) and (5), and the receivers (6) and (7), sat-

isfying Assumptions 1−5. Let the learning laws (13) and

(14) be applied with the learning gain chosen to satisfy, for

all xk ∈ X and for all p̄k ∈ P ,

|1 − γgp(xk, p̄k)| ≤ ρ < 1. (17)

Then,

lim sup
k→∞

|p − pk|λ ≤ ε̄

1 − ρ̄

with ε̄, ρ̄ and p̄k are to be specified.

Proof. See Appendix C. �

4 Security enhancements

Two fundamental techniques, in this section, are sug-

gested for enhancing security of the iterative learning based

communication scheme presented in Section 2. Here, the re-

sults are presented for the closed-loop learning. However,

the proposed techniques are also applicable when the open-

loop learning algorithm is used.

The first one also generates the signal s in the manner

specified by (5). However, instead of the directly replacing

α with p(t) in the chaotic system, the transmitted signal is

taken to replace the parameter as

ẋ = f(x, s). (18)

The system is assumed to be of chaotic behavior within

the region S to which s belongs. On the side of receiver,

sk(t), t ∈ [0, T ], is obtained by solving the differential equa-

tions as

ẋk = f(xk, sk). (19)

Assumption 4′. f(x, s) is local Lipschitz in both x and

s, i.e., there exists lf > 0 such that

|f(x′, s′) − f(x′′, s′′)| ≤ lf (|x′ − x′′| + |s′ − s′′|)

for all x ∈ X and for all s ∈ S.

Theorem 3. Consider the system consisting of the

transmitters (5) and (18), and the receivers (7) and (19),

satisfying Assumptions 1−3, 4′ and 5. Let the update law

(12) be applied with the learning gain chosen to satisfy (16).

Then, the same results as in Theorem 1 are obtained.

Proof. Integrating both sides of (18) and (19) gives rise

to

x(t) − xk(t) ≤ x(0) − xk(0) +

∫ t

0

(
f(x, s) − f(xk, sk)

)
dτ.

By Assumptions 1, 4′ and 5, we have

|x(t) − xk(t)| ≤

|x(0) − xk(0)| +
∫ t

0

lf (|x − xk| + |s − sk|)dτ ≤

|x(0) − xk(0)|+
∫ t

0

lf
(|x − xk| + lg(|x − xk|+

|p − pk|)
)
dτ =

ε0 +

∫ t

0

lf ((1 + lg)|x − xk| + lg |p − pk|)dτ.

Using Bellman-Gronwall Lemma yields

|x(t) − xk(t)| ≤

ε0e
lf (1+lg)t + lf lg

∫ t

0

elf (1+lg)(t−τ)|p − pk|dτ. (20)

Using the same derivations to arrive at (B3) in Appendix,

we obtain

|p − pk| ≤ ρ(|p − pk−1| + lg|γ||x − xk| + εη). (21)

Substituting (20) into (21) results in

|p − pk| − ρlf l2g|γ|
∫ t

0

elf (1+lg)(t−τ)|p − pk|dτ ≤

ρ(|p − pk−1| + lg|γ|ε0elf (1+lg)t + εη).

As λ > lf (1 + lg), we have

(

1 − ρlf l2g |γ|1 − e(lf (1+lg)−λ)T

λ − lf (1 + lg)

)

|p − pk|λ ≤

ρ(|p − pk−1|λ + lg|γ|ε0 + εη). (22)

Let us define

ρ̄ =
ρ

1 − ρlf l2g|γ|1 − e(lf (1+lg)−λ)T

λ − lf (1 + lg)

ε̄ = ρ̄(lg|γ|ε0 + εη).

Equation (22) becomes

|p − pk|λ ≤ ρ̄|p − pk−1|λ + ε̄.

Since 0 ≤ ρ < 1, it is possible to choose a sufficiently

large λ(> lf ) such that

1 − ρlf l2g|γ|1 − e(lf (1+lg)−λ)T

λ − lf (1 + lg)
> 0

and 0 ≤ ρ̄ < 1. Therefore, we obtain a contraction mapping

in |p − pk|λ and the error will reduce to the bound ε̄
1−ρ̄

in

the limit. �
One more masking technique is to enhance nonlinearity

of the mechanism for generating the signal s, for which we

shall use a composite function, formed by the composition

of one function on another, i.e.,

s = g(x, s1)

s1 = h(x, p). (23)
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On the side of receiver, we use the following for encrypting

sk = g(xk, s1
k)

s1
k = h(xk, pk). (24)

The chaotic system for the masking scheme is the same as

(4).

