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Abstract: Face recognition has attracted great interest due to its importance in many real-world applications. In this paper,

we present a novel low-rank sparse representation-based classification (LRSRC) method for robust face recognition. Given a set of

test samples, LRSRC seeks the lowest-rank and sparsest representation matrix over all training samples. Since low-rank model can

reveal the subspace structures of data while sparsity helps to recognize the data class, the obtained test sample representations are

both representative and discriminative. Using the representation vector of a test sample, LRSRC classifies the test sample into the

class which generates minimal reconstruction error. Experimental results on several face image databases show the effectiveness and

robustness of LRSRC in face image recognition.
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1 Introduction

Face recognition (FR) has been a hot topic in computer

vision and pattern recognition due to its importance in

many real-world applications, such as public security mon-

itoring, access control and card identification. Although

face images usually have high dimensionality, they possi-

bly reside on a low-dimensional subspace[1,2]. Many sub-

space learning methods, such as principal component anal-

ysis (PCA)[3], linear discriminant analysis (LDA)[4], local-

ity preserving projection (LPP)[5], marginal Fisher anal-

ysis (MFA)[6], local discriminant embedding (LDE)[7] and

sparsity preserving discriminant embedding (SPDE)[8] have

been proposed for reducing face image dimensionality. Sub-

sequently, a classifier, such as nearest neighbor classifier

(NNC)[9] or support vector machine (SVM), is usually

employed for classification. Although subspace learning

methods have achieved a good accuracy in FR, they are

not robust to corrupted face images[10], where corruptions

are caused due to occlusion, disguise or pixel contamina-

tion. Especially, when the number of training samples is

small, the learned subspace projections may be wrong or

deficient[11].

Recently, a new robust FR framework, using sparse

representation-based classification (SRC)[12], was pre-

sented. SRC sparsely encodes a test sample over a dictio-

nary consisting of training samples via L1-norm optimiza-

tion techniques[13−15]. Then, the test sample is classified

into the class that generates minimal reconstruction resid-
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ual. In the case of test samples suffering from corruption

and occlusion, SRC uses an identity matrix as occlusion dic-

tionary to deal with occlusion or corruption of test samples.

However, the dimensionality of the identity matrix is usu-

ally very high, which renders sparse coding computationally

expensive. To solve this issue, Deng et al.[16] proposed an

extended SRC (ESRC) method, in which an intra-class vari-

ation matrix, determined by subtracting the class centroid

from the same class samples, is used as occlusion dictionary.

The dimensionality of occlusion dictionary used in ESRC is

much smaller than that of occlusion dictionary used in SRC.

This fact greatly improves computational efficiency[16].

Although SRC and its extensions have been successfully

used in FR, their working mechanism has not been clearly

revealed. Recently, Zhang et al.[17] proposed an efficient FR

method, namely collaborative representation-based classifi-

cation (CRC). They thought that it is the collaborative rep-

resentation using all training samples, but not the L1-norm

sparsity constraint, which plays a key role in the success

of SRC[17]. Therefore, they replaced the L1-norm by the

computationally much more efficient L2-norm and claimed

that CRC can achieve competitive FR performance com-

pared with SRC. Naseem et al.[18] presented a new L2-norm

based classification method, namely the linear regression-

based classification (LRC), by using the concept that sam-

ples from the one subject reside on a linear subspace. LRC

linearly encodes a test sample over class-specific training

samples by using the least squares method and classifies the

test sample based on class-specific reconstruction residuals.

Recently, Liu et al.[19] presented a low-rank representa-

tion (LRR) method to reveal the global structure of data

that are drawn from multiple subspaces. Lu et al.[20] incor-

porated a graph regularization term into the LRR to encode

the local structure information of data. Ma et al.[21]

proposed a discriminative low-rank dictionary learning
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algorithm for sparse representation. Zhang et al.[22] pro-

posed a structured low-rank representation method for im-

age classification, in which they used the discriminative low-

rank representations of training data to learn a dictionary

and design a linear multi-classifier.

