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1 Introduction

Stabilization, a fundamentally important topic in control

theory, seeks to find a feedback control law that renders a

dynamical system stable at an equilibrium point of interest.

Early efforts in tackling this problem for nonlinear systems

resulted in nonlinear feedback algorithms that are restricted

in their use to certain classes of nonlinear systems. Exam-

ples of such algorithms include sliding mode control and

absolute stability based methods. For instance, when slid-

ing mode control is applied to design stabilizing controllers,

nonlinearities (which may be uncertain) are assumed to fall

into the input spanned space, i.e., some kind of match-

ing conditions are required. Latest developments in sliding

mode control methods have relaxed this assumption for spe-

cial classes of nonlinear systems but with limited success for

higher-dimensional nonlinear systems with unmatched un-

certainties. Global stabilization of nonlinear time-invariant

systems differs from its linear counterpart and leads to early

results that often assume global Lipschitz condition on sys-

tem nonlinearities using state and output feedback. With

these restrictions of early nonlinear feedback algorithms in

mind, linear thinking yields limited success in solving the

stabilization problem of nonlinear systems. The develop-

ment of fundamentally nonlinear feedback design tools has

thus become a hot topic in nonlinear control. Starting from

the late 1980s followed by the publication of the survey

paper[1], significant progress has been made in nonlinear

stabilization. Over the last three decades, many innovative

ideas and methods have been proposed by numerous re-

searchers for the local, semiglobal and global stabilization
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of nonlinear systems[2−8]. Other byproducts of this collec-

tive effort by many researchers include advances in other

important topics in nonlinear control such as output regu-

lation of nonlinear systems[9−15], optimal nonlinear control,

and output feedback control[16−18] . Due to space limitation

and the limited knowledge of the authors, a tough choice

must be made here and we will selectively discuss topics

tied to our recent research and cite relevant results which

are closely tied to our chosen topics.

The layout of the paper is as follows. Section 2 first

states the formulation of the stabilization problem and then

reviews some early results in nonlinear control algorithms.

Section 3 presents the basics of nonlinear small-gain the-

ory and some recent developments in quantized feedback

stabilization of nonlinear systems by means of small-gain

theorems. Section 4 focuses on the emerging topic of event-

based nonlinear control that aims to update controllers only

when some events occur. Both centralized and decentral-

ized systems with event triggers will be discussed. Small-

gain based solutions to event-based nonlinear control design

will be presented. Finally, Section 5 closes this review arti-

cle with some brief concluding remarks and open problems.

2 Early results in nonlinear feedback

stabilization

2.1 Problem statement

The stabilization problem is concerned with how to use

a feedback law to render the closed-loop system asymptoti-

cally stable at an equilibrium of interest in the sense of Lya-

punov. When the closed-loop system is globally asymptoti-

cally stable at the equilibrium, the stabilization problem is

called global stabilization. For the sake of simplicity, we will

study single-input single-output (SISO) nonlinear control-
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affine systems described by ordinary differential equations:

ẋ = f(x) + g(x)u

y = h(x)
(1)

where x ∈ Rn is the system state, u ∈ R is the control

input, and y ∈ R is the system output. Notice that many

stabilization results presented in this paper (and quoted

papers) can be and indeed have been generalized to multi-

input multi-output (MIMO) nonlinear systems.

In (1), we assume that f , g and h are sufficiently smooth

functions and that f(0) = 0 and h(0) = 0. As a result, the

stabilization problem is formulated as follows: When can

we find a feedback control law to asymptotically stabilize

the system (1) at the origin x = 0? In general, we are

interested in either state-feedback controllers of the form

u = μ(x) (2)

or output-feedback controllers of the form

η̇ = ν(y, η)

u = μ(y, η). (3)

Like (3), we may also consider dynamic state-feedback con-

trol laws instead of (static) state-feedback control laws in

(2). Notice that when dim(η)=0, the output-feedback law

(3) is often referred to as static output-feedback controller.

In this paper, we will omit this topic that is not yet com-

pletely resolved, but important, for nonlinear control sys-

tems.

In the sequel, we first address the existence of a state-

feedback control law for the stabilization of nonlinear sys-

tem (1). Then, we will present some tools that allow us to

construct explicitly stabilizing control laws.