Assumption 5′. g(x, s) is local Lipschitz in both x and

s, i.e., there exists lg > 0 such that

|g(x′, s′) − g(x′′, s′′)| ≤ lg(|x′ − x′′| + |s′ − s′′|)
for all x ∈ X and for all s ∈ S.

Assumption 6. h(x, p) is local Lipschitz in both x and

p, i.e., there exists lh > 0 such that

|h(x′, p′) − h(x′′, p′′)| ≤ lh(|x′ − x′′| + |p′ − p′′|)
for all x ∈ X and for all p ∈ P .

It follows from the update law (12) that

p − pk = p − sat(pk−1)−
γ
[
g
(
x, h(x, p)

) − g
(
xk, h(xk, pk)

)] − ηk.

By resorting the mean value theorem, g(xk, h(xk, p)) −
g(xk, h(xk, pk)) = ghhp(xk, p̄k)(p − pk), p̄k = p + (1 −
ξ)(pk − p), 0 < ξ < 1, we obtain

(
1 + γghhp(xk, p̄k)

)
(p − pk) =

p − sat(pk−1) − γ
[
g
(
x, h(x, p)

) − g
(
xk, h(xk, p)

)] − ηk.

Taking absolute values on both sides of the above equation,

we have

|p − pk| ≤
|1 + γghhp(xk, p̄k)]−1|[|p − sat(pk−1)|+
|γ||g(

x, h(x, p)
) − g

(
xk, h(xk, p)

)| + |ηk|
]
.

Let γ be chosen such that
∣
∣
∣
∣

1

1 + γghhp(xk, p̄k)

∣
∣
∣
∣ ≤ ρ < 1 (25)

for all xk ∈ X and for all p̄k ∈ P . Then,

|p − pk| ≤
ρ(|p − pk−1| + lg(1 + lh)|γ||x − xk| + εη). (26)

Note that the following equality holds.

|x(t) − xk(t)| ≤ ε0e
lf t + lf

∫ t

0

elf (t−τ)|p − pk|dτ. (27)

Substituting (27) into (26) yields

|p − pk| − ρlf lg(1 + lh)|γ|
∫ t

0

elf (t−τ)|p − pk|dτ ≤

ρ
(|p − pk−1| + lg(1 + lh)|γ|ε0elf t + εη

)
.

As λ > lf , we obtain

(1 − ρlf lg(1 + lh)|γ|1 − e(lf−λ)T

λ − lf
)|p − pk|λ ≤

ρ
(|p − pk−1|λ + lg(1 + lh)|γ|ε0 + εη

)
. (28)

Let us define

ρ̄ =
ρ

1 − ρlf lg(1 + lh)|γ|1 − e(lf−λ)T

λ − lf

ε̄ = ρ̄
(
lg(1 + lh)|γ|ε0 + εη

)
.

Equation (28) becomes

|p − pk|λ ≤ ρ̄|p − pk−1|λ + ε̄.

We are now at a position to summary the robustness and

convergence result.

Theorem 4. Consider the system consisting of the

transmitters (4) and (23), and the receivers (6) and (24),

satisfying Assumptions 1−4, 5′ and 6. Let update law (12)

be applied with the learning gain chosen to satisfy (25).

Then, the same results as in Theorem 1 are obtained.

The scheme given by (23) and (24) just uses the composi-

tion of two nonlinear functions. For security enhancement,

however, multiple composite functions can be applied in the

form of

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

s = g(x, s1)

s1 = h1(x, s2)

· · ·
sm−1 = hm−1(x, sm)

sm = hm(x, p).

(29)

The theoretical analysis for the case of multiple composition

follows the similar lines to the derivations for Theorem 4,

where the nonlinear functions used for composition are re-

quired to be Lipschitz in their arguments. It should be to

noted that the composite function is Lipschitz as the func-

tions used to form the composition are Lipschitz in their

arguments.

5 Case studies

Consider the following unified chaotic system proposed

in [19],

ẋ1 = (25α + 10)(x2 − x1)

ẋ2 = (28 − 35α)x1 − x1x3 + (29α − 1)x2

ẋ3 = x1x2 − α + 8

3
x3.

