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Abstract: Based on a nonlinear flight dynamic model with aerodynamic coefficients and external disturbance uncertainties, which

is a typical cyber physical system, a filtering backstepping terminal sliding mode control method is proposed for a robust controller.

The tracking differentiator can provide the capability of solving the problem of “complexity explosion” in backstepping controllers to

simplify the backstepping implementation. Nonlinear disturbance observers are used to observe the uncertainties of the nonlinear flight

dynamic system. The terminal sliding mode controller is designed to improve its convergence rate and the tracking accuracy. Finally,

nonlinear 6-degree-of-freedom simulation results for an F-16 aircraft model elaborate the effectiveness of the proposed control system.
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1 Introduction

In recent years, cyber-physical systems, which consist of

physical and computational components, have drawn con-

siderable attention[1]. The fact that computation, commu-

nication and control (3C) are now highly integrated in the

concept of cyber-physical system (CPS). A typical CPS has

the capabilities of sensing, controlling and communication,

which can reflect the interaction and coordination between

the physical and computational elements. Therefore, the

design of control strategy in CPS is of crucial importance for

stabilization and efficiency of system dynamics. CPS can be

found in aerospace, automotive, transportation, infrastruc-

ture management and environmental monitoring[2, 3]. An

important application of CPS is the flight control system[4].

And the efficacy of the control law will decide whether the

CPS can bring its predominance into play or not[5].

Due to the unmodeled dynamics and external distur-

bances, the flight control system is a typical uncertain

nonlinear system. Recently, adaptive backstepping design

method has become an important method for the research

of dealing with uncertainties[6−8]. A drawback of the con-

ventional backstepping method may cause the problem of

complexity resulting from the repeated differentiations[9].

Dynamic surface control (DSC) technique could solve the

complexity problem in backstepping design method by in-

troducing a first-order filter of the synthetic input at each

step of the traditional backstepping design procedure[10].

Sliding mode control (SMC) has better robustness against
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the parameter uncertainties[11−13] . In [11, 12], SMC was

proposed for the full envelop of the aircraft model with pa-

rameter uncertainties. The combination of SMC and adap-

tive backstepping control benefits from both approaches.

The role of SMC is to achieve more robustness to distur-

bances and uncertainties[14]. However, unwanted chattering

in the conventional sliding surface makes adaptive back-

stepping SMC unsuitable for high accuracy requirement.

There are many methods which can be employed to re-

duce chattering such as integral sliding surface[15], high-

order SMC[16] and dynamic SMC[17]. High-order sliding

mode controllers can also be used to improve the system

responses.

In this paper, the flight control CPS with aerodynamic

coefficients and external disturbances is studied by adap-

tive backstepping SMC. The tracking differentiator is used

to reduce the complexity of the computation. Nonlinear

disturbance observer (NDO) is used to observe the uncer-

tainties to compensate the control inputs[18, 19]. The high-

order sliding mode control law is deigned to eliminate the

chattering and improve the system response time. Simula-

tion examples are given to illustrate the effectiveness of the

proposed methods.

Nomenclature.

F : Aerodynamic forces about the body-fixed frame

L,M,N : Aerodynamic rolling, pitching, yawing mo-

ments

I : Moment of inertia

p, q, r: Roll, pitch, yaw rates about the body-fixed frame

q: Dynamic pressure

m: Aircraft mass

T : Thrust

S: Reference wing area

C∗: Non-dimensional aerodynamic coefficient
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V : Velocity

α, β: Angle of attack, sideslip angle

δe, δa, δr: Elevator, aileron, rudder angles

φ, θ, ψ: Roll, pith, yaw angles

2 Problem statement

The body-fixed nonlinear equations of motion for an F-16

aircraft with external uncertainties and aerodynamic coef-

ficients can be written as[20]
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1 = f1(x1, x3) + g1(x1, x3)x2 +M1

ẋ2 = f2(x1, x2) + g2(x1)u+M2

ẋ3 = f3(x1, x2)

M1 = Δf1(x1) + Δg1(x1)x2 + [h(x1) + Δh(x1)]u

M2 = Δf2(x1, x2) + Δg2(x1)u+ d(t)

(1)

x1 = [α, β, φ]T, x2 = [p, q, r]T, x3 = [θ, ψ]T, u = [δe, δa, δr]
T.