2.2 Explicit design algorithms

Control Lyapunov functions. The term of “control

Lyapunov function” (CLF) was introduced by Sontag[19],

and was previously studied in the seminal work of

Artstein[20] in a broader context of nonlinear systems with

arbitrary closed control value sets. A smooth, positive def-

inite, radially unbounded function V : Rn → R is said to

be a CLF for system (1) if the following holds:

inf
u∈R

{LfV (x) + uLgV (x)} < 0, ∀x �= 0 (4)

where LfV and LgV are the Lie derivatives of V along

the vector fields f and g, respectively. Clearly, the above

condition is equivalent to the following implication:

LgV (x) = 0 ⇒ LfV (x) < 0, ∀x �= 0. (5)

It is shown in [19, 20] that the existence of a (global) CLF

is necessary and sufficient for the global stabilizability of

system (1). Of particular interest is the fact that Sontag

gives a “universal” formula for the construction of a globally

stabilizing control law.

Theorem 1. Assume that V is a smooth CLF for sys-

tem (1). Then, a feedback control law u = μ(x) that glob-

ally asymptotically stabilizes the system takes the following

form:

μ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−LfV (x) +
√

(LfV (x))2 + (LgV (x))4

LgV (x)
,

if LgV (x) �= 0

0, otherwise.

(6)

Generally speaking, the control law μ in (6) may not be

smooth everywhere. It is shown that under certain small

control property, the control law μ is “almost smooth”, i.e.,

is continuous at x = 0 and smooth everywhere else. Such a

small control property is defined as follows[19] :

For each ε > 0, there exists a constant δ > 0 such that,

for any x satisfying 0 < |x| < δ, there is some u with |u| < ε

such that LfV (x) + uLgV (x) < 0.

CLFs have been used widely in the literature of

modern nonlinear control, e.g., in adaptive nonlinear

control[21−23] , robust nonlinear control[24], nonlinear opti-

mal control[24, 25], nonlinear time-delay systems[26, 27], and

multi-agent systems[28], to name only a few.

It should be mentioned that CLF is a generalization of

Lyapunov function from a dynamical system without con-

trols to a nonlinear control system. As is well documented

in the past literature, the construction of both a Lyapunov

function and a CLF for a nonlinear dynamical system is far

from being trivial. Nonetheless, for some important classes

of nonlinear control systems, tools are available for gener-

ating a CLF and a stabilizing control law. Also, it is worth

noting that we may construct stabilizing controllers for spe-

cific classes of nonlinear systems without assuming the exis-

tence of a CLF. We will review some of these existing tools

in the remainder of this section.

Backstepping. Integrator backstepping, or backstep-

ping, is a recursive technique[21, 29, 30] that has proved use-

ful in various contexts of stabilization for nonlinear cas-

caded systems. The term of backstepping was invented by

Kokotović[31], although in the early development of nonlin-

ear control theory “adding an integrator” was commonly

adopted by European researchers[32−34] . To begin with, let

us consider a single-input nonlinear cascaded system of the

form

ẋ1 = f1(x1, x2) (7)

ẋ2 = f2(x1, x2) + u. (8)

The essence of backstepping consists of reducing the con-

troller design issue for a higher-order system to a de-

sign issue for a reduced-order system. In the above case

of cascaded systems, the reduced-order system is the x1-

subsystem which is driven by the state of the driving x2-

subsystem. Assume that the x1-subsystem, when x2 is re-

garded as the (virtual) control input, is stabilizable by a

smooth control law x2 = μ1(x1), μ1(0) = 0, with respect to

a smooth CLF V1(x1). The backstepping approach seeks to
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generate a stabilizing control law for the cascaded system

(7) and (8). As a by-product of backstepping, a CLF will

also be obtained for the cascaded system, as shown in the

following result.

Theorem 2. A control law that globally asymptotically

stabilizes the cascade system (7)–(8) takes the form:

u = −c2(x2 − μ1(x1)) − f2(x1, x2) +
∂μ1

∂x1
f1(x1, x2)

−∂V1(x1)

∂x1

∫ 1

0

f1(x1, μ1(x1) + λ(x2 − μ1(x1))dλ (9)

where c2 is an arbitrary positive constant. Moreover,

V2(x1, x2) = V1(x1) + 1
2
(x2 − μ1(x1))

2 is a CLF for the

cascaded system (7) and (8).

Indeed, the proof follows by differentiating the CLF V2

along the solutions of system (7) and (8), i.e.,

V̇2 =
∂V1(x1)

∂x1
f1(x1, μ1(x1)) − c2(x2 − μ1(x1))

2. (10)

By hypothesis, V̇2 is a negative definite function in (x1, x2).