The message masking is carried out by calculating with the

nonlinear function as

s =
1

2tanh
(
�(x, p)

)
+ 1

(30)

�(x, p) = c1x3 + (c2x1 + c3)p (31)

where p indicates the plaintext, and ci, i = 1, 2, 3, are ad-

justable parameters.

In the chaotic system, we replace α with p, and the sys-
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tem becomes

ẋ1 = (25p + 10)(x2 − x1)

ẋ2 = (28 − 35p)x1 − x1x3 + (29p − 1)x2

ẋ3 = x1x2 − p + 8

3
x3.

For the learning law (12), it is easy to choose the learning

gain according to the convergence condition (16).

∂g

∂p
=

1

2
sech2(�(x, p)

)
(c2x1 + c3).

Due to the boundedness of the function sech, it is easy for

us to choose γ. In view of (16), we have to choose c2 and

c3 such that c2x1 + c3 > 0.

We shall test the iterative learning based secure commu-

nication scheme for the settings as

x0 = [10, 20, 30]T

c1 =
1

100
, c2 =

1

100
, c3 = 1

mmin = 0.4, mmax = 0.9.

Our scheme does not need the message to be differen-

tiable, which can be discontinuous ones tailored for digital

communication.

The plaintext is chosen to be a square wave on the inter-

val [0, 6], i.e., T = 6. The transmitted signal is generated by

(30), which is shown in Fig. 1. Note that our scheme does

not need the knowledge about x1(t), x2(t), x3(t), t ∈ (0, T ].

In order to recovery the message from the transmitted sig-

nal, the learning law (12) is applied with the setting of

p0(t) = 0, t ∈ [0, T ]. Define the performance index as

Jk = supt∈[0,T ]|p(t) − pk(t)|. Fig. 2 shows the convergence

rate comparison with different learning gains of γ = 0.5, 1.5

and 3. It verifies that a larger learning gain could lead to

a faster convergence rate. With the choice of γ = 3, the

performance of Jk < 10−5 is achieved at the cycle k = 15.

The recovered message is shown in Fig. 3.

Fig. 1 The transmitted signal generated by (30)

The robustness of a learning algorithm is crucial due to

its iteration nature. We then examine the robustness of the

scheme to initial condition error and measurement noise.

Let us set the initial condition to be x0 + 1
10

[1,−1, 1]T,

where x0 is set to be the same as that in generating the

transmitted signal, ηk = 1
1000

× (2rand−1), and the rand is

a random scalar, chosen from a uniform distribution on the

interval (0, 1). The recovery result obtained through 100

iterations is shown in Fig. 4. It is observed from Fig. 4 that

our learning scheme will not be divergent in the presence of

the uncertainties, but robust to the uncertainties.

Fig. 2 Convergence rate comparison with different learning

gains

Fig. 3 Message recovery

The recovery performance with the proposed techniques

for enhancing security is now examined. Let us replace the

parameter α with the signal s, instead of the message signal

p. Other settings remain the same. The numerical results

are shown in Figs. 5 and 6. Fig. 5 depicts the convergence

rate comparison with different learning gains. The perfor-

mance of Jk < 10−5 is achieved at the cycle k = 20 as we

choose γ = 3. Robustness of the scheme to initial condition

error and measurement noise is examined in Fig. 6.

The following composite function is then used to generate
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the signal s as

s =
1

2
(
tanh

(
�(x, s1)

)
+ 1

) (32)

s1 =
1

2
(
tanh

(
�(x, p)

)
+ 1

) (33)

while other settings remain the same. The simulation re-

sults are shown in Figs. 7 and 8. The convergence rate com-

parison with different learning gains of γ = 2, 4 and 6 is

given in Fig. 7. Jk < 10−5 is achieved at the cycle k = 159

as γ = 6 is chosen. It is clarified that more iterations are

needed to achieve the same performance as high nonlinear-

ity is included. Fig. 8 shows the robustness of the scheme

to initial condition error and measurement noise.

Fig. 4 Robustness to presence of initial condition error and mea-

surement error

Fig. 5 Convergence rate comparison. The parameter α is re-

placed by the signal s

6 Conclusions

The iterative learning perspective on secure communica-

tion is presented, in this paper, allowing us to apply a non-

linear mechanism for masking without inversion computing

for decryption. In addition, the masking can be applied

jointly with parameter modulation. The convergence con-

dition of the learning algorithm has been derived, by which

the learning gain can be chosen. The technique by increas-

ing nonlinearities in masking is presented for enhancing se-

curity, and the learning algorithm has been shown to work

well. The computer simulation has been carried out and nu-

merical results have been provided to show the effectiveness

and feasibility of the developed method.

