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Abstract: For the past decades, networked control systems (NCSs), as an interdisciplinary subject, have been one of the main

research highlights and many fruitful results from different aspects have been achieved. With these growing research trends, it is

significant to consolidate the latest knowledge and information to keep up with the research needs. In this paper, the results of different

aspects of NCSs, such as quantization, estimation, fault detection and networked predictive control, are summarized. In addition, with

the development of cloud technique, cloud control systems are proposed for the further development of NCSs.
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1 Introduction

For the past decades, as a research highlight, networked

control systems (NCSs) not only have attracted the atten-

tion of many scholars but also have generated huge prof-

its in the industry. Compared with the traditional control

systems, NCSs have obvious advantages: low cost, flexibil-

ity, easy re-configurability, natural reliability, robustness to

failure, and adaptation capability. Up to now, networked

control techniques have been applied into many fields, such

as transportation networks, power grids, water distribution

networks, telephone networks, global financial network, ge-

netic expression networks, etc.

In general, the research of NCSs can be categorized into

two parts: control of network and control over network.

The former is to study the problem about network, such as

routing control, congestion reduction, efficient data commu-

nication, networking protocol, etc. The latter is to achieve

the performance of the control system with network being

the transmission media. In this survey, we mainly discuss

the latter. With respect to control over network, shared-

network control systems and remote control systems are two

important types of NCSs. The research of NCSs is focused

on two aspects: the quality of service (QoS) and the quality

of control (QoC). QoS is related to the performance of the

network, such as transmission rates and error rates. QoC

generally refers to the stability of the system. It is one of
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the most important issues to maintain QoS and QoC at the

same time in the research of NCSs.

Due to the existence of the network in NCSs, some com-

munication problems may degrade the performance of the

system. They are presented as follows:

1) Network-induced delay: The network-induced delay

can be formulated as

τ (tk) = τsc(tk) + τca(tk) (1)

where τ (tk) is the total transmission delay at sampling time

tk, τsc(tk) and τca(tk) are the network delays from the sen-

sor to the controller and from the controller to the actuator

nodes, respectively. For NCSs, there were other delays such

as τs(tk), τc(tk) and τa(tk)[1], which are the computational

delays in the sensor, controller, and actuator nodes, respec-

tively. In the existing literatures, different delay models are

introduced. In [2], four major delay models, namely con-

stant delay model, mutually independent stochastic delay

model, Markov chain model, and hidden Markov model,

were summarized.

2) Packet dropout: Due to several factors such as data

traffic congestion, data collision or interference, packet

loss is an inherent problem in most communication net-

works. Generally, the dropout process is often modeled as

a Bernoulli process or a Markov process.

3) Limited capacity of channel: The limited capacity of

communication channel refers to the limited bandwidth and

the limited transmission energy, which both influence the

transmission quality.

4) Network security: Any network medium, particularly

wireless medium, is susceptible to easy intercepting. Net-

work security is receiving more and more concern.

Generally speaking, the research of NCSs is mainly to

solve the aforementioned problems. Zhang et al.[3] surveyed

the main methodologies which can cope with those typical

network-induced constraints, namely time delays, packet

losses and disorder, time-varying transmission intervals,
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Fig. 1 The framework of NCS

competition of multiple nodes accessing networks, and data

quantization. From the framework of a general NCS shown

in Fig. 1, the network-induced problems may influence al-

most every stage. The whole closed-loop can be described

as follows: The sensors of the system sense the states or

the outputs. Due to the uncertainty or the disturbance,

these measurements are transmitted through the communi-

cation network to estimator, such as filter or data fusion, to

estimate the exact states. Then, these processed data are

used to detect the fault or/and compute the control input.

Finally, the control input is fed to the actual control object.

Under the effect of the network, most of the existing re-

sults about NCSs can consider only a single stage in Fig. 1.

With respect to the theoretical side, many important im-

provements and advances have been obtained in the past

decades. The motivation of this survey is to summarize

these important results about NCSs and present a frame-

work of NCSs to newcomers in this field.

The remainder of this paper is organized as follows. Sec-

tion 2 presents the results about the quantization of NCSs,

specially the logarithmic quantizer and the uniform quan-

tizer. In Section 3, the estimation stage in NCSs, mainly

filtering and data fusion, is summarized. Then, the results

about the fault detection for NCSs are simply shown in Sec-

tion 4. In Section 5, since networked predictive control is

a significant approach to NCSs, the corresponding results

about predictive control are categorized into model predic-

tive control (MPC), packet based predictive control and

data driven predictive control. Moreover, the distributed

predictive control is also summarized in this section. Sec-

tion 6 proposes the cloud control system as one of the fur-

ther developments of NCSs and describes its basic idea.

Conclusions are given in Section 7.

2 Quantization

Quantization is an significant problem in NCSs. Ow-

ing to the limited transmission capacity of the network,

signals must be quantized before they are sent to the net-

work. Quantization is implemented by a quantizer, which

is a device to convert a real-valued signal into a piecewise

constant one with a finite set of values. When a network

exists in the system, quantization is motivated by the com-

munication constraints. To achieve better performance of

the considered systems, the effect of data quantization on

the system should be taken into consideration.

A continuous variable is converted into a discretized vari-

able by quantizer. Generally, this will inevitably introduce

information loss due to the existence of quantization error.

A fundamental problem in NCSs is how the quantization

error will affect the quality of the system operation. It is

easy to see that the less number of bits we use for quan-

tization, the larger quantization error will be induced. If

the quantization error is too large, the controller may not

be able to generate a stabilizing control input. Thus, one

branch of the study of the quantization is focused on how

to design a proper quantizer and achieve the stability of the

system.

The existence of the quantizer will result in two phe-

nomenons, i.e., saturation and performance deterioration

around the original point. If the signal exceeds the quan-

tization range of the quantizer, a large quantization er-

ror may occur and result in that the closed-loop system

is unstable. This is the influence of the saturation. If the

state approaches to the original point, the limitation of the

quantizer′s accuracy will lead to that the signal cannot be

exactly quantized. In this case, the closed-loop system in-

evitably cannot achieve the asymptotic stability.

The early work on quantized feedback control is mainly

motivated by digital computers as instrument for imple-

menting control systems. While the network is introduced

as the transmission medium, new techniques need to be

studied. In [4], it is pointed out that when ordinary “lin-

ear” feedback of quantized state measurements is applied,

the closed-loop system will behave chaotically. When the

state is one-dimensional, a quantitative statistical analysis

of the resulting closed-loop dynamics reveals that the exis-

tence of an invariant probability measure on the state space,

which is absolutely continuous with respect to the Lebesgue

measure and with respect to which the closed-loop system

is ergodic. In addition, as a hot topic, the event-triggering

control with quantization was explored[5−8], Hu and Yue[6]
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considered both state and control input quantization and

proposed an asymptotical stability criteria in terms of lin-

ear matrix inequalities (LMIs).

Nowadays, the logarithmic quantizer and the uniform

quantizer are two popular quantizers. When one compares

the logarithmic quantizer with the uniform one, it is not

hard to obtain that the former yields better performance

around the origin and the latter can be operated more eas-

ily. Each kind of quantizer has both advantages and disad-

vantages. In the following, we will discuss the logarithmic

quantizer and the uniform quantizer, respectively.

2.1 Logarithmic quantizer

The logarithmic quantizer is a kind of the static quan-

tizer. It is formulated as

q(y) =

⎧
⎪⎪⎨

⎪⎪⎩

vi, if
vi

1 + δ
< y <

vi

1 − δ
, y > 0

0, if y = 0

−q(−y), if y < 0

(2)

where U = {±vi : vi = ρiv0, i = ±1,±2, · · · } ∪ {±v0} ∪
{0}, 0 < ρ < 1, v0 > 0 is the set of the quantization values.

This quantizer is of infinite quantization level. A quantizer

with limited quantitative level is

q(y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vi, if
vi

1 + δ
< y <

vi

1 − δ
, 0 < i ≤ N − 1

0, if 0 ≤ y ≤ vN−1

1 + δ
v0, if y >

v0

1 + δ
−q(−y), if y < 0

(3)

where U = {±vi : vi = ρiv0, i = ±1,±2, · · · ,±(N − 1)} ∪
{±v0} ∪ {0}, 0 < ρ < 1, v0 > 0 is the set of the quanti-

zation values. Fig. 2 shows an example of the logarithmic

quantizer.

Fig. 2 An example of logarithmic quantizer

The logarithmic quantizer was firstly proposed in [9].

Elia and Mitter[9] turned out that the logarithmic quantizer

is the coarsest quantizer which has the minimum quantiza-

tion density. This work also discussed the quadratic stabi-

lization of single-input linear systems with quantized con-

trol feedback. Fu and Xie[10] extended the results of [9] to

multiple input multiple output (MIMO) systems and pre-

sented that the quantization feedback design problem can

be converted into the robust control problem. This is cru-

cial for the research of the logarithmic quantizer. In [11],

quantization issues were studied in a remote control sys-

tem. Hayakama et al.[12, 13] studied the adaptive quantized

control for the linear uncertain discrete-time systems and

nonlinear uncertain systems, respectively. You et al.[14] in-

vestigated the attainability of the minimum average data

rate for stabilization of linear systems via logarithmic quan-

tization. By exploring some geometric properties of the

logarithmic quantizer and using the fact that the logarith-

mic quantizer is sector bounded and nondecreasing, Zhou

et al.[15] presented a new approach to the stability analysis

of quantized feedback control systems.