Inspired by the above methods, we present a low-rank

sparse representation-based classification (LRSRC) method

for robust FR. Given a set of test samples, LRSRC seeks the

lowest-rank and sparsest representation matrix over all the

training samples. As observed in [19], low-rank model can

reveal the subspace structures of data, while sparsity helps

to recognize the data class. Since LRSRC imposes both the

lowest-rank and sparsest constraints on the representation

matrix, the obtained test sample representations are both

representative and discriminative. Using the representation

vector of a test sample, LRSRC assigns the test sample to

the class that generates minimal reconstruction error. It

is worth mentioning that LRSRC can efficiently deal with

corrupted test samples due to its accurate corruption esti-

mation. It is worth noting that there are some main differ-

ences between our work and the works of [21, 22], though

our work is related to them. The main differences are as

follows: 1) Our work focuses on the low-rankness and spar-

sity of the representation matrix of test samples, while the

work of [21], as a dictionary learning method, mainly em-

phasizes the low-rankness of the learned dictionary; 2) Our

work directly uses the training data matrix as dictionary to

calculate the lowest-rank and sparsest representation ma-

trix of test samples, and classifies test samples based on the

minimal reconstruction errors, while [22] mainly uses the

discriminative low-rank representations of training data to

learn a dictionary and design a linear multi-classifier for

image classification.

The rest of the paper is outlined as follows. In Section

2, we briefly review some related works, including sparse

representation-based classification (SRC) and low-rank rep-

resentation (LRR). Section 3 presents the proposed LRSRC

method for robust FR in detail. Experimental results and

corresponding discussions are presented in Section 4. Fi-

nally, conclusions are drawn in Section 5.

2 Related work

2.1 Sparse representation based classifica-
tion

The sparse representation-based classification (SRC)

was proposed in [12] for robust face recognition. Sup-

pose there are C classes of training samples, let Xi =

[xi1, xi2, · · · , xiNi] ∈ RD×Ni be the matrix formed by

Ni training samples of i-th class, in which xij is a one-

dimensional vector produced by the j-th sample of the i-th

class. Then X = [X1, X2, · · · , XC ] ∈ RD×N is the matrix

of all training samples, where N =
∑C

i=1 Ni is the total

number of training samples. Using X as dictionary, a test

sample y can be approximately represented as linear com-

bination of the elements of X, i.e. y = Xa, in which a is

the representation coefficient vector of y. If D < N , the lin-

ear equation y = Xa is under determined. Therefore, the

solution a is not unique. Since the test sample y can be ad-

equately represented by the training samples from the cor-

rect class, the representation is obviously sparse when the

amount of training samples is large enough. SRC claims

that the sparser the representation coefficient vector a is,

the easier it is to recognize the test samples class label[12].

This inspires one to find the sparsest solution of y = Xa by

solving the following optimization problem.

â = arg min
a

‖y −Xa‖2 + λ‖a‖1 (1)

where λ is a scalar constant. The optimization problem (1)

can be efficiently solved by many algorithms, such as basis

pursuit[13], l1 ls[14] and alternating direction algorithm[15].

Having obtained the sparsest solution â, let δi (â) be a

vector, whose only nonzero entries are the entries in â that

are associated with class i[12]. Using δi (â), the test sam-

ple y can be reconstructed as ŷi = Xδi (â). Then, the test

sample y is classified into the class that minimizes class

reconstruction error between y and ŷi:

identity(y) = min
i
‖y −Xδi (â)‖2. (2)

In real-world applications, the observations are usually

corrupted or occluded. A test sample y is rewritten as

y = y0 + e = Xa + e = [X, I]

[
a

e

]

= Bw (3)

where B = [X, I] ∈ RD×(D+N) and I ∈ RD×D is the iden-

tity matrix. The clean test sample y0 and the corruption

error e can be sparsely encoded over the dictionary X and

the occlusion dictionary I . The sparse solution ŵ = [â, ê]T

can be computed by solving an optimization problem simi-

lar to problem (1). Then, the test sample y is classified by

the following decision rule:

identity(y) = min
i
‖y −Xδi (â)− ê‖2. (4)