Fig. 6 Robustness to presence of initial condition error and mea-

surement error. The parameter α is replaced by the signal s

Fig. 7 Convergence rate comparison. The transmitted signal is

generated by (32)

Fig. 8 Robustness to presence of initial condition error and mea-

surement error. The transmitted signal is generated by (32)
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Appendix

A. Proof of Lemma 1

There are three possible cases which we should considers

for proving (15).

Case b̄1 ≤ b ≤ b̄2: It follows that sat(b) = b and |a −
sat(b)|r = |a − b|r. Hence, (15) is true for this case.

Case b > b̄2: It follows that sat(b) = b̄2 and a− b̄2 > a−b.

Since b̄1 < a < b̄2, one has a − b̄2 < 0 and a − b < 0, which

results in |a− b̄2| < |a− b| and |a− b̄2|r < |a− b|r as r > 0.

Hence, (15) also holds for this case.

Case b < b̄1: It follows that sat(b) = b̄1 and a− b̄1 < a−b.

Since b̄1 < a < b̄2, one has a − b̄1 > 0 and a − b > 0, which

results in |a− b̄1| < |a− b| and |a− b̄1|r < |a− b|r as r > 0.

Hence, (15) holds as well for this case.

Inequality (15) is true for all three cases.

B. Proof of Theorem 1

It follows by the update law (12) that

p − pk = p − sat(pk−1) − γ(s − sk) − ηk =

p − sat(pk−1) − γ
(
g(x, p) − g(xk, p)+

g(xk, p) − g(xk, pk)
) − ηk. (B1)

By appealing to the mean value theorem, there exists p̄k =

p+(1− ξ)(pk − p), ξ ∈ (0, 1), which lies on the line segment

jointing pk and p, such that

g(xk, p) − g(xk, pk) = gp(xk, p̄k)(p − pk).

Equation (B1) can be rewritten as

p − pk = p − sat
(
pk−1) − γ

(
g(x, p) − g(xk, p)+

gp(xk, p̄k)(p − pk)
) − ηk

which implies that

p − pk =
1

1 + γgp(xk, p̄k)

(
p − sat(pk−1)−

γ
(
g(x, p) − g(xk, p)

) − ηk

)
. (B2)

Taking absolute values on both sides of (B2) yields

|p − pk| ≤
∣
∣
∣
∣

1

1 + γgp(xk, p̄k)

∣
∣
∣
∣ (|p − sat

(
pk−1)|+

|γ||g(x, p) − g(xk, p)| + |ηk|
)
.

By Lemma 1, the saturation feature results in

|p − pk| ≤
∣
∣
∣
∣

1

1 + γgp(xk, p̄k)

∣
∣
∣
∣

(|p − pk|+

|γ||g(x, p) − g(xk, p)| + |ηk|
)
.

Using (16) and by Assumptions 2 and 5, we have

|p − pk| ≤ ρ(|p − pk−1| + lg|γ||x − xk| + εη). (B3)

To proceed, we need to evaluate the term |x−xk| on the

right hand side of (B3). Integrating both sides of (4) and

(6), the integral expression can be written as

x(t) − xk(t) = x(0) − xk(0) +

∫ t

0

(
f(x, p) − f(xk, pk)

)
dτ.

It follows by Assumption 4 that

|x(t) − xk(t)| ≤

|x(0) − xk(0)| +
∫ t

0

|f(x, p) − f(xk, pk)|dτ ≤

ε0 +

∫ t

0

lf (|x − xk| + |p − pk|)dτ.

Applying Bellman-Gronwall Lemma gives rise to

|x(t) − xk(t)| ≤ ε0e
lf t + lf

∫ t

0

elf (t−τ)|p − pk−1|dτ. (B4)

Substituting (B4) into (B3) leads to

|p − pk| ≤ ρ

(

|p − pk−1|+

lf lg|γ|
∫ t

0

elf (t−τ)|p − pk|dτ + lg|γ|elf tε0 + εη

)

. (B5)

Multiplying both sides of (B5) by e−λt(λ > 0) yields

e−λt|p − pk| ≤

ρ

(

e−λt|p − pk−1| + lf lg|γ|
∫ t

0

e(lf−λ)(t−τ)e−λτ

|p − pk|dτ + lg|γ|e(lf −λ)tε0 + e−λtεη

)

.