For NCSs, the time delay and the packet loss are two

usual issues. Due to their existence, most of the traditional

logarithmic quantizers are not suitable. Up to now, some

quantization results for the NCSs have been obtained. In

[16], the guaranteed cost control design for linear systems

with parameter uncertainty was considered. The logarith-

mic quantizers were used in two sides and the effects of both

the quantization levels and the network conditions are also

considered. Zhang et al.[17, 18] discussed a class of H2 fil-

ters and H∞ filters for nonlinear systems with logarithmic

quantizer and packet loss, respectively. Li et al.[19] consid-

ered the robust H∞ control problem for uncertain discrete-

time Takagi and Sugeno (T-S) fuzzy networked control sys-

tems with state quantization, where a logarithmic quan-

tizer was used and new model of network-based control with

simultaneous consideration of network-induced delays and

packet dropouts was constructed. A less conservative delay-

dependent stability condition was thus derived. In [20], the

input quantization and packet dropouts were considered si-

multaneously. The packet dropout process of the channel

was modelled as an independent identically distributed case

and a logarithmic quantizer was adopted. It turns out that

as long as the dropout rate satisfies α < 1 + ln Λ
ln δ−l ln(1+δ)

,

the system is globally exponentially stabile, i.e.,

E
(
[‖x(t) − x̃(t)‖∞]

)
< e−λtX

where t > 0, E represents the mean, Λ = eF T , T is the

sample interval, F is one positive real number, δ > ρN−1,

N ≥ 3, 0 < ρ < 1, ‖x(0)‖∞ < X, λ = ln R
T

and

R = Λ( δ
1+δ

)1−α < 1. Xia et al.[21] considered a quan-

tized system with finite-level quantized input computed

from quantized measurements (QIQM). The problem of

globally asymptotic stability of QIQM system is converted

into the one of an equivalent system depending on a mul-

tiplier which is nonnegative and bounded. If the open-loop

system is stable and the closed transfer function satisfies
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that infw∈R Re{G(ejw)} > ε, where

q(y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

(δ − 1)(δ + 1)2
Λ, if 0 < δ ≤ 1

2
(2δ − 1)δ

(1 − δ)2(δ + 1)2
Λ +

1

(δ − 1)(δ + 1)2
Λ,

if
1

2
≤ δ < 1

Λ =
Fq

Q(Fq)
− δ‖Fq‖1

Q(Fq)

Fq = inf F̃ = inf
{

Fη|η ∈ Zη = ±ρiv0, i ∈ {0, i, · · · , N},

Fη ≥ ρ + 1

2ρ
v0

}
(4)

and F is the feedback matrix, Q is the quantizer, ρ > 1 and

v0 > 0, then the closed-loop system is globally asymptoti-

cally stable about origin.

As we can see, the existing results involving logarith-

mic quantizer are mainly related to the linear systems with

infinite quantization levels. Then, how to analyze the sta-

bility of QIQM nonlinear systems, which are affected by

finite logarithmic quantization levels, is a hard problem to

be solved. Moreover, the problems mentioned above, which

are affected by other networked induced issues such as time-

delay and packet dropout simultaneously, are beyond doubt

the focal and difficult points of future study.

2.2 Uniform quantizer

The uniform quantizers with an arbitrarily shaped quan-

titative area have some following conditions:

1) if ‖y‖2 ≤ Mμ, then ‖q(y) − y‖2 ≤ Δμ

2) if ‖y‖2 > Mμ, then ‖q(y)‖2 > Mμ − Δμ

where M is the saturation value and Δ is the sensitivity.

The first condition gives the upper bound of the quanti-

zation error when the quantization is not saturated. The

second condition provides an approach to test whether the

quantization is saturated. Specially, as shown in Fig. 3, an

uniform quantizer whose quantitative area can be rectangle

is formulated as

q(y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, if − 1

2
< y <

1

2

i, if
2i − 1

2
< y <

2i + 1

2
, i = 1, 2, · · · , K − 1

K, if y ≥ 2K − 1

2

−q(−y), if y ≤ −1

2
.

(5)

When a uniform quantizer is used, the zoom strategy is

a useful control policy, which is divided into two stages:

“zoom-in” and “zoom-out”. If the initial state to be quan-

tized is saturated, “zoom-out” stage is adopted to increase

the sensitivity Δ until the state gets unsaturated. In the

“zoom-in” stage, the sensitivity Δ is decreased to drive the

state to zero. Otherwise, if the initial state to be quantized

is unsaturated, the “zoom-out” stage can be omitted and

the “zoom-out” stage is implemented directly.

Fig. 3 An example of uniform quantizer

Brokett et al.[22, 23] proposed the uniform quantizers with

an arbitrarily shaped quantitative area. Based on these

quantizers, the zoom theory is used for linear systems, and

the nonlinear systems, and the sufficient condition for the

asymptotical stability is given. The stabilization problem

for discrete time linear systems with multidimensional state

and one-dimensional input using quantized feedbacks with

a memory structure was investigated in [24]. Bullo and

Liberzon[25] discussed the local optimization of the quan-

tized control. In order to obtain a control strategy which

yields arbitrarily small values of T
ln C

(a weak form of the

pole assignability property), LN
ln C

has to be big enough,

where T is the time that shrinks the state of the plant from

a starting set to a target set, C is the contraction rate, L

is the number of the controller states and N denotes the

number of the possible control values. Reference [26] is the

extension of the previous results. Reference [27] presented

a general framework of the design and analysis approach for

the quantized systems.

Meanwhile, considering the delay and the packet loss

which the network induces, some improvements for the uni-

form quantizer have been obtained. For the linear discrete-

time system with quantization and packet dropout, You

and Xie[28, 29] proposed the necessary and a sufficient con-

dition for the mean square stability through quantization

feedback. The dropout process of [28] is a Bernoulli process

and the dropout process of [29] is a Markov chain. However,

in these works, the relationship between the dropout rate

and the eigenvalues of the system matrix influences the per-

formance of the quantized system. The quantitative area of

the uniform quantizer is a rectangle. Using uniform quan-

tizer, Tian et al.[30] explored quantised stabilisation and

quantised H∞ control design for NCSs. The effects of both

network-induced delay and quantization levels were consid-

ered. The design was shown in terms of LMIs. For the

nonlinear system with quantization, Persis[31] turned out

that if the nonlinear system can be stabilised by “standard”

state feedback, then it can be stabilised by encoded state

feedback. In [32], considering data rate constraints, Persis

studied the problem of stabilisation of nonlinear systems

using output measurements, and an “embedded-observer”

decoder and a controller were designed to guarantee the ro-
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bust practical stability of the system. Yan et al.[33] consid-

ered the mean square stability based on the zoom strategy

and Lyapunov theory. Given a fixed packet dropout rate,

the sufficient condition for the stability of the closed-loop

system was given in the form of LMI. It is independent of

the eigenvalues of the system matrix. Moreover, the quan-

tizer is of arbitrarily shaped quantitative area. When the

dropout process is a Markov process for the given failure

rate and recovery rate, sufficient conditions were given for

the closed-loop fuzzy systems to be mean square stable,

and the feedback controllers were designed to ensure the

mean square stabilities of fuzzy systems[34]. Xia et al.[35]

explored the design and stability analysis of networked con-

trol systems with quantization and noise. Kalman filter

(KF) is used to obtain the estimated states and the quan-

tization regions of uniform quantizer were of rectangular

shapes. Based on Lyapunov theory and invariable set the-

ory, a sufficient condition for the stability of the closed-

loop system was given. Under the effect of the quantization

and the unknown disturbance, for the linear system, Sharon

and Liberzon[36] studied the input-to-state stability of the

closed-loop system. The proposed controller switches re-

peatedly between “zooming-out” and “zooming-in”. Two

modes to implement the “zooming-in” phases, which at-

tenuate an unknown disturbance while using the minimal

number of quantization regions, were designed.

Similar to logarithmic quantizer, the problem of stability

of nonlinear systems, especially for QIQM ones, which are

affected by uniform quantizer with zoom stagey, time-delay

and packet dropout, is the main and hard direction in the

future study. Moreover, the quantized value of zoom stagey

in each step is undertrained. Therefore, it may be the inter-

esting problem to combine the zoom stagey and logarithmic

quantizer to confirm each step quantized value to improve

the closed-loop system performance.

3 Filter and data fusion

Due to the complexity of the network, state estimation

has become a crucial and significant research field in NCSs.

In general, there are two kinds of approaches for state esti-

mation: filtering and data fusion. A filter is usually used to

estimate the states of the system with measurement noise.

Data fusion is the technique in which data from multiple

sensors and related information are combined to improve

accuracy. Mostly, many scholars use filter-based fusion to

get a more accurate state estimation. In the following, we

will discuss the filtering and data fusion in NCSs, respec-

tively.