2.2 Low-rank representation

Recently, Liu et al.[19] presented a low-rank representa-

tion (LRR) method to recover the subspace structures from

data that reside on a union of multiple subspaces. LRR

seeks the lowest-rank representation matrix Z of data ma-

trix X over a given dictionary A. The rank minimization

problem is formulated as

min
Z,E

rank (Z) + λ‖E‖l , s.t. X = AZ + E (5)

where λ is scalar constant, and ‖E‖l denotes a certain reg-

ularization strategy for characterizing different corruptions,

such as ‖E‖0 for characterizing random corruption, and the

‖E‖2,0 for describing sample-specific corruption.

If one just considers the case in which the data matrix

X entries are randomly corrupted, the rank optimization

problem can be formulated as

min
Z,E

rank (Z) + λ‖E‖0, s.t. X = AZ + E. (6)
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As finding the solution of optimization problem (6) is

NP-hard and computationally expensive, Liu et al.[19] re-

placed the rank with nuclear norm and the L0-norm with

L1-norm. So, the optimization problem (6) is relaxed to

the optimization problem as

min
Z,E
‖Z‖∗ + λ‖E‖1, s.t. X = AZ + E (7)

where ‖Z‖∗ denotes the nuclear norm (i.e., the sum of the

singular values) of Z. Given an appropriate dictionary A

(in [19], the data matrix X is used as dictionary), the aug-

mented Lagrange multipliers (ALM) algorithm[23] can be

used to solve the optimization problem (7). Having ob-

tained the optimal solution (Z∗, E∗), the representation

matrix Z∗ can be used for recovering the underlying sub-

space structures of data X.

3 Low-rank sparse representation

based classification

In this section, we present a low-rank sparse

representation-based classification method for robust face

recognition. LRSRC firstly seeks a lowest-rank and spars-

est representation matrix of the test samples. Then, by

using the representation vector of a test sample, LRSRC

assigns the test sample to the class that generates minimal

reconstruction error.

3.1 Low-rank sparse representation

Let the training data matrix X = [X1, X2, · · · , XC ] ∈
RD×N be composed by C classes of training samples, and

Y = [y1, y2, · · · , yM ] ∈ RD×M be the data matrix of all

test samples. Using X as dictionary, a test sample yi

can be approximately represented as linear combination of

the elements of X, i.e., yi = Xzi, where zi is the repre-

sentation coefficient vector of yi. Thus, Y = XZ, where

Z = [z1, z2, · · · , zM ] ∈ RN×M is the representation matrix

of Y .

SRC[12] imposes the sparsest constraint on the represen-

tation vector to make it discriminative. However, it does

not consider the subspace structures of data, which is essen-

tial for classification tasks. As we know from [19], low-rank

model can reveal the subspace structures of data. There-

fore, we impose both lowest-rank and sparsest constraints

on the representation matrix Z and formulate the optimiza-

tion problem as

min
Z

rank (Z) + β‖Z‖0, s.t. Y = XZ (8)

where β is a scalar constant to balance low-rankness and

sparsity.

As the optimization problem (8) is non-convex, we sub-

stitute the L1-norm for L0-norm and the nuclear norm for

the rank[19]. Therefore, the optimization problem (8) is re-

laxed as

min
Z
‖Z‖∗ + β‖Z‖1, s.t. Y = XZ. (9)

In many real-world applications, face images are usu-

ally corrupted or occluded. Thus, the test data matrix can

be rewritten as Y = Y0 + E = XZ + E, in which Y0 is the

clean test data matrix and E is the error matrix. The op-

timization problem is rewritten as

min
Z,E
‖Z‖∗ + β‖Z‖1 + λ‖E‖1

s.t. Y = XZ + E (10)

where λ is a scalar parameter.

