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Abstract: Terminal iterative learning control (TILC) is developed to reduce the error between system output and a fixed desired

point at the terminal end of operation interval over iterations under strictly identical initial conditions. In this work, the initial states

are not required to be identical further but can be varying from iteration to iteration. In addition, the desired terminal point is not

fixed any more but is allowed to change run-to-run. Consequently, a new adaptive TILC is proposed with a neural network initial

state learning mechanism to achieve the learning objective over iterations. The neural network is used to approximate the effect of

iteration-varying initial states on the terminal output and the neural network weights are identified iteratively along the iteration axis.

A dead-zone scheme is developed such that both learning and adaptation are performed only if the terminal tracking error is outside

a designated error bound. It is shown that the proposed approach is able to track run-varying terminal desired points fast with a

specified tracking accuracy beyond the initial state variance.

Keywords: Adaptive terminal iterative learning control, neural network, initial state learning, iteration-varying terminal desired

points, initial state variance.

1 Introduction

Iterative learning control (ILC) is to update the control

sequence by errors in the previous trials for repetitive opera-

tion systems[1]. It can achieve perfect tracking performance

with system uncertainties and has been successfully applied

to repetitive systems[2−7].

Note that the ILC approach requires the measurement of

I/O signals over the entire tracking trajectory, which may

not be accessible in some real industrial cases. For example,

in the control of an oven′s temperature for wafer deposition

thickness control, only the end-point error is measurable.

To overcome this problem, terminal iterative learning

control (TILC) was introduced to use the terminal point

only at the end of every run[8]. Now, TILC has become a

new research direction of ILC with many applications, in-

cluding the thickness control of rapid thermal processing

chemical vapor deposition[8], the plastic sheet surface tem-

perature control via thermoforming machines[9], the final

product quality control of batch to batch process[10], the

control of multi-joint hand-arm robots[11], the station stop

control of a train[12], etc.

The majority of TILC schemes in literature focus on P-

type learning law[8−12] and normal optimal learning law[13],
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and require good knowledge about system model to obtain

learning gains. For example, the optimal learning law cal-

culates control gains using the exactly known system matri-

ces to solve a Riccati equation[13]. In addition, the learning

gains are given beforehand and remain fixed over iterations,

which is not adaptive or robust to the system uncertainties

and exogenous disturbances. Consequently, a bad control

performance might be expected with fixed learning gains in

the presence of severe uncertainties.

Note that all existing TILCs are limited to track

iteration-invariant fixed target point and require the initial

states to be identical[8−13]. This makes the control schemes

quite depend on the reference, i.e., once the tracking target

point changes, the controller cannot track it immediately

and has to learn again. What is more, the constraint on

initial state also hinders the extensive applications of TILC

in real industry.

Actually, it is very often that the industrial processes are

carried out alternatively with different products and differ-

ent terminal target points. For example, in the widely ag-

ile manufacturing, product objective changes dynamically

with customers′ demands. Further, the nonzero errors al-

ways exist in the initial states because of the exogenous

disturbance, system uncertainties, etc.

Recently, several adaptive ILC approaches have been pro-

posed to relax the requirement of identical conditions on the

initial states and target trajectories[14−18] . However, these

methods are obtained based on the certainty equivalency

principle and thus depends on the intermediate I/O mea-

surements at all sampling time instants. Apparently, the

traditional adaptive ILC approaches cannot be directly ap-

plied to the terminal control task, where only the terminal
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measurement is available for learning rather than a whole

output trajectory[14−18] .

It is known that neural network has been proved

to be efficient in function approximation and parameter

estimation[19]. In this paper, a new neural network ini-

tial state learning based adaptive terminal ILC (NNISL-

ATILC) is proposed to address the terminal tracking tasks

with random initial states and iteration-varying target end-

points.

First, the relationship among terminal outputs, initial

states, and control inputs is formulated for a linear multiple-

input multiple-output (MIMO) discrete system. Then, the

effect of initial state on the terminal output is approximated

by an radial basis function (RBF) neural network and an

iterative updating law is designed to estimate the neural

network weighting factors iteratively, where a dead-zone

scheme is designed such that both learning and adaptation

are performed only if the terminal tracking error is outside a

designated error bound. Compared with the existing termi-

nal ILC approaches, the new proposed NNISL-ATILC can

perform well when the initial states and the target termi-

nal points are varying with iterations. The convergence is

shown with rigorous analysis. Simulation results verify the

effectiveness of the proposed approach further.