3.1 Filtering

The filter is to estimate the states or a linear combi-

nation of them by using the measured system inputs and

outputs. KF was first proposed by Kalman[37] in 1960 and

it is mainly used for the linear systems. KF is a kind of

optimal filter and can be easily and properly implemented

by computer. Some modified KFs are proposed to improve

the performance of the system. For example, in order to re-

duce the number of measurements to be transmitted from

sensor to estimator, the design of transmission scheduler

and estimator for linear discrete-time stochastic systems

was considered[38]. However, NCSs are mostly nonlinear

systems. Filters, which are fit for nonlinear systems, are ex-

tremely desired. In general, there are two kinds of methods

when designing the filtering for nonlinear dynamic systems.

One is to linearize the nonlinear systems. The extended

Kalman filter (EKF) proposed by Sunahara and Bucy was

motivated by this thought. The other one is to adopt the

sample of nonlinear distribution. Typical filters are the par-

ticle filter and the unscented Kalman filter (UKF) based on

unscented transformation (UT). Considering the characters

of the NCSs such as the delay, the packet dropout and the

channel attenuation, the filtering for NCSs is researched by

many scholars. In the following, we will present the recent

research results of the filtering for linear systems and non-

linear systems, respectively.

3.1.1 Filtering for linear systems

Up to now, there are numerous filtering approaches for

linear systems. In general, the continuous-time linear sys-

tem is formulated as

ẋ(t) = Ac(t)x(t) + w(t)

z(t) = Cc(t)x(t) + v(t) (6)

and the discrete-time vision is

x(k + 1) = Ad(k)x(k) + w(k)

z(k) = Cd(k)x(k) + v(k) (7)

where x is the state, z is the measurement, Ac or Ad is the

system matrix, and Cc or Cd is the output matrix, w is the

process noise, and v is the measurement noise.

In the last few years, filtering with random packet

dropouts in NCSs was the focus of several research

studies[39−41]. As in [40], the H∞ filtering for NCSs with

the packet loss is of the following form

x̂(k + 1) = af x̂(k) + bfu(k) + cfy(k) (8)

ẑ(k) = Lf x̂(k) (9)

where x̂(k + 1) is the estimate of the state, u(k) is the

system input, y(k) is the output, ẑt is the estimated

signal, and af , bf , cf , Lf are the filter parameters to be

designed. A set of linear matrix inequalities is used

to solve the corresponding optimal filter design problem,

which is convex. Zhang et al.[41] studied the H∞ filter-

ing problem for networked discrete-time general multiple-

input-multiple-output (MIMO) system with random packet

losses. Each measurement loss process is described by a

two-state Markov chain. The desired filters with minimized

H∞ noise attenuation level bound is designed by solving a

convex optimization problem. The presented necessary and

sufficient condition describes a relation between the packet

loss probability and two parameters (the exponential decay

rate of the filtering error system and the H∞ noise attenu-

ation level), to make the system mean-square exponentially
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stable and achieve a prescribed H∞ noise attenuation per-

formance. Sinopoli et al.[42] considered the discrete-time

linear time-invariant system similar to (7) and designed the

modified KF with the random arrival:

x̂(k + 1|k) = Ax̂(k|k) (10)

P (k + 1|k) = AP (k|k)AT + Q (11)

x̂(k + 1|k + 1) = x̂(k + 1|k) + P (k + 1|k)CT×
(
CP (k + 1|k)CT + γ(k + 1)R +

(
1 − γ(k + 1)

)
×

σ2I
)−1

×
(
z(k + 1) − Cx̂(k + 1|k)

)
(12)

P (k + 1|k + 1) = P (k + 1|k) − P (k + 1|k)CT×
(
CP (k + 1|k)CT + γ(k + 1)R +

(
1 − γ(k + 1)

)

σ2I
)−1

× CP (k + 1|k) (13)

where Q and R are the covariance matrices of w and v,

γ(k) is the drop loss rate, σ2I is the variance of the obser-

vation if the packet is loss. And in addition to the special

instructions, T represents the transposition of a matrix in

the survey. Taking the limit as σ → ∞, the update equa-

tions can be obtained as

x̂(k + 1|k + 1) = x̂(k + 1|k) + γ(k + 1)×
K(k + 1)(z(k + 1) − Cx̂(k + 1|k)) (14)

P (k + 1|k + 1) = P (k + 1|k) − γ(k + 1)×
K(k + 1)CP (k + 1|k) (15)

where K(k + 1) = P (k + 1|k)CT(CP (k + 1|k)CT + R)−1 is

the filtering gain matrix and γk is a random binary variable

which represents that whether the observation arrives.

The state delay is another issue when designing the fil-

ter. He et al.[43] designed a new robust H∞ filter for a

class of networked systems with multiple state-delays. Cer-

tain LMIs, which depend on the occurrence probability of

both the random sensor delay and missing measurement,

are established to ensure the existence of the desired filters.

Hu and Yue[44] explored event-based H∞ filtering for net-

worked systems with communication delay. The sufficient

conditions for the exponential stability was given in terms

of LMIs.

Mostly, many other results considered both the packed

dropout and the state delay at the same time[42, 45−49] . In

[45], the adaptive filtering schemes were proposed for state

estimation in NCSs with mixed uncertainties of random

measurement delays, packet dropouts and missing measure-

ments. The filter gains can be obtained by solving a set of

recursive discrete-time Riccati equations. In [46], for linear

systems with both random delay and packet drop, Schen-

ato presented two alternative estimator architectures which

are more computationally efficient, and provided upper and

lower bounds for the performance of the time-varying esti-

mator. The stability of these estimators does not depend

on packet delay but only on the overall packet loss probabil-

ity. In [47], the problem of optimal filtering of discrete-time

systems with random sensor delay, multiple packet dropout

and uncertain observation was investigated. The stochastic

H2-norm of the estimation error was used as a criterion for

the filter design and the filter was designed by solving a

set of LMIs. Reference [48] is concerned with the filtering

problem for a class of discrete-time stochastic nonlinear net-

worked control systems with network-induced incomplete

measurements (the multiple random communication delays

and random packet losses). By using the LMI method and

delay-dependent technique, sufficient conditions are derived

for the exponentially mean-square stability of the filtering-

error dynamics. Shi and Fang[49] considered the problem

of parameter estimation and output estimation for systems

in a transmission control protocol (TCP). The input and

output missing data is modeled as two separate Bernoulli

processes characterised by probabilities of missing data, and

a recursive algorithm for parameter estimation by modify-

ing the KF-based algorithm is developed.

From the existing results above, we have that the fil-

tering problem is often formulated by probabilistic ap-

proaches based on the probabilities of the uncertainties oc-

curring between the sensor and the filter. However, a non-

probabilistic approach by time-stamping the measurement

packets was proposed in [50]. The optimal state estimator

was dependent on the possible control input and this ap-

proach was suitable for single-measurement packets, multi-

ple measurement packets, the case of burst arrivals (where

more than one packet may arrive between the receivers pre-

vious and current sampling times), and the scenario where

the control input is non-zero and subject to delays and

packet dropouts. Yue and Han[51] not only considered the

transmission delay and the packet dropout, but also stud-

ied the parameter uncertainty. The proposed criteria for

H∞ performance analysis of the filtering-error system are

expressed as a set of linear matrix inequalities. The fil-

ter design can be obtained by using convex optimization

method. Similarly, Xia and Han[52] also considered the sys-

tem uncertainty and gave the sufficient condition for the

design of the robust KF. Yang et al.[53] considered a delta

operator KF and applied it to an inverted pendulum model

in experiment. A new sufficient condition of convergence

analysis for the designed delta operator KF based on Lya-

punov functional was given. In [54], a data-driven subspace

identification method combined with the Kalman on-line

filtering algorithm was proposed to solve the state estima-

tion problem for a class of dynamical systems where the

exact models can not be established. In addition, consider-

ing constrained communication energy and bandwidth, an

event-based sensor data scheduler for linear systems was

designed in [55] and the corresponding minimum squared

error estimator was also derived.

In the following, we will introduce some filtering applica-

tions in nonlinear NCSs.

3.1.2 Filtering for nonlinear systems

For nonlinear systems, the stability analysis of nonlin-

ear filter with random packet dropouts remains open. Up

to now, the dropouts have been modeled as the Bernoulli



Y. Q. Xia et al. / Recent Progress in Networked Control Systems – A Survey 349

process[42] or a Markov chain[56]. In [57], the H∞ filter-

ing problem was investigated for a new class of discrete-

time networked nonlinear systems with both random delays

(discrete delays and infinite distributed delay) and packet

dropouts (Bernoulli distribution). Dong et al.[58] studied

the robust H∞ filtering problem for a class of uncertain

nonlinear networked systems with both multiple stochas-

tic time-varying communication delays and multiple packet

dropouts. This work aimed to design a linear full-order

filter such that the estimation error converged to zero ex-

ponentially in the mean square while the disturbance re-

jection attenuation was constrained to a given level by

means of the H∞ performance index. The communica-

tion delays were regarded as a sequence of random vari-

ables which are mutually independent and obey Bernoulli

distribution. The packet dropout phenomenon occurs with

a certain probabilistic distribution in the interval [0, 1]. The

EKF is the most popular approach to recursive nonlinear

estimation[59−61] . In some simulations, it overweighs other

sophisticated filters[61]. However, a large linearization er-

ror, the derivation of Jacobian matrices and limitation of

Gaussian noise are three well-known drawbacks of the EKF.