3.2 Optimization

By introducing an auxiliary variable W , the problem (10)

can be converted into an equivalent optimization problem

as

min
Z,E
‖Z‖∗ + β‖W‖1 + λ‖E‖1

s.t. Y = XZ + E, Z = W. (11)

The optimization problem (11) can be solved by the lin-

earized alternating direction method with adaptive penalty

(LADMAP)[24−26]. We give the augmented Lagrange func-

tion of problem (11) as

L(Z,W,E, T1, T2, μ) = ‖Z‖∗ + β‖W‖1 + λ‖E‖1+
〈T1, Y −XZ − E〉+ 〈T2, Z −W 〉+
μ

2

(‖Y −XZ −E‖2F + ‖Z −W‖2F
)

(12)

where T1 and T2 are Lagrangian multipliers, and μ > 0 is

a penalty parameter. By some simple algebra, the above

augmented Lagrangian function is rewritten as

L(Z,W,E, T1, T2, μ) = ‖Z‖∗ + β‖W‖1 + λ‖E‖1+
h(Z, W, E, T1, T2, μ)− 1

2μ

(‖T1‖2F + ‖T2‖2F
) (13)

where

h (Z, W,E, T1, T2, μ) =

μ

2

(∥
∥
∥
∥Y −XZ − E +

T1

μ

∥
∥
∥
∥

2

F

+

∥
∥
∥
∥Z −W +

T2

μ

∥
∥
∥
∥

2

F

)

.
(14)

We minimize the function L with other two variables fixed

to update the variables Z, W , E alternately. In each itera-

tion, the updating rules are given as

Zk+1 = arg min
Z

‖Z‖∗+
〈∇Zh(Zk, Wk, Ek, T1,k, T2,k, μk), Z − Zk〉+
μkL

2
‖Z − Zk‖2F =

arg min
Z

‖Z‖∗ + μkL
2
‖Z −Ak‖2F =

Θ(μkL)−1 (Ak)

(15)

where

Ak =Zk + XT
Y −XZk − Ek +

T1,k

μk

L
−

Zk −Wk + T2.k
μk

L
.
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L = ‖X‖22, Θ is the singular value thresholding operator[27],

and ∇Zh is the partial differentiation of function h with re-

spect to Z.

Wk+1 = arg min
W

β‖W‖1+

μk

2

∥
∥
∥
∥Zk+1 −Wk +

T2,k

μk

∥
∥
∥
∥

2

F

=

Sβμ−1
k

(

Zk+1 +
T2,k

μk

)

(16)

Ek+1 = arg min
E

λ‖E‖1+
μk

2

∥
∥
∥
∥Y −XZk+1 −E +

T1,k

μk

∥
∥
∥
∥

2

F

=

Sλμ−1
k

(

Y −XZk+1 +
T1,k

μk

)

.

(17)

In (16) and (17), S is the soft-thresholding operator[28]. The

complete procedure is outlined in Algorithm 1.

3.3 Classification

Given a training data matrix X = [X1, X2, · · · , XC ] ∈
RD×N and a test data matrix Y = [y1, y2, · · · , yM ] ∈
RD×M , we can find the lowest-rank and sparsest represen-

tation matrix Ẑ = [ẑ1, ẑ2, · · · , ẑM ] and the error matrix

Ê = [ê1, ê2, · · · , êM ] of Y by Algorithm 1. Let δi (ẑj) be a

vector whose only nonzero entries are the entries in ẑj that

are associated with class i[12]. Using δi (ẑj), the test sample

yj can be reconstructed, i.e. ŷi
j = Xδi (ẑj) + êj . Then, the

test sample yj is classified into the class that minimizes the

class reconstruction error between yj and ŷi
j :

identity(yj) = arg mini ‖yj −Xδi (ẑj)− êj‖2. (18)

The proposed LRSRC algorithm is summarized in Algo-

rithm 2.

Algorithm 1. LADMAP algorithm for low-rank sparse representation

Input: Training data matrix X = [X1, X2, · · · , XC ] ∈ RD×N , test data matrix Y = [y1, y2, · · · , yM ] ∈ RD×M ,

and parameters λ > 0; β > 0.