And the expressions of f1, g1, f2, g2, f3, h are the same as

given in [20].

Mi represents the compound uncertainties in the model.

Δf , Δg and Δh represent the aerodynamic coefficients, d(t)

is the external uncertainty. h represents the aerodynamic

force component caused by the control surface deflection. It

is seen as one part of the model uncertainties M1. The task

of the controller to be designed is to track the commands of

α, β and φ. Assumption 1 is used in the design and analysis

process.

Assumption 1. The desired trajectory yc = [αc, βc,

φc]
T is bounded, namely

‖[yc, ẏc, ÿc]‖ ≤ c0

where c0 ∈ R is a known positive constant and ‖·‖ denotes

the 2-norm of a vector or a matrix.

Lemmas 1 and 2 are used in the design and analysis pro-

cess.

Lemma 1. There exist positive constants αm, βm and

θm ∈ R such that the magnitudes and derivatives of

f1, f2, g1 and g2 are bounded for all α, β and θ ∈ R sat-

isfying |α| ≤ αm and |β| ≤ βm. Furthermore, there exist

gi0 and gi1 such that 0 < gi0 ≤ ‖gi‖ ≤ gi1, i = 1, 2.

Lemma 2. There exist two arbitrary vectors x, y ∈ Rn

satisfying

xTy ≤ εp

p
‖x‖p +

1

qεq
‖y‖q

ε > 0, p > 1, q > 1 and (p− 1)(q − 1) = 1. When p = q = 2

and ε2 = 2, there exist x, y ∈ Rn such that xTy ≤ ‖x‖2 +

‖y‖2.

3 Controller design and stability anal-

ysis

3.1 Tracking differential filter

The derivative of the virtual control signal obtained

through the filter can effectively reduce the amount of calcu-

lation in the backstepping control. The classical differential

filter has amplification effect on noises. Nonlinear tracking

differentiator (NTD) can overcome the drawback when it is

used to simplify the calculation. Its expression is written

as[21] {
ẏ1 = y2

ẏ2 = γsat(y1 − υ0(t) + y2|y2|
2γ

, δ)
(2)

where υ0(t) is the input signal, y1 is the tracking signal, y2
is the approximate differential signal of υ0(t), sat(x, δ) is

the saturation function, i.e.,

sat(x, δ) =

⎧
⎪⎨

⎪⎩

−1, x < −δ
x

δ
, |x| ≤ δ

1, x > δ

(3)

γ > 0, and the value of γ determines the tracking speed

of NTD. From (2), the following equality is satisfied when

υ0(t) is bounded and γ is sufficiently large

lim
γ→∞

∫ T

0

|y1(t) − υ0(t)|dt = 0 (4)

with T > 0. We can know that NTD does not affect the

convergence of the tracking error of the control system[22].

And y2 is obtained by integrating the differential signal,

which can effectively avoid the influence of noise.

3.2 Controller design

Define the tracking error of the states in the control sys-

tem {
e1 = x1 − x1c

e2 = x2 − x2c

(5)

where x1c = yc, x2c is the expected virtual input of the

inner loop. The derivative of e1 is

ė1 = ẋ1 − ė1c = f1 + g1x2 +M1 − ẏc. (6)

NDO is adopted to estimate uncertainty M1, then

{
M̂1 = z1 + p1

ż1 = −L1z1 − p1 (L1 + f1 + g1x2)
(7)

where L1 = diag{ L11 L12 L13 } is a positive con-

stant, p1 is a nonlinear function to be designed, and

L1 = ∂ p1(x)/∂x. The virtual control x2c to drive e1 → 0

based on NDO can be determined as

x2c = −g−1
1 (k1e1 + f1 + M̂1 − ẏc) (8)

where k1 = diag{ k11 k12 k13 } is a positive constant.