When the systems are strongly nonlinear and the noise is

non-Gaussian, desired performance characteristics may not

be obtained. In these cases, the particle filtering (PF) meth-

ods proposed by Gorden in 1993 based on Monte Carlo

simulation are available[62] . Recently, the PF has been ex-

tensively used in the fields of simultaneous localization and

mapping (SLAM) for robots[63] and visual tracking[64]. In

[65], a continuous-discrete version of particle filter (CD-PF)

for continuous-discrete nonlinear systems was proposed and

some comparisons between CD-PF and CD-EKF were pre-

sented.

UKF is also a filtering method used for nonlinear sys-

tems. Kluge et al.[66] analyzed the error behavior of the

EKF, and models the arrival of the observation as a random

process and a maximum dropout interval. Li and Xia[67] ex-

tended the idea of [66] to the case of UKF, and presents an

analysis of UKF for general nonlinear stochastic systems

with intermittent observations. Under independent identi-

cal distribution packet dropouts, stability of the estimator

may be analyzed by a modified discrete-time Riccati recur-

sion effectively[66, 67]. In contrast, this approach is not fea-

sible for the Markovian packet dropouts model any more

since the channel is described by several independent pa-

rameters, and the stability analysis faces more challenging.

Next, we will give the detailed descriptions of some results

about UKF.

Consider the discrete nonlinear system which is formu-

lated as

xk+1 = f(xk, uk) + wk (16)

zk+1 = h(xk+1) + vk+1 (17)

where k ∈ N is the discrete time, and N = {0, 1, · · · }.
xk ∈ Rn is the state, uk ∈ Rm is the control input, and

zk ∈ Rq is the measured output. The nonlinear functions

f and h are continuously differentiable. wk ∈ Rw and

vk ∈ Rv are the process and the measurement noise signal,

respectively, which are assumed to be uncorrelated zero-

mean Gaussian white noise processes. E(wlw
T
k ) = Qkδkj

and E(vlv
T
k ) = Rkδkj . Qk and Rk are positive matrices. x0

is uncorrelated with wk and vk.

Case 1. The packet dropout is modeled as a Bernoulli

process with parameter γ ∈ [0, 1].

Define a binary stochastic variable γk as

γk =

{
1, a measurement arrives after the k-th step

0, otherwise

and denote the variance of the output noise at time k as

Rk if γk = 1, and σ2I if γk = 0 for some σ2. Sinpoli et

al.[42] pointed out that the absence of an observation corre-

sponds to the limiting case of σ → ∞. The modified UKF

is described as[67]:

Step 1. Select sigma points. Assume that xk has mean

xk and covariance P k.

χ0,k = x̄k (18)

χi,k = x̄k + (a
√

nP̄k)i, i = 1, · · · , n (19)

χi,k = x̄k − (a
√

nP̄k)i, i = n + 1, · · · , 2n (20)

where a is a proportion parameter and (
√

nP̄k)i is the vec-

tor of the i-th column of the matrix square root.

Step 2. Prediction.

χi,k+1|k = f(χi,k), i = 1, · · · , 2n (21)

x̂k+1|k =
2n∑

i=0

�iχi,k+1|k (22)

P̂k+1|k =

2n∑

i=0

�iχ̃i,k+1|kχ̃T
i,k+1|k + Qk (23)

where χ̃i,k+1|k = χi,k+1|k − x̂k+1|k, �0 = 1− 1
a2 , �i = 1

2na2

(i = 1, · · · , 2n), and
∑2n

i=0 �i = 1.

Step 3. Update.

zi,k+1|k = h(χi,k+1|k), i = 0, 1, · · · , 2n (24)

ẑk+1|k =
2n∑

i=0

�iẑi,k+1|k (25)

P̂zz,k+1|k =
2n∑

i=0

z̃i,k+1|kz̃T
i,k+1|k + γk+1Rk+1+

(1 − γk+1)σ
2I (26)

P̂xz,k+1|k =

2n∑

i=0

χ̃i,k+1|kz̃T
i,k+1|k (27)

x̂k+1 = x̂k+1|k + P̂xz,k+1|kP̂−1
zz,k+1|k(zk+1|k − ẑk+1|k) (28)

P̂k+1 = P̂k+1|k − P̂xz,k+1|kP̂−1
zz,k+1|kP̂T

xz,k+1|k (29)
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where z̃i,k+1|k = zi,k+1|k − ẑi,k+1|k. As σ → ∞,

x̂k+1 = x̂k+1|k + γk+1Kk+1(zk+1|k − ẑk+1|k) (30)

P̂k+1 = P̂k+1|k − γk+1Kk+1P̂
T
xz,k+1|k (31)

Kk+1 = P̂xz,k+1|k[
2n∑

i=0

z̃i,k+1|kz̃T
i,k+1|k + Rk+1]

−1. (32)

Step 4. Repeat Steps 1–3 for the next sample.

From Theorem 1 in [67], the boundedness of the estima-

tion error for UKF is obtained as follows:

Theorem 1[67]. If the following conditions hold:

1) there exist real positive constants f, h, β, α, ᾱ, q,

q̄, q∗, ¯̂q, r̄, r∗, p, p, for every k > 0, such that

f2I ≤ FkFT
k , h2 ≤ HkHT

k , βI ≤ βk (33)

α ≤ αk ≤ ᾱI, qI ≤ Qk ≤ q̄I, q∗I ≤ Q∗
k (34)

Rk ≤ r̄I, r∗ ≤ R∗
k, pI ≤ P̂k ≤ p̄I (35)

2) there exist real positive constants f̄ , φ̄, h̄, β̄ such that

‖γkFk‖ ≤ f̄ , ‖φk‖ ≤ φ̄ (36)

‖γkHk‖ ≤ h̄, ‖βk‖ ≤ β̄ (37)

then the estimation error is exponentially bounded in mean

square and bounded with probability 1.

In addition, the error covariance matrices are also

bounded for the modified UKF.

Theorem 2[67]. Assume that the linearized dynamic sat-

isfies a modified uniform observability condition as in [66],

and that the following conditions hold:

1) P̂1|0 > 0 and H−1
k exists and satisfies ‖H−1

k ‖ ≤ h−1

2) there exists real positive constants h, β, r̄∗, φ̄, for

every k > 0, such that

h2I ≤ HkHT
k , βI ≤ βk, R∗

k ≤ r̄∗I

Qk ≤ q̄I, ‖φk‖ ≤ φ̄.

If 1 > γ > ᾱ2f̄2−1
ᾱ2f̄2φ̄2 , then there exists a upper boundedness

p̄ > 0 such that E(P̂k+1) ≤ p̄I .

Case 2. The packet dropout is modeled as a Markov

chain with a transition probability matrix as

Π = (P{γk+1 = j|γk = i})i,j∈{0,1} =

[
1 − q q

p 1 − p

]

where γk = 1 represents that the packet has been suc-

cessfully transmitted to the filter, otherwise γk = 0, and

0 < p, q < 1.

Li and Xia[68] considered the nonlinear system (16) with

linear observation as

zk = Hkxk + vk. (38)

The modified UKF in [68] is similar to [67], in which

the packet dropout is a Bernoulli process. Due to the lin-

ear observation equation, P̂zz,k+1 = Hk+1P̂k+1|kHT
k+1 +

γk+1Rk+1 + (1 − γk+1)σ
2I and as σ → ∞, Kk+1 =

P̂xa,k+1[Hk+1P̂k+1|kHT
k+1 +Rk+1]. The boundedness of the

estimation error and the boundedness of the estimation er-

ror covariance matrices were obtained in [68].

Under some conditions (see Assumption 1 in [68]), the

mean of the estimation error E(‖x̃k‖2) is bounded by

ηE(‖x̃0‖2)(1 − λ)n + ν, where η, ν > 0.

Under the condition that (Fk, Hk) is uniform observable,

the stability in stopping times and the sampling times is

given respectively as

1) Stability in stopping times: If the recovery rate q sat-

isfies that ᾱ2f̄2(1−q) < 1, then supk∈N E[‖P̂τk |τk−1‖] < ∞.

2) Stability in sampling times: If the conditions ᾱ2f̄2 +

σ̄ᾱ2f̄2 + 2σ̄h̄2ḡ2 < 1 and P1|0 > 0 are satisfied, then

supk∈N E[‖P̂k|k−1‖] < ∞.

The details can be referred to Theorems 1 and 2 in [68].

In fact, there exist fruitful results about filtering for the

general system. When network is adopted as the communi-

cation medium, the previous filtering methods are improved

to deal with the network-induced problems, such as delay,

packet loss, etc. In the future, in the filter design process,

more practical factors, such as bandwidth, network load

and sensor saturation, should be taken into consideration.

3.2 Data fusion

Data fusion is a broad research area, which includes de-

tection fusion, image fusion, data association, estimation

fusion, etc. In this section, data fusion mainly refers to

estimation fusion. In addition to the filtering, estima-

tion fusion is another important approach to estimation.