Initialize: Z0 = W0 = E0 = T1,0 = T2,0 = 0, μ0 = 0.1, μmax = 1010, ρ0 = 1.1, ε1 = 10−2, ε2 = 10−6, L = ‖X‖22,
maxiter = 1000, k = 0.

while no converged and k ≤ maxiter do

1) Update the variable Z according to (15)

2) Update the variable W according to (16)

3) Update the variable E according to (17)

4) Update the Lagrange multipliers:

T1,k+1 = T1,k + μk (Y −XZk+1 − Ek+1)

T2,k+1 = T2,k + μk (Zk+1 −Wk+1).

5) Update the parameter μ:

μk+1 = min (ρμk, μmax),

where ρ =

⎧
⎨

⎩
ρ0,

μk max
(√

L‖Zk+1−Zk‖F
,‖Wk+1−Wk‖F

,‖Ek+1−Ek‖F

)

‖Y ‖F
< ε1

1 , otherwise.

6) Check the convergence condition:
μk+1 max

(√
L‖Zk+1−Zk‖F

,‖Wk+1−Wk‖F
,‖Ek+1−Ek‖F

)

‖Y ‖F
< ε1 and

‖Y −XZk+1−Ek+1‖F
‖Y ‖F

< ε2.

7) k ← k + 1

end while

Output: An optimal solution (Zk, Wk, Ek).

Algorithm 2. Low-rank sparse representation-based classification

Input: Training data matrix X = [X1, X2, · · · , XC ] ∈ RD×N belonging to C classes, test data matrix

Y = [y1, y2, · · · , yM ] ∈ RD×M , parameters λ > 0, β > 0.

1) Normalize the columns of X to have unit L2-norm

2) Solve the following optimization problem to obtain the representation matrix Ẑ and the error matrix Ê of test data

matrix Y by Algorithm 1:

min
Z,E
‖Z‖∗ + β‖Z‖1 + λ‖E‖1, s.t. Y = XZ + E

3) for j = 1 : M do

identity(yj) = arg mini‖yj −Xδi(ẑj)− êj‖2, i = 1, · · · , C.

end for

Output: Class labels of all the test samples.
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4 Experiments

We perform experiments on Extended Yale B[29], CMU

PIE[30], and AR databases[31] to evaluate the performance

of our proposed LRSRC method. We compare LRSRC with

some state-of-the-art methods, including nearest neighbor

classifier (NN)[9], SRC[12], ESRC[16], CRC[17] and LRC[18].

Note that PCA is used to reduce the dimension of face im-

age and the Eigenface features are used in all the methods.

4.1 Extended Yale B database

The Extended Yale B database[29] consists of 2414 face

images of 38 individuals. Each individual has about 64

images, taken under various laboratory-controlled lighting

conditions. Fig. 1 (a) shows several example images of one

subject in the Extended Yale B database. In our exper-

iments, each image is manually cropped and resized to

32× 32 pixels. We randomly select l (=16, 24, 32) samples

per individual for training, and the remainder for testing.

For each given l, we independently carry out all the meth-

ods 5 times, and report the average 5-fold recognition rates.

The Eigenface feature dimensions are set as 50, 100, 150,

200, 300 and 500 for the comparison of recognition rates

across different methods. We set LRSRC parameters as

λ = 10, β = 0.09, 0.1 and 0.08 for the 16, 24, and 32 train-

ing samples per individual, respectively. Fig. 2 shows the

curves of recognition rate versus feature dimension. Table

1 gives the best recognition rates of all the methods.

(a) Extended Yale B database

(b) CMU PIE database

(c) AR database

Fig. 1 Example images of the three databases

From Fig. 2, one can see that our method outperforms

all the other methods in most of dimensions under differ-

ent training sets. For example, with a feature dimension of

200, our method performs better than all the other methods

with more than 3% improvement of recognition rate under

3 different training sets. Meanwhile, it can be seen from

Table 1 that the best recognition rates of our method are

always greater than those of the other methods. Especially,

our method achieves the best recognition rate of 94.87%

when 16 samples per individual are used for training, while

SRC merely arrives at the best recognition rate of 94.26%

even when 32 samples per individual are used for training.