Taking supremum for t ∈ [0, T ] and λ > lf , we have

e−λt|p − pk| ≤ ρ

(

sup
t∈[0,T ]

{e−λt|p − pk−1|}+

lf lg|γ|
∫ t

0

e(lf−λ)(t−τ) sup
τ∈[0,T ]

{e−λτ |p − pk|}dτ+

lg |γ|ε0 + εη

)

which implies that

sup
t∈[0,T ]

{e−λt|p − pk|} ≤

ρ

(

sup
t∈[0,T ]

{e−λt|p − pk−1|} + lf lg|γ|1 − e(lf−λ)T

λ − lf
×

sup
τ∈[0,T ]

{e−λτ |p − pk|} + lg|γ|ε0 + εη

)

.

By the definition of the λ-norm, we have

(

1 − ρlf lg|γ|1 − e(lf−λ)T

λ − lf

)

|p − pk|λ ≤

ρ(|p − pk−1|λ + lg|γ|ε0 + εη). (B6)

Let us define

ρ̄ =
ρ

1 − ρlf lg|γ|1 − e(lf−λ)T

λ − lf

ε̄ = ρ̄(lg|γ|ε0 + εη).

Equation (B6) becomes

|p − pk|λ ≤ ρ̄|p − pk−1|λ + ε̄. (B7)
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Since 0 ≤ ρ < 1, it is possible to have a sufficiently large

λ(> lf ) such that

1 − ρlf lg|γ|1 − e(lf−λ)T

λ − lf
> 0

and

0 ≤ ρ̄ < 1.

Inequality (40) indicates a contraction in |p − pk|λ. There-

fore, as the iteration increases,

lim sup
k→∞

|p − pk|λ ≤ ε̄

1 − ρ̄
.

By the inequality supt∈[0,T ] |p − pk| ≤ eλT |p − pk|λ, the

theorem follows.

C. Proof of Theorem 2

From the learning law, we obtain

p − p∗
k+1 = p − sat(p∗

k) − γ(s − sk) − ηk =

p − sat(p∗
k) − γ

(
g(x, p) − g(xk, pk)

) − ηk =

p − pk − γ
(
g(x, p) − g(xk, p) + g(xk, p)−

g(xk, pk)
) − ηk.

Note that g(xk, p) − g(xk, pk) = gp(xk, p̄k)(p − pk), p̄k =

p + (1 − ξ)(pk − p), 0 < ξ < 1. We obtain

p − p∗
k+1 =

p − pk − γ
(
g(x, p) − g(xk, p) + gp(xk, p̄k)(p − pk)

) − ηk =

p − pk − γ
(
g(x, p) − g(xk, p)+

gp(xk, p̄k)(p − pk)
) − ηk.

Hence,

p − p∗
k+1 =

(
1 − γgp(xk, p̄k)

)(
p − pk) − γ

(
g(x, p) − g(xk, p)

) − ηk.

Taking norms

|p − p∗
k+1| ≤ |1 − γkgp(xk, p̄k)||p − pk|+

|γ||g(x, p) − g(xk, p)| + |ηk|
and setting |1 − γgp(xk, p̄k)| ≤ ρ < 1, we have

|p − p∗
k+1| ≤ ρ|p − pk| + bγ lg|x − xk| + εη.

Note that |p − pk| = |p − sat(p∗
k)| ≤ |p − p∗

k|. Then,

|p − p∗
k+1| ≤ ρ|p − p∗

k| + bγ lg|x − xk| + εη.

Using the estimation for |x − xk|, we have

|p − p∗
k+1| ≤

ρ|p − pk| + bγ lg[ε0e
lf t+

lf

∫ t

0

elf (t−τ)|p − pk|dτ ] + εη ≤

ρ|p − p∗
k| + bγ lglf

∫ t

0

elf (t−τ)|p − p∗
k|dτ+

bγ lgε0e
lf t + εη.

As λ > lf ,

|p − p∗
k+1|λ ≤

(

ρ + bγ lglf
1 − e(lf−λ)T

λ − lf

)

|p − p∗
k|λ+

bγlgε0 + εη.

Let us denote that ρ̄ = ρ+bγlglf
1−e

(lf −λ)T

λ−lf
and ε̄ = bγ lgε0+

εη). Then,

lim
k→∞

sup |p − pk|λ ≤ ε̄

1 − ρ̄
.

�
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