In general, filtering often deals with the data from sin-

gle sensor. In contrarily, estimation fusion is the estima-

tion which involves multi-sensor data. Multi-sensor data

fusion has been one of the key technologies of networked

control systems, which have been served as an interesting

benchmark in the past decades. The aim of multi-sensor

data fusion is to increase the accuracy of the estimation.

It has been applied to both military field and nonmilitary

field. Military applications include automated target recog-

nition, guidance for autonomous vehicles, remote sensing,

battlefield surveillance, and automated threat-recognition

systems, such as identification-friend-foe-neutral systems.

Nonmilitary applications include monitoring of manufac-

turing processes, condition-based maintenance of complex

machinery, robotics, and medical applications.

Multi-sensor data fusions can be divided into three cate-

gories:

1) Centralized data fusion. It is also called measure-

ment fusion. All the measurements from different sensors

are transmitted to the fusion center and dealt within the

fusion center. Due to the full involvement of all the mea-

surements, this method is optimal. The drawback is strin-

gent requirements for bandwidth of the channels, enormous

energy consumption and processor with high performance

in the fusion center.

2) Distributed data fusion. It is also called state fu-

sion. After locally preprocessing the measurement of each

sensor, the results are sent to the fusion center. This

method not only decreases the demand for the channel, but
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also has a strong fault tolerance ability.

3) Hybrid data fusion. This method is the combina-

tion of the centralized data fusion and the distributed data

fusion. However, the communication cost and the compu-

tation cost are high.

In the following, we will mainly present the recent results

of the centralized data fusion and the distributed data fu-

sion, respectively. Sequently, considering the unreliability

of the network, data fusion in NCSs is also introduced in

the end of this subsection.

3.2.1 Centralized data fusion

The early results about centralized data fusion were rel-

atively simple. Singer and Kanyuck[69] firstly studied the

problem of the multi-sensor state estimation. However, it

was assumed that the estimation error of each sensor is mu-

tually independent. Willner et al.[70] proposed a centralized

multi-sensor KF algorithm. Afterwards, in general, more

scholars studied the systems in which the noise of each sen-

sor is correlated. The centralized information integration

architecture proposed in [71] is based on the output aug-

mented fusion method. The usual approach in the classical

EKF implementation is based on the assumption of con-

stant diagonal matrices for both process and measurement

covariances. A new adaptive modified EKF (AMEKF) al-

gorithm has been developed to prevent the filter divergence.

The centralized data fusion has been widely applied.

Munz et al.[72] constructed a multi-sensor fusion system

which was implemented to be independent of both sensor

hardware properties and application requirements in the

driver assistance system. This supports changes in sensor

combination or application requirements. Moreover, the en-

vironmental model can be used at the same time. A prob-

abilistic approach for this generic centralized fusion system

was presented and discussed. In [73], a centralized fusion

scheme was adopted for obstacle and road tracking. A KF

based curvilinear model predicted drivers′ behavior and the

system was able to assess the level of threat for all moving

obstacles and decide the warning policy. The proposed ap-

proach has been tested with real data to show the perfor-

mance of the tracking system.

3.2.2 Distributed data fusion

As we know, the centralized data fusion usually has the

optimal performance for making most of all the informa-

tion. Relatively, the distributed algorithm sacrifices the

optimal performance to increase the flexibility and decrease

the communication cost. If the distributed data fusion is

said to be optimal, compared to the centralized data fu-

sion, it often has the approximate optimal performance

under some assumptions or conditions. For early results

about distributed data fusion, please refer to [74–77]. Bar-

Shalom[78] proposed that there exits the same process noise

in the dynamic of different sensors. Thus, the estimation

of each sensor is mutually dependent. Based on this, Bar-

Shalom[78] presented a distributed state fusion algorithm

and discussed the influence of process noise on the vari-

ance of the estimation error. Grime et al.[79] considered

that there is no central fusion center and no single sensor

node which can obtain global knowledge of network and

designed a decentralized data fusion scheme with the in-

formation of each′s nearest communication neighbor. For

the past decade, distributed data fusion has attracted con-

siderable attention. In [80], an architectural framework of

distributed data fusion was developed and it consisted of a

data fusion application programming interface (API) and

a distributed algorithm for energy-aware role assignment.

Mahmoud and Xia[81] studied the distributed filtering and

fusion in the wireless sensor network. In [82], support vector

machines were used to compress the probabilistic informa-

tion available in the form of independent identical distribu-

tion samples and to solve the Bayesian data fusion problem.

Distributed data fusion has also been applied to many

fields. Regazzoni and Tesei[83] described an approach to

estimating the number of pedestrians present in a real-life

complex scene by processing a sequence of images. The pro-

posed estimation approach exploits temporal information

by means of a distributed KF network. In [84], distributed

estimation algorithms based on the information graph were

presented for arbitrary fusion architectures and related to

linear and nonlinear distributed estimation results and the

proposed approaches were applied to tracking.

3.2.3 Data fusion in NCSs

Due to the existence of the network-induced delay, the

packet dropout and other characteristics in the network,

the traditional data fusion techniques are not proper and

some new data fusion approaches for NCSs were studied.

In the following, we will introduce some advances for the

unreliable networks.

Besada-Protas et al.[85] proposed a set of new central-

ized algorithms for estimating the state of linear dynamic

multiple-input multiple-output control systems with asyn-

chronous, non-systematically delayed and corrupted mea-

surements provided by a set of sensors. A streamlined

memory and computational efficient reorganization of the

basic operations of the Kalman and information filters (KF

& IF) were designed. In [86], the optimal distributed fu-

sion update algorithm with multiple local asynchronous

(1-step-lag) out-of-sequence-measurement (OOSM) update

was firstly deduced, which was proved, under some regular-

ity conditions, to be equivalent to the corresponding opti-

mal centralized update algorithm with all-sensor 1-step-lag

OOSMs. Reference [87] was concerned with the distributed

KF problem for a class of networked multi-sensor fusion

systems (NMFSs) with missing sensor measurements, ran-

dom transmission delays and packet dropouts. An optimal

distributed fusion KF (DFKF) was designed based on the

optimal fusion criterion weighted by matrices. In [88], a

new networked multi-sensor data fusion method which was

based on federated filter is proposed.

In [89], a networked data-fusion approach with packet

losses and variable delays was considered and a federated fil-

ter was employed to fuse the data transmitted over the net-

work, which plays an important role in the data-processing

center. The federated filters are of peak covariance stabil-

ity if the delayed data is processed by the proposed algo-
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rithm. Zhu et al.[90] proposed a centralized architecture

and a distributed architecture with buffer for the problem

of networked data. A modified KF was adopted to estimate

the state with measurement delay and loss. In [91], a cen-

tralised data fusion approach was presented for the system,

in which the measurements of the local sensors are time-

stamped, and then transmitted through the network to the

fusion centre. A buffer was designed to deal with the mea-

surement delay or loss. A probabilistic metric to evaluate

the performance of the system was employed.

Multi-rate framework has caused the interests of many

scholars because of the decrease of the communication

cost. Fig. 4 shows an example of multiple sampling rates.

Zhang et al.[92] presented a distributed fusion estimation

method for estimating states of a dynamical process ob-

served by wireless sensor networks (WSNs) with random

packet losses. It was assumed that the dynamical process is

not changing too rapidly, and a multi-rate scheme by which

the sensors estimate states at a faster time scale and ex-

change information with neighbors at a slower time scale

is proposed to reduce communication costs. Liang et al.[93]

presented a multi-rate filtering problem for a class of net-

worked multi-sensor fusion systems with packet dropouts.

Different from the single-rate estimator design with packet

dropouts which are treated as stochastic parameters, an un-

known input observer was proposed, where packet dropouts

are represented as zero-mean white input noises of the lin-

ear time-variant estimation error system. Yan et al.[94] con-

sidered the state estimation for a kind of nonlinear multi-

rate multisensor asynchronous sampling dynamic system.

N sensors observed a single target independently at multi-

ple sampling rates, and the dynamic system was formulated

at the highest sampling rate. The multiscale system the-

ory and the modified sigma point KF were used to design

the fusion method. Measurements randomly missing with

Bernoulli distribution could also be allowed in [94].

Fig. 4 An example of multiple sampling rate

There are also some significant results which are con-

cerned with the communication constraints and energy

consumption. In [95], the realistic sensing/reporting chan-

nels and the correlated log-normal shadow-fading in all

wireless links of the cooperative network were considered.