This indicates that our method can achieve a good recog-

nition performance, with smaller number of training sam-

ples. From the experimental results, we confirm the effec-

tiveness and robustness of our method even if face images

are corrupted by illumination variations.

(a) Sixteen training samples per individual

(b) Twenty-four training samples per individual

(c) Thirty-two training samples per individual

Fig. 2 Recognition rate versus feature dimension of all the

methods on Extended Yale B database



584 International Journal of Automation and Computing 12(6), December 2015

Table 1 The best recognition rates (%) and the corresponding

dimensions (in the parentheses) of all the methods on Extended

Yale B database

Method Train 16 Train 24 Train 32

NN[9] 64.82 (500) 72.54 (500) 78.03 (500)

LRC[18] 90.25 (500) 93.00 (500) 94.49 (500)

CRC[17] 88.70 (500) 92.33 (500) 94.39 (500)

SRC[12] 88.78 (500) 92.64 (500) 94.26 (500)

ESRC[16] 88.76 (500) 92.22 (500) 93.84 (500)

LRSRC 94.87(500) 97.14(500) 97.83(500)

4.2 CMU PIE database

The CMU PIE database[30] contains over 40 000 face im-

ages of 68 individuals. Images of each individual were ac-

quired across 13 different poses, under 43 different illumina-

tion conditions, and with 4 different expressions. Fig. 1 (b)

shows some example images of one subject in the CMU PIE

database. Here, we use a near frontal pose subset, namely

C07, for experiments, which contains 1629 images of 68 in-

dividuals, each individual with about 24 images. In our

experiment, all images are manually cropped and resized

to be 32× 32 pixels. A random subset with l (= 8, 10, 12)

samples per individual is selected for training, and the rest

for testing. For each given l, we independently run all the

methods 5 times, and report the average 5-fold recognition

rates. The Eigenface feature dimensions are selected as 50,

75, 100, 150, 200 and 300 for the comparison of face recog-

nition rates across different methods. The LRSRC param-

eters are set as λ = 10 , β = 0.09 for these experiments.

The curves of recognition rate versus feature dimension are

presented in Fig. 3. The best recognition rates of all the

methods are shown in Table 2.

Table 2 The best recognition rates (%) and the corresponding

dimensions (in the parentheses) of all the methods on CMU

PIE database

Method Train 8 Train 10 Train 12

NN[9] 76.79 (300) 82.95 (300) 86.05 (300)

LRC[18] 92.70 (300) 93.28 (300) 94.74 (200)

CRC[17] 90.89 (300) 92.16 (300) 94.10 (300)

SRC[12] 90.86 (300) 92.24 (300) 93.78 (300)

ESRC[16] 91.91 (300) 92.64 (300) 94.44 (300)

LRSRC 94.99(300) 95.15(200) 95.79(300)

From Fig. 3, one can clearly see that our method outper-

forms all the other methods in most of dimensions under 3

training sets. In detail, the recognition rates of our method

are about 1.5% greater than those of the other methods in

most of dimensions for 8 and 10 training samples per indi-

vidual, and 1% for 12 training samples per individual. Fur-

thermore, one can know from Table 2 that the best recogni-

tion rate of our method is always greater than those of the

other methods for each training set. In addition, one can

also find from Table 2 that SRC achieves the best recogni-

tion rate of 93.78% when 12 samples per individual are used

for training, which is still lower than that of our method,

even when 8 samples per individual are used for training.

It indicates again that our method can obtain good recog-

nition performance, with smaller number of training sam-

ples. The experimental results further verify the effective-

ness and robustness of our method for dealing with face

images corrupted by illumination variations and expression

changes.