In order to obtain the filtering virtual control x2c, we pass

x2c through an NTD with γ > 0. The derivative of e2 is

ė2 = ẋ2 − ẋ2c = f2 + g2u+M2 − ẋ2c. (9)

The NDO of the inner loop is given by

{
M̂2 = z2 + p2

ż2 = −L2z2 − L2 (p2 + f2 + g2u) .
(10)
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Define a non-singular terminal sliding mode surface as

follows:

S = [S1, S2, S3]
T = e2 + aė

ρ1
ρ2
2 (11)

where a = diag{ a1 a2 a3 }, ai > 0, ρ1 and ρ2 are

positive odd constants to be designed and 1 < ρ1
ρ2
< 2,

ė
ρ1
ρ2
2 = [ė

ρ1
ρ2
21 , ė

ρ1
ρ2
22 , ė

ρ1
ρ2
23 ]T. Let S(t) = 0, t ≥ tr, then

lim
t→ts

e2 = 0, lim
t→ts

ė2 = 0 (12)

where

ts = tr +
ρ1

ρ1 − ρ2
max
1≤i≤3

(

a
ρ1
ρ2
i ‖e2i(tr)‖

ρ1−ρ2
ρ2

)

. (13)

Therefore, the system will remain in the second-order

sliding mode when t ≥ ts. The values of ρ1, ρ2, a determine

the speed of convergence of the control system. In this

paper, a high-order terminal sliding mode control law is

proposed as
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u = u1 + u2

u1 = −g−1
2 (f2 + M̂2 − ẋ2c)

u2i = −(g−1
2 )i

∫ t

0

[
ρ2

aiρ1
ė
2− ρ1

ρ2
2i + k2iSi + k3isgn(Si)

]

dτ

u2 = [u21, u22, u23]
T

(14)

where

k2 = diag {k21, k22, k23} , k2j > 0, j = 1, 2, 3

k3 = diag {k31, k32, k33} , k3j > 0, j = 1, 2, 3.

3.3 Stability analysis

It can be assumed that the disturbances are slowly

time-varying, so we can consider that Ṁ ≈ 0 and

ėNDO = −L(x)eNDO
[19].

Consider the following Lyapunov function candidate:

V1 =
1

2
eT1 e1 +

1

2
eTNDO1eNDO1. (15)

The derivative of V1 is

V̇1 = eT1 ė1 + eTNDO1ėNDO1 =

eT1 (−k1e1 + g1e2 + eNDO1) − eTNDO1L1eNDO1.

(16)

From Lemma 2,

V̇1 ≤ −λmin(k1 − 2I)‖e1‖2 + eT1 g1e2−

λmin

(

L1 − 1

4
I

)

‖eNDO1‖2. (17)

Let k1 > I and L1 >
1
4
I . Then,

V̇1 ≤ 0. (18)

Therefore, we can know that e1 and eNDO1 are uniformly

ultimately bounded if limt→∞ e2(t) = 0. Consider the fol-

lowing Lyapunov function candidate

V2 =
1

2
STS +

1

2
eTNDO2eNDO2. (19)

The derivative of V2 is

V̇2 = STṠ + eTNDO2ėNDO2. (20)

From (11),

Ṡi = ai
ρ1

ρ2
ė

ρ1
ρ2

−1

2i

(

ë2i +
ρ2

aiρ1
ė
2− ρ1

ρ2
2i

)

. (21)

So,

V̇2 =

3∑

i=1

[
Siai

ρ1

ρ2
ė

ρ1
ρ2

−1

2i

(

ë2i +
ρ2

aiρ1
ė
2− ρ1

ρ2
2i

)

− L2ie
2
NDO2

]
.

(22)

Substituting (14) into (9) yields

ė2 = g2u2. (23)

The derivative of ė2 is

ë2i = − ρ2

aiρ1
ė
2− ρ1

ρ2
2 − k2iSi − k3isgn(Si). (24)

Substituting (24) into (20) yields

V̇2 =

3∑

i=1

[

Siai
ρ1

ρ2
ė

ρ1
ρ2

−1

2i [−k2iSi − k3isgn(Si)] − L2ie
2
NDO2

]

=

−
3∑

i=1

[
aik2i

ρ1

ρ2
ė

ρ1
ρ2

−1

2i S2
i

+ aik3i
ρ1

ρ2
ė

ρ1
ρ2

−1

2i |Si| + L2ie
2
NDO2

]
.