It was shown that shadowing correlation on the report-

ing channel can yield performance degradations similar to

the shadowing correlation on the sensing channel. In [96],

the problem of optimal state estimation was concerned

for linear systems when the noises of different sensors

were cross-correlated and also coupled with the system

noise of the previous step. Bian et al.[97] considered the

medium access constraint. By introducing a stochastic

process, a new model was developed that can truly reflect

this contradiction (the number of transmitted sensors and

delay steps). The upper bounds of the expected estima-

tion error covariance and estimation error covariance with

one-step delay are E
(
[Pt|t−1]

)
≤ N̄Pr and Pt|t−1 < M̄ ,

respectively, where N̄Pr = A(CT
1 R−1

1 C1)
−1AT + Q and

M̄ = A(CT
0 R−1

0 C0)
−1AT + Q. In [98], energy efficient

state estimation was considered. The packet loss proba-

bility depended upon time-varying channel gains, packet

lengths and transmitted power of sensors. The sufficient

conditions, imposing constraint on the packet loss prob-

ability of each channel were established by taking into

account each observable subsystem structure to guaran-

tee that the expectation of the trace of estimation error

covariance matrices is exponentially bounded, and the up-

per bound is E(tr(Pt|t)) ≤ 1
S

σ2
max(B

−1
o )

∑S
i=1[ρ

t
itr(P

i
0|0) +

ηi
ρi

], where Bo = col(B1
o , B1

o , · · · , BS
o ), ηi =

tr(Ai
o(C

i
o)

−1Ri(Ci
o)

′−1(Ai
o)

′)Pro(γi
t = 1) + tr(Bi

oQ(Bi
o)

′),
ρi = (1−Pro(γi

t = 1))αi, αi = σ2
max(A

i
o) for i = 1, 2, · · · , S,

Bi
o and Ai

o are the matrices related to the sensors, Q and

Ri are the covariance matrices, σmax is the largest singular

value and γt is the transmission outcome of the sensor.

Up to now, filtering for NCSs with single channels has

been researched widely. However, data fusion is still a novel

research branch. The existing approaches mainly involve

the linear systems, in which some priori statistical charac-

teristics of measurement are given and mostly the distur-

bances in different sensors are assumed to be uncorrelated.

In the future, the optimal fusion method for nonlinear sys-

tem needs to be designed in the presence of parameter un-

certainty. Moreover, the correlation between the distur-

bances should also be taken into account.

4 Fault diagnosis of NCSs

In this section, we mainly summarize the progress on

fault diagnosis of NCSs. Essentially, fault diagnosis is the

process in which the available information in the diagno-

sis system is processed to generate the running state and

the fault condition of the system. Different from the tradi-

tional fault diagnosis, the fault diagnosis of NCSs has the

following characters:

1) Because the data transmitting in the network channel

is digital quantity, the model of the system is of the discrete

form.

2) The transmission delay of the system is non-ignorable.

3) Since there are different node drive forms and different

data transmission methods in the network, the correspond-

ing models of the system have different forms.

4) The model of the controlled object is always nonlinear.

5) The packet dropout in NCSs brings a negative effect

to the fault diagnosis.
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Some recent progress about fault diagnosis will be shown

in the following. For the fault diagnosis system, two neg-

ative factors need to be considered: the uncertainty or

the disturbance and the known input induced by the de-

lay. In [99], the influence of network-induced delay on con-

ventional observer based fault detection systems was first

investigated. However, this method cannot meet the re-

quirements for effective residual information. To solve this

problem, Zhang et al.[100] presented that if the unknown

network-induced delay is less than the sampling period, an

NCS with disturbance and fault can be regarded as the NCS

without delay. Moreover, the effect of the network-induced

delay can be seen as an unknown input. The fault diagno-

sis system was robust to this input. In [101], a relationship

between the parity relation and the H2 optimal residual

generators was established, and the optimal parity vector

H2 converged to the H2-optimal post-filter with s → ∞.

The effect of the unknown input was decreased. When the

delay is larger than the sampling period, the traditional

method is not effective. For this problem, in [102], the prob-

lem of robust fault estimation for a class of uncertain NCSs

with random communication network-induced delays was

investigated. Based on the Lyapunov-Razumikhin method,

Huang and Nguang[102] gave a delay-dependent fault esti-

mator in terms of the solvability of bilinear matrix inequal-

ities (BMIs) and proposed an iterative algorithm to change

this non-convex BMI problem into quasi-convex optimiza-

tion problems. In this work, delay was not required to be

less than the sampling period, but bounded.

In order to rationally utilize network resources and re-

duce the network congestion and delay, Xie et al.[103] con-

structed a simple information-scheduling scheme to describe

the scheduling approach of system signals in NCSs. For the

sake of the optimization, the scheme made the NCSs share

the network resource periodically. Considering the short

delay in the network, Ye et al.[99, 101, 104−106] utilized the

state estimation and the observer theory to reduce the ef-

fect of the delay. A lowpass filter and the Cayley-Hamilton

based approach were proposed in these works. Huo and

Fang[107−110] studied the fault diagnosis systems with ran-

dom delays and communication constraints. In addition, for

the NCSs with large delay, Fang et al.[111−113] used quasi

Takagi-Sugeno fuzzy model to design the fault diagnosis ap-

proach. These works not only considered the influence of

the network-induced delay, but also investigated the effect

of the packet loss. Furthermore, Mao et al.[114] studied the

problem of protocol and fault detection for nonlinear NCSs.

In addition, Liu et al.[115] researched the fault detec-

tion of linear systems over networks with bounded packet

loss. The packet loss process is assumed to be arbitrary

or Markovian. For a bounded packet loss rate, a switched

system was constructed to be the monitored system by re-

sampling it at each time instant when the measurements

arrive at the fault detection node. This work designed a fil-

ter for the switched system, which updates only at the time

instant when new measurements arrived at the fault detec-

tion node. Similarly, the input data packets′ lost were con-

sidered as external disturbances. In [116], fault detection

for Takagi-Sugeno fuzzy discrete systems in finite-frequency

domain was studied. Faults were considered in a middle

frequency domain, while disturbances were considered in

another certain finite-frequency domain interval. The filter

design was formulated as a two-objective optimization al-

gorithm. Liu and Xia[117] presented a fault detection and

compensation scheme based on likelihood ratios (LRs) for

networked predictive control systems with random network-

induced time delays and clock asynchronism. The compen-

sator eliminated the effect of the random delay. In order

to reduce the influence of the asynchronism, the observer

updated based on the time schedule of a remote node clock.

Two frameworks were designed to update the LRs of fault.

The convergence analysis of a generalized LR test with in-

termittent observations was given. Xia and Liu[118] con-

sidered the detection of abrupt changes for MIMO linear

systems based on frequency domain data. The measured

inputs and outputs were maped from the time domain to

the frequency domain by using the real discrete-time Fourier

transform. The latent state change was modeled as an ini-

tial state disturbance to be estimated on the basis of fre-

quency domain samples. In this work, the occurrence time

was estimated by maximizing a likelihood ratio function.

In [119], the detection of abrupt change was used in elec-

trocardiogram. An linear time varying (LTV) model with

Gaussian white noise was used to describe the real electro-

cardiogram signal. Based on the estimated system param-

eters and tuned covariances of noise, the generalized like-

lihood ratio (GLR) tests for electrocardiogram signal were

developed for abrupt change detection.

To sum up, there are relatively fewer results for fault

diagnosis of nonlinear NCSs. How to extend the achieve-

ments for linear systems to nonlinear systems, especially

considering the network-induced delay and the uncertainty

simultaneously, is still a difficulty at the current stage. In

addition, the affects of network protocol for the fault diag-

nosis should also be emphasized in the future.

5 Networked predictive control

Due to the existence of the network, the traditional con-

trol strategies are not suitable for the novel networked

control systems. Numerous control approaches for NCSs

have attracted the interests of the researchers. These ap-

proaches aim to deal with the time delay and the packet

dropout. Chou and Tipsuwan[120] divided the recent net-

worked control techniques into five classes (augmented de-

terministic discrete-time model method, queuing method,

optimal stochastic control method, perturbation method

and sampling time scheduling method). In the following,

we will present the main results about networked predic-

tive control (NPC). First, MPC for NCSs is summarized

and the framework to deal with delay and dropout using

MPC is constructed. Then, the predictor, based on a se-

quence of past measurements, is called data package based

predictor here. The corresponding predictive method is
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called data package based predictive control and the re-

sults of this method are shown. Thirdly, when the sys-

tem is extremely complex, the model of the system cannot

be obtained. What can be used are only the input and

output. Consequently, the data-driven predictive control is

proposed. Up to now, there are few achievements about this

aspect. The main idea is presented in this survey. With the

increase of the complexity of the task, distributed coopera-

tive control for NCSs is studied and a considerable number

of distributed control techniques were studied in the past

years. Due to the space limit, in the end of this section,

we only discuss some important results of the distributed

predictive control for NCSs.

5.1 Model predictive control for NCSs

MPC, which is also called receding horizon control

(RHC), is a form of control in which the current control

action is obtained by solving on-line, at each sampling in-

stant, a finite horizon open-loop optimal control problem,

using the current state of the plant as the initial state. The

optimization yields an optimal control sequence and the

first control in this sequence is applied to the plant[121].

For the past decades, it has gained notable attention in

control of dynamic systems and has played an important

role in control practice. One of the significant advantages

for MPC is the capability of handling the constraints. Due

to the existence of the constraints, the traditional determi-

nate controller may result in constraint violations. How-

ever, in the MPC framework, the constraints are regarded

as one part of the optimization problem and can be handled

properly. Another merit of MPC is the optimality of the

solution in some meaning. The objective function of MPC

often represents the cost of the state, the control input and

other items with different senses. In most cases, the analyt-

ical solution cannot be provided and only the local optimal

numerical solution can be gained.