The rest of this paper is organized as follows. Sec-

tion 2 presents the problem formulation of the TILC with

iteration-varying initial states and iteration-varying termi-

nal reference points. Section 3 designs an adaptive terminal

ILC approach with a neural network initial state learning

mechanism. Section 4 shows the stability and convergence

of the proposed approach with rigorous analysis. Section 5

provides simulation results to illustrate the effectiveness of

the proposed approach. Finally, some conclusions are given

in Section 6.

2 Problem formulation

Consider a linear MIMO discrete-time system as{
xk(t + 1) = Axk(t) + Buk

yk(t) = Cxk(t)
(1)

where t = 0, 1, · · · , N is the sampling index and k is the iter-

ation index. All the system matrices A ∈ Rp×p, B ∈ Rp×m

and C ∈ Rn×p are unknown, xk(t) ∈ Rp is the state vec-

tor, yk(t) ∈ Rn is the output vector, and uk ∈ Rm is the

control vector which keeps constant at all sampling times

during one iteration.

From linear control theory, the output of the system at

the N-th time instant (terminal point) in the k-th iteration

is given as

yk(N) = CANxk(0) + C
N−1∑
t=0

AN−t−1Buk (2)

which can be rewritten into the general form as

yk(N) = f (xk(0)) + B∗uk (3)

where f (xk(0)) = CANxk(0) and B∗ = C
∑N−1

t=0 AN−t−1B.

To approximate the effect of the initial states to the ter-

minal output, i.e., f (xk(0)), an RBF neural network is in-

troduced, i.e.,

f̂ (xk(0)) = W TΦ (xk(0)) (4)

where WT ∈ Rn×L is an unknown ideal weight matrix, L

denotes the number of neurons in the hidden layer. Func-

tion f̂ (·) depends on the structure of the neural network

and the number of neurons. Φ (xk(0)) ∈ RL is the output

of the neural network′s hidden layer.

Therefore, the system terminal output can be approxi-

mated by the above RBF network as

yNN
k (N) = f̂ (xk(0), W ) + B∗uk =

W TΦ (xk(0)) + B∗uk. (5)

Let Θ =
[
W T, B∗], Ψk =

[
Φ (xk(0))T , uT

k

]T
. Then, (5)

becomes

yNN
k (N) = ΘΨk. (6)

To restrict our discussion, some assumptions are consid-

ered.

Assumption 1. The system is both controllable and ob-

servable, n ≤ m, and B∗ ∈ Rn×m is full rank.

Assumption 2. Given a positive constant ε and a com-

pact set S, there exists a coefficient W such that f̂ (·) ap-

proximates the continuous function f (·) with accuracy ε

over S, i.e., ∀y ∈ S and ∀k, ∃W such that

max‖f̂ (xk(0), W ) − f (xk(0)) ‖ =

max‖W TΦ (xk(0)) − f (xk(0)) ‖ ≤ ε. (7)

Assumption 3. The initial state xk(0) is accessible in

every iteration.

Remark 1. Assumption 1 is common in control theory.

Assumption 2 is always satisfied if both the structure of the

network and the number of neurons are properly specified.

Remark 2. Assumption 3 is often used in ILC and TILC

for repetitive operation systems, in which the initial state

will be reset before the starting of every iteration. And the

reset value is fixed or follows some fixed pattern in prac-

tice. For example, in the thickness control for the wafer

fabrication, the initial states including the temperature of

the oven and initial thickness are quite standard. So it is

reasonable to assume that the initial state is known in ILC

and TILC.

Remark 3. Note that for a linear system, the effect of

the initial states to the terminal output may be a nonlinear

function about the initial state due to the measure noises

and disturbances, although the expression is a linear form

as in (2). Therefore, it is necessary to use an RBF neural

network to approximate it as in (4).

In this paper, the desired terminal reference point, de-

fined as yd,k(N), is iteration-varying. This is a major re-

laxation of the common assumption of identical terminal

target point required in the existing TILC approaches[8−13].
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The control objective is to refine the input sequence by

learning from the iteration-varying terminal target points

directly such that the TILC system achieves a perfect con-

trol performance for iteration-different tracking tasks.