(a) Eight training samples per individual

(b) Ten training samples per individual

(c) Twelve training samples per individual

Fig. 3 Recognition rate versus feature dimension of all the

methods on CMU PIE database

4.3 AR database

The AR database[31] includes over 4000 color face im-

ages of 126 individuals. For each individual, 26 images were
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taken in 2 separate sessions. In each session, there are 13

images for each person, among which 3 images are occluded

by sunglasses, 3 by scarves, and the remaining 7 with illu-

mination and expression variations (and thus are named as

neutral images). All images are cropped to 50× 40 pixels

and converted into gray scale. As done in [10], we choose a

subset containing 50 male subjects and 50 female subjects

in the experiments. Fig. 1 (c) shows the whole images of one

subject in the AR database. Following the scheme in [32],

we consider 3 scenarios to evaluate the performance of our

method.

Sunglasses: In this scenario, we take into account the

situation in which both the training and test samples are

corrupted by sunglass occlusion. Sunglasses produce about

20% occlusion of the face image. We use 7 neutral im-

ages and 1 image with sunglasses from the first session for

training, 7 neutral images from the second session and the

remaining 5 images with sunglasses from 2 sessions for test-

ing.

Scarf: In this scenario, we consider corruptions of both

the training and test images, because of scarf occlusion.

Scarf generates around 40% occlusion of the face image.

Similarly, we choose 8 training images consisting of 7 neu-

tral images plus 1 image with scarf from the first session for

training, and 12 test images consisting of 7 neutral images

from the second session and the remaining 5 images with

scarf from 2 sessions for testing.

Mixed (Sunglasses + Scarf): In this scenario, we con-

sider the case in which both the training and test images

are occluded by sunglasses and scarf. We select 7 neutral

images plus 2 occluded images (one image with sunglasses

and another with scarf) from the first session for training

and the remaining 17 images in 2 sessions for testing.

In this experiment, we select Eigenface feature dimen-

sions as 50, 100, 150, 200, 300 and 500 for the comparison

of recognition rates across different methods. The LRSRC

parameters are set as λ = 10, β = 0.09. Fig. 4 gives the

recognition results of 3 different scenarios. Table 3 summa-

rizes the best recognition rates of all the methods under 3

different scenarios.

Table 3 The best recognition rates (%) and the corresponding

dimensions (in the parentheses) of all the methods on the AR

database

Method Sunglass Scarf Mixed

NN[9] 71.18 (300) 67.08 (300) 70.20 (300)

LRC[18] 72.85 (500) 70.35 (500) 73.14 (500)

CRC[17] 78.40 (300) 76.60 (500) 78.73 (500)

SRC[12] 78.96 (500) 75.35 (500) 77.50 (500)

ESRC[16] 78.47 (500) 76.53 (500) 78.63 (300)

LRSRC 80.21 (500) 79.31 (300) 81.03 (300)

From Fig. 4, one can see that the proposed method con-

sistently gives the highest recognition rate in most of di-

mensions under 3 different scenarios. At the same time,

one can find from Table 3 that the best recognition rate

of our method is highest for each scenario. Specifically,

our method performs better than the best competitor SRC

with more than 1% improvement of the best recognition rate

for the Sunglasses scenario, 3.5% improvement of the best

recognition rate for the Scarf and Mixed scenarios. More-

over, one can easily find from Table 3 that our method also

exceeds in performance as compared to the other 4 methods

under 3 different scenarios. The experiment results demon-

strate the effectiveness and robustness of our method for

processing occluded face images.

(a) Sunglass

(b) Scarf

(c) Mixed

Fig. 4 Recognition rate curves of all the methods on the AR

database
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5 Conclusions

In this paper, we present a low-rank sparse

representation-based classification method for robust face

recognition. LRSRC can efficiently find the lowest-rank

and sparsest representation matrix of a set of test samples

over all training samples, and then classifies each test sam-

ple into the correct class by using its representation vector.

Experimental results on Extended Yale B, CMU PIE, and

AR databases confirm that our proposed method is ef-

fective and robust, even when face images are corrupted

by illumination variations, expression changes, disguises,

or occlusions. It must be pointed out that our proposed

LRSRC mainly performs the classifications based on the

entire test set. In our future work, we will investigate how

to extend LRSRC to the single test sample scenarios.
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