Consider a nonlinear discrete-time system

x(k + 1) = f
(
x(k), u(k)

)
. (39)

MPC can be formulated as

J∗(k, x∗, u∗) = min
u(·|k)

J(k, x, u) (40)

with

J(k, x, u) =

N−1∑

l=0

(
L(x(k + l|k), u(k + l|k))

)
+

F
(
x(k + N |k)

)
(41)

subject to

x(k|k) = x(k)

for all l = 0, · · · , N − 1

x(k + l + 1|k) = f
(
x(k + l|k), u(x + l|k)

)

x(k + l|k) ∈ X

u(k + l|k) ∈ U

x(k + N |k) ∈ Ω

where X is admissible state set, U is the admissible control

set and Ω is the terminal set.

In general, the cost function has a quadric form, i.e.,

L(x(k + l|k), u(k + l|k)) = ‖x(k + 1|k)‖2
Q + ‖u(k + l|k)‖2

R

and F (x(k + N |k)) = ‖x(k + N |k)‖2
P . In order to ensure

the stability and the feasibility, Q, R and P need to satisfy

some conditions. More details about them can be found in

[121, 122].

For NCSs, MPC has been used as a significant tool to deal

with the negative effect which the delay and the dropout in-

duce. In the following, we will summarize MPC for NCSs

without constraints and with constraints, respectively.

When only considering the delay and the dropout, many

works about MPC can be found. Irwin et al.[123] presented a

co-design approach to wireless network control systems and

Lyapunov stability was derived using LMIs for the multi-

observer linear quadratic (LQ) control. Liu et al.[124] pro-

posed a modified MPC, which uses the future control se-

quence to compensate for the forward communication time

delay, to deal with networked control systems with ran-

dom communication time delay. For both fixed and ran-

dom communication time delays, if there exists P such that

ΛT(τ )PΛ(τ ) < P where Λ(τ ) is the closed-loop system

matrix, the closed-loop is stable. In [125], the predictive

control and the integral control were used to compensate

for the network link effects and eliminate the tracking er-

ror. Zhao et al.[126, 127] designed an improved predictive

controller using delayed sensing data and proposed a com-

pensation scheme to overcome the negative effects of the

network-induced delays and data packet dropouts in both

forward and backward channels.

In addition, some achievements for NCSs with con-

straints can be found. In [128], the input and the out-

put were constrained by the nonlinear formulations. MPC

based on the mixed-integer programming was used to de-

rive the controller. It turned out that the controller design

was feasible due to the special nature of the data transmis-

sion strategy, only a small number of logic values was in-

volved. In order to minimize bandwidth utilization, Good-

win et al.[129] imposed a communication constraint which

restricted all transmitted data to belong to a finite set and

only permited one plant to be addressed at a time. The

moving horizon approach was used to deal with both con-

trol and measurement quantization issues. Varutti et al.[130]

proposed an event-based model predictive control approach

to nonlinear continuous time systems under state and in-

put constraints. The method can counteract bounded de-

lays, information losses, as well as deal with event trigger-

ing due to sensors and actuators. Quevedo and Nešić[131]
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studied an MPC scheme in which packets containing opti-

mizing sequences of control inputs were sent over an unre-

liable communication network with packet loss. MPC for

nonlinear systems subject to packet losses was proposed

in [132]. The proposed controller allowed for an explicit

characterization of the stability region and it turned out

that this region was an invariant set for the closed-loop

system with packet losses. In [133], a robust MPC with

a network delay compensation strategy was proposed for

uncertain discrete-time constrained nonlinear systems with

time-varying transmission delays and packet dropouts. Xia

et al.[134] considered robust constrained MPC of systems

with polytopic uncertainties. Sufficient conditions for the

existence of parameter-dependent Lyapunov functions were

proposed in terms of LMIs, which would reduce the con-

servativeness resulted from using a single Lyapunov func-

tion. The combination of event-triggering control and MPC

was also used for NCSs[135−138] . A novel event-triggered

strategies was proposed in [137] for the control of uncertain

nonlinear systems with additive disturbances under robust

MPC. The main function of the event-triggered scheme was

to trigger the solution of the optimal control problem of the

robust MPC.

Other results can be found in [139−152].

5.2 Data package based predictive control
for NCSs

The fundamental idea and the basic framework of the

data package based predictive control will be shown firstly.

The discrete dynamic system is considered as

x(k + 1) = f
(
x(k), u(k), w(k)

)
(42)

y(k) = g
(
x(k), u(k), v(k)

)
(43)

where x(k) is the system state, u(k) is the system input,

y(k) is the system output, f(·) and g(·) are the system equa-

tions, which can be linear or nonlinear, w(k) is the unknown

process disturbance, and v(k) is the unknown measurement

noise.

Package based predictive control has been proved to be

an effective method for networked control systems with

network-induced time delay and data dropouts[153, 154]. The

framework of package based predictive control system is

shown in Fig. 5. It′s worth noting that, in order to satisfy

that the measurements are processed in sequence, a buffer

is set at the controller node. The estimated states and pre-

dictive states can be obtained by using KKF:

x̂(k|k) = KF
(
S, û(k − 1|k − 1), y(k)

)
(44)

x̂(k + i|k) = KF
(
S, û(k|k), y(k)

)
, i = 1, 2, · · · , N1 (45)

û(k + i|k) = K(k + i)x̂(k + i|k), i = 1, 2, · · · , N1 (46)

Fig. 5 Date packing based predictive control for NCSs

where N1 is the finite KF gain[154]. The processed states

are then sent to the controller node.

In general, there inevitably exist the unknown network

transmission delays in both the forward (from controller

to actuator) channel (CAC) and feedback (from sensor to

controller) channel (SCC). A networked predictive control

scheme mainly consists of the control prediction generator

and the network delay compensator. The former is designed

here to generate a set of future control predictions, while

the later is used to compensate for the unknown random

network delays. If the network can transmit a set of data

at the same time, it is assumed that a predictive control

sequence at time k is packed and then sent to the plant side

through a network. In the compensator node, the latest

control value from these control sequences will be chosen

on the plant side.

For example, when the time delays in SCC and in CAC

are respectively 0 and ki, given that the following control

predictive sequences are received on the plant side:

[uT
t−k1|t−k1 , uT

t−k1+1|t−k1 , · · · , uT
t|t−k1 , · · · , uT

t+N−k1|t−k1 ]
T

[uT
t−k2|t−k2 , uT

t−k2+1|t−k2 , · · · , uT
t|t−k2 , · · · , uT

t+N−k2|t−k2 ]
T

· · ·
[uT

t−kt|t−kt
, uT

t−kt+1|t−kt
, · · · , uT

t|t−kt
, · · · , uT

t+N−kt|t−kt
]T

(47)

where the control sequences ut|t−ki
, i = 1, 2, · · · , t, are

available to be chosen as the control input of the plant at

time t. The output of the network delay compensator, i.e.,

the input of the actuator will be

ut = ut|t−min{k1,k2,··· ,kt}. (48)

In fact, by using the networked predictive control scheme

presented in this section, the control performance of the

closed-loop system with network delay is very similar to

that of the closed-loop system without network delay.

Next, we will show some results about package based pre-

dictive control[155−171] . Xia et al.[155] studied the stochastic

stability analysis of networked control systems with random



356 International Journal of Automation and Computing 12(4), August 2015

network delay. A scheme, including control prediction gen-

erator and network-delay compensator, was proposed. The

control prediction generator, which makes the closed-loop

system achieve the desired control performance, was used to

generate a set of future control predictions and the network-

delay compensator removed the effects of the network trans-

mission delay and data dropout. In [161], random network

delay in the feedback channel was considered and stabil-

ity criteria of closed-loop networked predictive control sys-

tems was given. Liu et al.[167] considered both constant and

random network delays in the forward and feedback chan-

nels. A networked predictive control scheme was proposed

to overcome the effects of network delay and data dropout.

The necessary and sufficient conditions for the stability of

closed-loop NCS with constant time delay were given. Xia

et al.[170] proposed the switched system′s method, which

solves the stochastic problem in a deterministic way.

5.3 Data-driven predictive control for
NCSs

According to traditional control design frameworks, con-

trol and monitoring need support from dynamic models.

In general, the state or the output measurements from the

plant are the most significant elements to build the system

model. When finishing the design of a controller or a mon-

itor, the model will no longer exist. However, while using

models in this framework, the modeling error and the com-

plexity in building the model cannot be neglected. Specif-

ically, with Internet of things (IOT), big data needs to be

processed urgently. And inevitably, the complexity of the

traditional control frameworks will continue to increase. To

address these issues, the data-driven scheme was developed,

which has been applied in the industrial process control field

as well as in complex systems. Further more, if the digital

data flows through the network, which connects the con-

troller and the actuator, then the data-driven method is

proper for NCSs, especially when the system model is hard

to build.