3 Controller design

According to the feedback equivalent principle, the pro-

posed terminal learning control law at the k-th iteration

is

uk =
(
B̂∗

k

)−1 [
yd,k(N) − Ŵ T

k Φ (xk(0))
]

(8)

where Ŵk and B̂∗
k denote the estimates of W and B∗ at the

k-th iteration, respectively.

The control input uk is applied to both the plant and

the neural network model. The unknown B∗ and W are

updated iteratively according to the estimation error.

According to (5), the estimated plant output is

ŷk(N) = f̂
(
xk(0), Ŵk

)
+ B̂∗

kuk =

Ŵ T
k Φ (xk(0)) + B̂∗

kuk. (9)

Define the estimate error as

êk(N) = ŷk(N) − yk(N) (10)

where êk(N) = [ê1,k(N), ê2,k(N), · · · , ên,k(N)]T, êi,k(N),

i = 1, 2, · · · , n, is the i-th element of êk(N). To overcome

the model uncertainties in the stability analysis, we are

going to employ a dead-zone algorithm for updating the

weights. The dead-zone function is defined as

D (êi,k(N)) =

⎧⎪⎨
⎪⎩

0, if |êi,k(N)| ≤ d0

ei − d0, if êi,k(N) > d0

ei + d0, if êi,k(N) < d0.

(11)

Let Θ̂k =
[
Ŵ T

k , B̂∗
k

]
, θ̂i,k denote the i-th row vector of

Θ̂k, ω̂T
i,k and b̂∗i,k denote the i-th row vectors of Ŵ T

k and

B̂∗
k, respectively. Then, θ̂i,k =

[
ω̂T

i,k, b̂∗i,k
]
, i = 1, 2, · · · , n.

Hence, the estimated model (9) becomes

ŷi,k(N) = ω̂T
i,kΦ (xk(0)) + b̂∗i,kuk = θ̂i,kΨk. (12)

Now, the neural network weight updating law with dead-

zone is proposed as

θ̂i,k+1 = θ̂i,k − ΨT
k

1 + ΨT
k Ψk

D (êi,k(N)) , i = 1, · · · , n (13)

where the initial values of θ̂i,0 are bounded.

4 Convergence analysis

The validity of the above proposed neural network ini-

tial state learning based adaptive TILC scheme (8)–(13) is

verified by the following theorem.

Theorem 1. For system (1) under Assumptions 1–3,

the learning control law (8) and the parameter updating

law (13) together with the dead-zone algorithm (11) guar-

antee that:

1) Θ̂k is bounded and the parameter estimate error

‖Θ̂k − Θ‖ is monotonically non-increasing in the iteration

domain.

2) The terminal tracking error between the plant output

and the desired terminal point, ek(N) = yd,k(N) − yk(N),

converges to a ball of radius d0 centered at the origin as k

approaches to infinity.

Proof. The proof of Theorem 1 has two parts as follows.

Part 1. The boundedness of Θ̂k.

Let ωT
i denote the i-th row vector of W T , and b∗i denote

the i-th row vector of B∗, i = 1, 2, · · · , n. Then, (5) can be

rewritten as

yNN
i,k (N) = f̂i (xk(0), ωi) + b∗i uk =

ωT
i Φ (xk(0)) + b∗i uk = θiΨk (14)

where θi =
[
ωT

i , b∗i
]
.

According to (14) and Assumption 2, we have

yi,k(N) =f̂i (xk(0), ωi) + b∗i uk+[
fi (xk(0)) − f̂i (xk(0), ωi)

]
=

f̂i (xk(0), ωi) + b∗i uk + O(ε). (15)

In terms of (10), (14) and (15), the estimation error be-

tween the neural network output and the plant output is

êi,k(N) =ŷi,k(N) − yi,k(N) =

f̂i (xk(0), ω̂i,k) − f̂i (xk(0), ωi) +(
b̂∗i,k − b∗i

)
uk + O(ε) =

[ω̂i,k − ωi]
T Φ (xk(0)) +

b̃∗i,kuk + O(ε) =

ω̃T
i,kΦ (xk(0)) + b̃∗i,kuk + O(ε) =

θ̃i,kΨk + O(ε) (16)

where ω̃i,k = ω̂i,k − ωi, b̃∗i,k = b̂∗i,k − b∗i and θ̃i,k = θ̂i,k − θi.