(25)

Let 1 < ρ1
ρ2
< 2, k2 > 0, k3 > 0, L2 > 0 and a > 0. Then,

V̇2 ≤ 0. (26)

Accordingly, we can know that the tracking errors of the

control system designed in this paper are locally uniformly

ultimately bounded when k1 > I, k2 > 0, k3 > 0, L1 >
1
4
I,

L2 > 0 and 1 < ρ1
ρ2
< 2.

4 Simulation results

The proposed controller is tested by a numerical simula-

tion on the attitude maneuver flight control system of an

F-16 aircraft. The following command values of αd, βd, and

φd are applied to the aircraft in a steady-state level flight

of V = 200 m/s, h = 4000 m, FT = 60 kN:

αd = 2.659, βd = 0, φd = 0, 0 ≤ t < 1

αd = 10, βd = 0, φd = 50, 1 ≤ t < 10

αd = −2, βd = 0, φd = 0, 10 ≤ t < 20.

yc is obtained from yd by the following command filter to

satisfy Assumption 1:

[yc]i
[yd]i

=
ω2

n

s2 + 2sξnωn + ω2
n

, ωn = 4, ξn = 0.8, i = 1, 2, 3

where s is Laplace operator. The controller design param-

eters are chosen as k1 = 10I , k2 = 5I , γ = 10I , a = 5I ,
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τ2 = 0.05, δ(0) = 10, where I represents the 3 × 3 identity

matrix. NDO gains are chosen as

L1 = diag{2(1 + α2), 2(1 + β2), 2(1 + φ2)}
L2 = diag{5(1 + p2), 5(1 + q2), 5(1 + r2)}.

We assume that the uncertainties of the aerodynamic

coefficients and external moment disturbance are time-

varying. The time-varying uncertainties are given as

Cj = [1 + 0.5 sin(0.5πt)]Cr
j , j = x, y, z, l,m, n

d(t) = [0.5 1.2 1.5] × 104 sin(t)

where Cr
x, Cr

y , Cr
z , Cr

l , Cr
m and Cr

n are the standard aero-

dynamic coefficients.

Figs. 1–3 present the simulation results when uncertain-

ties do not exist. 0 represents the command signal. 1 rep-

resents the simulation result of the controller proposed in

this paper. From Figs. 1–3, it is clear that the control law

proposed in this paper can track the reference command

signal effectively and make the tracking error converge.

To demonstrate the tracking performance of the proposed

control law, the backstepping controller in [18] is applied

contrastively. Figs. 4–9 present the simulation results when

the uncertainties exist. 1 represents the simulation result

of filtering backstepping terminal sliding mode controller

proposed in this paper. 2 represents the simulation result

of the backstepping controller proposed in [18]. The track-

ing error convergence curves of e1 = [e1α, e1β , e1φ] are used

to reflect the tracking control performance of the two con-

trollers. The simulation results reveal that, under the con-

dition of aerodynamic parameter perturbation and exter-

nal disturbance uncertainties, the proposed control scheme

can track the reference command signal more quickly and

more accurately. Figs. 7–9 show that the nonsingular high-

order terminal sliding mode control method can effectively

weaken the chattering.

Fig. 1 Time response of α without uncertainties

Fig. 2 Time response of β without uncertainties

Fig. 3 Time response of φ without uncertainties

Fig. 4 Time response of e1α with uncertainties

Fig. 5 Time response of e1β with uncertainties
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Fig. 6 Time response of e1φ with uncertainties

Fig. 7 Time response of δe with uncertainties

Fig. 8 Time response of δa with uncertainties

Fig. 9 Time response of δr with uncertainties

5 Conclusions

A filtering backstepping terminal sliding mode controller

is designed in this paper to compensate for the effect of

system uncertainties in CPS with time-varying parameter

perturbations and external disturbances. NTD is used to

obtain the derivation of the virtual control signal, simpli-

fying the design of the controller and reducing the amount

of computation. Nonlinear disturbance observers can effec-

tively observe the uncertainties of CPS. Nonsingular ter-

minal sliding mode controller can increase system robust-

ness and tracking accuracy, and can effectively weaken the

control signal chattering. Simulation results show that the

proposed control system can quickly and accurately track

the reference command signal. The method proposed in

this paper may be also used in the design in other CPS

controllers with aerodynamic coefficients and external dis-

turbance uncertainties.
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