In the following, the notions of data-driven predictive

networked control system are introduced. The typical struc-

ture of data-driven predictive networked control system is

shown in Fig. 6. In such a control system, the predictive

control signals are generated by the subspace projection

method. And data-driven predictive networked control sys-

tems and data package based predictive control systems dif-

fer only in the controller. In data-driven networked control

systems, when the past input and past output from the

sensors are transmitted to the controller, the data-driven

predictive control algorithm will be used to generate a se-

quence of predictive control inputs. And then those control

sequences will be transmitted to a buffer at the actuator

site over the network. At last, according to the predic-

tive networked control scheme described in (47) and (48),

the compensator will select the proper control input. From

the description above, the data driven networked control

scheme can be obtained directly without any model. And,

it is obvious that this framework is different from the data

package based predictive method in [155].

Fig. 6 Data driven predictive control for NCSs

Up to now, there are some improvements of data-driven

predictive control[172−175] . Lauŕı et al.[173] proposed model-

based predictive control methodology in the space of the

latent variables for continuous processes. Xia et al.[175]

proposed data-driven predictive control for networked con-

trol systems, which was designed by applying the sub-

space matrices technique and obtained directly from the

input/output data transferred from networks. Implement-

ing identification and control in the latent variable space is

easier than in the case of correlation in the data set. It can

act as a prefilter to reduce the effect of noisy data, and can

finally reduce computational complexity.

5.4 Networked distributed predictive con-
trol

In this subsection, we mainly emphasize the distributed

model predictive control. The considerable increase of the

computational power of the hardware and the rapid de-

velopment of the communication technology bring novel

opportunity to the decentralized or distributed MPC

(DMPC)[176−185] . Maestre and Negenborn[186] mainly in-

troduced a comprehensive overview distributed MPC and

contributed to answering the question what kind of dis-

tributed model-based control technique could be appropri-

ate for control of large-scale intermodal networks, or parts

thereof. Negenborn and Maestre[187] presented the main

features of distributed MPC in three aspects (process fea-

tures, control architecture features and theoretical features)

and provided the future development of DMPC. Event-

based DMPC was explored in [188, 189] and it was ap-

plied to a multi-agent system. In general, for DMPC, there

are three update approaches: synchronous DMPC, sequen-

tial DMPC and iterative DMPC. In synchronous DMPC

scheme, all the agents solve the optimization problem at

the same time[184, 185, 190−192] . In the sequential DMPC

framework, all the agents solve the optimization problem in

the specified order[180−182] . The advantage of the sequen-
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tial scheme is that less communication and computation

is needed, as compared with the synchronous one. In the

iterative DMPC, each agent solves its optimization prob-

lems and communicates the solution with its neighbors it-

eratively until the local convergence of the solution.

The stability and feasibility of the DMPC are the sig-

nificantly challenging issues. When the goal region of the

system is a set of certain setpoints, many theoretical and

applied results were proposed[182−184, 190−192] . Richards

and How[182] proposed a formulation of robust DMPC for

the systems with coupled constraints and unknown but

bounded additive disturbances. However, if the set to con-

verge is a dynamic region such as consensus or synchro-

nization and tracking, there are some issues in DMPC

framework. In [183], a general DMPC framework for

cooperative control was considered and an algorithm to

test the satisfaction of the terminal region was formu-

lated. However, all the subsystems share a public termi-

nal region and the terminal region is possibly conserva-

tive. Wang and Ding[184] proposed a positively invariant

time-varying terminal state region with the corresponding

auxiliary controller to achieve the multi-vehicle formation

control. Dunbar and Murray[190, 191] divided the central-

ized MPC (CMPC) scheme into DMPC one. Then, lower

bounds on the update rate and upper bounds on the mis-

match between actual and assumed trajectories were estab-

lished to achieve multi-agent formation stabilization.

Considering the communication delay and the noise,

there are only a few works[193−195] . Li and Shi[194] studied

the robust DMPC problem for a group of nonlinear agents

(subsystems) subject to control input constraints and ex-

ternal disturbances. A robustness constraint was designed

to deal with external disturbances. The feasibility of the

robust DMPC scheme and the robust stability of the over-

all agent system were analyzed, respectively. Li and Shi[195]

proposed the robust DMPC for large-scale continuous-time

nonlinear systems subject to communication delays and ex-

ternal disturbances. They proved that 1) the bounds of

external disturbances, the sampling period and the bound

of communication delays all affect the feasibility; 2) the sta-

bility is related to the bounds of external disturbances, the

sampling period, the bound of communication delays and

the minimum eigenvalues of the cooperation matrices; 3)

the closed-loop system is stabilized into a robust invariant

set under the proposed conditions.

In addition to distributed networked predictive control,

other distributed networked control approaches were also

proposed for the cooperation of multiple NCSs. Take the

application of multiple rigid spacecrafts as an example. The

compound control methodology for flight vehicles was pro-

posed in [196]. Zhou et al.[197−200] mainly studied the syn-

chronization and tracking control of multiple rigid space-

craft with uncertainty and disturbance. Finite-time termi-

nal sliding mode technique was adopted in these works. Due

to the limitation of space, other distributed approaches will

not be presented here.

In summary, networked predictive control is an important

approach to NCSs. Currently, most existing researches de-

pend on the system model, especially the linear one. When

using the nonlinear predictive control, the stability of the

NCSs is still a challenge. Data-based control is a novel

research direction, which can decrease the dependence on

the accurate model. The research for data-driven predictive

control is at its initial stage and there are many theoretical

problems to be handled. In addition, distributed predictive

schemes have been adopted in NCSs, such as the multi-

agent systems. However, when the delay and the packet

loss are considered, many novel approaches need to be ex-

plored.

6 Further development of networked

control systems—cloud control sys-

tems

Nowadays, due to its extremely powerful computation

power and storage capacity, the cloud technique has been

one key tool in the industry. This also brings a new oppor-

tunity to the control technique. Cloud control systems have

become one of the most promising directions[201] . As the

increase of the system scale, huge requirements for com-

putation and communication cannot be ignored. In gen-

eral, most of complex systems can not be controlled prop-

erly in the absence of powerful tools and adequate system

information. However, the development of new technolo-

gies, including magical innovations in software and hard-

ware, provides a necessary platform for computability. To

some extent, cloud computing has come into our life. In

other word, cloud computing is not only the original prod-

uct concept but also a kind of service. In general, it is a

byproduct of the ease-of-access to remote computing sites

provided by the Internet. A new supplement, consumption,

and delivery model for IT services with the foundation of

Internet protocols was described in [202] . It often includes

the provisioning of dynamically scalable and the virtualized

resources[203, 204]. In practical systems, the cloud comput-

ing system offers a shared pool of configurable resources,

which include computation, software, data access, storage

services, etc. Therefore, even if without the physical loca-

tion and configuration of the service provider[205], the end-

users can consume power automatically. This is to say, no

matter the computers or other devices in such a system just

play an utility role over the network, we can share resources,

software and information, etc. For example, even if the pro-

grams are installed locally on others′ computers, the users

can access and use them through a web browser[206] .

The cloud control systems merge the merits of cloud com-

puting, advanced theory of NCSs and other recent devel-

oped related results together. To some extent, it will exceed

our expectation and have an extremely promising perspec-

tive. The scheme of cloud control systems is shown in Fig. 7.
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Fig. 7 Cloud control systems

In a large-scale control system, the captured infor-

mation consists of information captured by ubiquitous

information-sensing mobile devices, aerial sensory technolo-

gies (remote sensing), software logs, cameras, microphones,

radio-frequency identification readers, and wireless sensor

networks[207]. That is the origin of “Big data”[208] , which

is a collection of data sets. However, the set is so large and

complex that on-hand traditional database management or

computation tools cannot process it. As we know, the law of

large numbers proposes that some useful deterministic con-

clusions can be obtained with the help of sufficient data.

In addition, big data is confronted with a quite number

of challenges including capturing, storage, search, sharing,

transfer, analysis, visualization, etc. In the cloud control

systems, big data will be sent to the centers of cloud com-

puting to be processed firstly. After that, control signal,

such as scheduling schemes, predictive control sequences

and other useful information will be generated instantly

for cloud control systems. To sum up, cloud control sys-

tems will provide us powerful tools to control the complex

system, which we can not image before. More information

about cloud control can be seen in [209].

7 Conclusions

The paper surveys some resent progresses in different

components of NCSs. Quantization in NCSs, especially log-

arithmic and uniform quantizers, is discussed. Estimation

is very important to systems with uncertainty. As an useful

estimation tool, filtering, in which delay and drop-out are

considered, is presented for linear and nonlinear systems,

respectively. Data fusion in NCSs is significantly related

to filtering. In this paper, both centralized and distributed

data fusions are summarized in detail. Particularly, con-

sidering time delay and packet loss, fusion for NCSs is also

discussed. In addition, some results for fault diagnosis are

given. Specially, the uncertainty and the known input in-

duced by the delay are taken into consideration. As an

important control technique, predictive control is widely

used for NCSs. In this paper, MPC, data packaged based

predictive control and data-driven predictive control are de-

tailedly discussed. Some progresses in distributed MPC for

NCSs are also presented. In the end, cloud control systems

are introduced to deal with the system, in which there ex-

ist big data and the requirement for rapid computation,

and some basic concepts of the cloud control systems are

given. However, there are few theoretical results for the

cloud control systems. To sum up, as the vital technique of

IOT, there are still fruitful results about NCSs that need

to be investigated in the future.
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