Assume that ε is small enough such that

|O(ε)| ≤ M < d0 (17)

where d0 is defined in (11).

Using the definition of the dead-zone function (11), we

can easily verify the following claims:

Case 1. If |êi,k(N)| ≤ d0, then D (êi,k(N)) = 0.

Case 2. If êi,k(N) > d0, i.e., θ̃i,kΨk + O(ε) > d0, then

θ̃i,kΨk + O(ε) > 0.

Since O(ε) ≤ M < d0,

D (êi,k(N)) = θ̃i,kΨk + O(ε) − d0 >

θ̃i,kΨk + d0 − d0 = θ̃i,kΨk.

Case 3. If êi,k(N) < −d0, i.e., θ̃i,kΨk +O(ε) < −d0, then

θ̃i,kΨk + O(ε) < 0.
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Since O(ε) ≤ M < d0,

D (êi,k(N)) = θ̃i,kΨk + O(ε) + d0 <

θ̃i,kΨk − d0 + d0 = θ̃i,kΨk.

Thus, from the the above three cases, D (êi,k(N)) can be

represented as

D (êi,k(N)) = αi,kθ̃i,kΨk (18)

where 0 ≤ αi,k < 1.

Substituting (18) into the updating rule (13) yields

θ̂i,k+1 = θ̂i,k − αi,k θ̃i,kΨk

1 + ΨT
k Ψk

ΨT
k . (19)

By subtracting θi from both sides of (19), it becomes

θ̃i,k+1 = θ̃i,k − αi,k θ̃i,kΨk

1 + ΨT
k Ψk

ΨT
k . (20)

Define a Lyapunov function Vk = ‖θ̃i,k‖2. Then,

ΔVk+1 = Vk+1 − Vk = θ̃i,k+1θ̃
T
i,k+1 − θ̃i,kθ̃T

i,k. (21)

According to (20), it is easy to get from (21) that

ΔVk+1 = −2αi,k

(
θ̃i,kΨk

)2

1 + ‖Ψk‖2
+ α2

i,k

‖Ψk‖2
(
θ̃i,kΨk

)2

(1 + ‖Ψk‖2)2
≤

− 2αi,k

(
θ̃i,kΨk

)2

1 + ‖Ψk‖2
+ α2

i,k

(
θ̃i,kΨk

)2

1 + ‖Ψk‖2
≤

− α2
i,k

(
θ̃i,kΨk

)2

1 + ‖Ψk‖2
− 2

(
αi,k − α2

i,k

) (θ̃i,kΨk

)2

1 + ‖Ψk‖2
≤

− α2
i,k

(
θ̃i,kΨk

)2

1 + ‖Ψk‖2
≤ 0. (22)

As a direct result, (22) shows the non-increasing prop-

erty of θ̃i,k and the boundedness of the estimate value of

neural network weights θ̂i,k for all k. Thus, conclusion 1)

of Theorem 1 is obtained directly.

Part 2. Convergence property of the tracking error

Summing up both sides of (22) from 0 to k yields

Vk+1 ≤ V0 −
k∑

j=0

α2
i,k

(
θ̃i,jΨj

)2

1 + ‖Ψj‖2
. (23)

Since V0 is bounded, and Vk+1 is non-increasing and non-

negative, in terms of (23), we obtain that

lim
k→∞

α2
i,k

(
θ̃i,kΨk

)2

1 + ‖Ψk‖2
= 0. (24)

It implies that

lim
k→∞

αi,kθ̃i,kΨk = 0. (25)

According to (18), we can obtain

lim
k→∞

D (êi,k(N)) = 0. (26)

Hence,

|êi,k(N)| = |ŷi,k(N) − yi,k(N)| < d0, as k → ∞. (27)

Substituting the control law (8) into (9) yields

ŷk(N) = Ŵ T
k Φ (xk(0)) + yd,k(N) − Ŵ T

k Φ (xk(0)) =

yd,k(N). (28)

Thereafter, the terminal tracking error is

‖ek(N)‖ = ‖yd,k(N) − yk(N)‖ =

‖ŷk(N) − yk(N)‖ = ‖êk(N)‖. (29)

In terms of (27), limk→∞ êi,k(N) < d0. Then, the con-

clusion 2) of Theorem 1 is proved. �

5 Illustrative examples

In order to illustrate the effectiveness of the proposed

NNISL-ATILC scheme, two examples are considered in sim-

ulation study.

Example 1. Consider the discrete-time single-input

single-output (SISO) system as

xk(t + 1) =

⎛
⎜⎝ 0.5 0.035 0.025

0.0255 0.6 −0.99

0.75 0.03 0.025

⎞
⎟⎠ xk(t)+

(
0.2 0.2 0.0

)T

uk

yk(t) =
(
1.0 0.0 1.0

)
xk(t) (30)

where the system operates on the interval [0, 20].

In the simulation, the initial states are varying randomly

over [0, 0.1] with iterations, as shown in Fig. 1. The tracking

reference terminal points yd,k(N) = 2 + 0.1sin(πk
10

), which

is varying iteratively and is shown in Fig. 2.

Fig. 1 The random initial states with iterations in Example 1
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Fig. 2 Terminal output tracking performance with iterations in

Example 1

By applying the proposed NNISL-ATILC (8)−(13) with

d0 = 0.001, Θ̂0 =
[
5 5 5 0.5

]
and u0 = 0, the terminal

output profile and the terminal tracking error are given in

Figs. 2 and 3, respectively. It can be seen that although

the initial states and terminal reference points are varying

iteratively along the iteration learning axis, the fast trace-

ability and convergence of the proposed method can still be

guaranteed.

Fig. 3 Terminal tracking error with iterations in Example 1

Example 2. Consider an MIMO discrete-time system

as

xk(t + 1) =

⎛
⎜⎝ 0.5 0.035 0.025

0.0255 0.6 −0.99

0.75 0.03 0.025

⎞
⎟⎠ xk(t)+

(
0.2 0.03 0.025

0.2 0.2 0

)T

uk

yk(t) =

(
1.0 0.0 1.0

0 2.0 1.0

)
xk(t). (31)

The system operates on time interval [0, 20] for every iter-

ation.

The initial state xk(0) is also varying randomly with it-

erations over the interval of [0, 0.1], as shown in Fig. 4.

In the simulation, the RBF neuron network works with 3

hidden neurons. The reference points in different iterations

are shown in Fig. 5. They are also presented mathemati-

cally as ⎧⎪⎨
⎪⎩

yd1,k(N) = 2 + 0.5sin(
πk

20
)

yd2,k(N) = 1 + 0.1sin(
πk

20
).

(32)

By applying the proposed NNISL-ATILC (8)−(13) with

d0 = 0.001, Θ̂0 =

[
8 8 8 0.5 0.5

4 4 4 −0.5 0.5

]
and u0 =

[
0 0

]T
, the simulation results are shown in Figs. 5 – 8, re-

spectively. It is clear that the proposed approach is well

to be used for discrete-time MIMO systems to track run-

varying reference with initial state variance. As shown in

Figs. 5 and 6, for each output, the proposed approach con-

verges quite fast and the performance keeps good even the

reference changes between iterations. From Figs.7 and 8, it

is shown that the fast convergence of the terminal errors in

the iteration domain is evident for the proposed approach.

Fig. 4 Random-varying profile of the initial states in Example 2

Fig. 5 Terminal output tracking performance of y1,k in

Example 2
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Fig. 6 Terminal output tracking performance of y2,k in

Example 2

Fig. 7 Terminal tracking error e1 in Example 2

Fig. 8 Terminal tracking error e2 in Example 2

6 Conclusions

In this paper, a neural network initial state learning

based adaptive terminal ILC is proposed to track iteration-

varying terminal reference points with random initial state

variances. The neural network is used to approximate the

effect of iteration-varying initial states to the terminal out-

put. The dead-zone scheme is designed to enhance the ro-

bustness of the control system and to achieve arbitrarily

specified tracking accuracy. The proposed approach can

converge very fast and has outstanding tracking perfor-

mance even the initial state and reference terminal reference

point are changed iteratively.
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