As explained in [21, 31], backstepping does not assume

that the linearization of the cascaded system (7) and (8) is

controllable, nor does it assume that the system is feedback

linearizable. An elementary example of bilinear system was

given in[31]

ẋ1 = x1x2, ẋ2 = u. (11)

When linearizing this bilinear system at x = 0, the obtained

linearized model is not controllable. However, by means of

backstepping, we can easily obtain a globally asymptotically

stabilizing control law. Indeed, selecting μ1 = −x2
1 and

V1 = 1
2
x2

1, a direct application of (9) yields a control law

that globally asymptotically stabilizes the bilinear system

as

u = −x2 − 2x2
1 − 2x2

1x2. (12)

The initial version of backstepping as outlined in Theorem 2

assumes the precise knowledge of vector fields in the cas-

caded system (7) and (8). This seemingly drawback has

been removed by improved versions of backstepping known

as adaptive backstepping[21] and robust backstepping[24].

More interestingly, when only the output information

is available to the designer, output-feedback backstep-

ping has been developed based on nonlinear filters or

observers[21, 35, 36]. In parallel, passivity-based control plays

an important role in constructive nonlinear control design

and applications[37−39] .

It should also be mentioned that there have been several

research publications devoted to relaxing the smoothness

of virtual control laws μ1 and/or the smoothness of system

nonlinearities[40−42] .

3 Small-gain method and applications

3.1 Basics of nonlinear small-gain theory

The small-gain method is a tool for constructive nonlin-

ear feedback design particularly suited for nonlinear and in-

terconnected control systems with parametric and dynamic

uncertainties[23, 36, 43, 44]. Take the system (7) and (8) as an

example. When x1-system is considered as a dynamic un-

certainty driven by x2 with unknown state x1 and dynamics

f1, conventional Lyapunov designs as presented above are

not directly applicable. Additionally, it is not clear how to

apply traditional approximation techniques such as neural

networks and fuzzy systems theory to approximate “non-

linear dynamic uncertainties” represented by f2(x1, x2).

To address this challenge, generalized nonlinear small-

gain theorems are developed[43] by means of Sontag′s input-

to-state stability (ISS) property (see the tutorial[7]). A non-

linear system of the form ẋ = f(x, u) is said to be input-to-

state stable (ISS) with respect to the input u ∈ Rm if there

exist a function β, of class KL, and a function γ of class

K, such that, for any initial condition x(0) and any locally

bounded input u : R+ → Rm, the solution x(t) is defined

for every t ≥ 0 and satisfies

|x(t)| ≤ max{β(|x(0)|, t) , γ(‖u[0,t]‖)} (13)

where ‖u[0,t]‖ stands for the L∞-norm of the truncated

function of u over [0, t]. Often, γ is referred to as a gain

function of the ISS system. It should be mentioned that the

max-based ISS definition is mathematically equivalent to

Sontag′s original definition of ISS[45], where the sum opera-

tor is used instead of max in (13), with a possibly different

pair of (β, γ) functions.

Undoubtedly, ISS has become a fundamental tool for

solving many analysis and synthesis problems in nonlinear

systems, as documented in the tutorial paper by Sontag[7].

Its important role in advancing the state of the art in robust

nonlinear control with respect to dynamic uncertainties has

led to the introduction of generalized/nonlinear small-gain

theorems. The following provides a quick review.

ISS small-gain theorem states sufficient conditions under

which an interconnection of two ISS systems remains to be

ISS. More precisely, consider an interconnected system of

two ISS subsystems

ẋ1 = f1(x1, x2, v) (14)

ẋ2 = f2(x1, x2, v). (15)

Assume that each xi-subsystem is ISS in the sense of (13)

and has a gain function γi with respect to the input xj with

j �= i for i, j = 1, 2, as shown in Fig. 1.

Fig. 1 An interconnected system with external inputs

Theorem 3[43, 46]. Under one of the following equivalent
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small-gain conditions:

γ1 ◦ γ2(s) < s, ∀s > 0 (16)

γ2 ◦ γ1(s) < s, ∀s > 0 (17)

the interconnected system (14) and (15) is ISS when v is

considered as the input.

As well documented in the literature, the global stabiliza-

tion of the system (7) and (8) with partial-state x2 informa-

tion can be addressed from a small-gain perspective. The

crucial difference with other Lyapunov designs is that sys-

tem (7) and (8) is now treated as an interconnected system.

The only knowledge we need is that the x1-subsystem is ISS

with a known ISS-gain, say, γ1 of class K∞. In order to in-

voke the small-gain theorem, we only need to show that a

feedback law of the form u = κ(x2) can be designed to ren-

der the x2 system ISS with a gain γ2 that is strictly smaller

than γ−1
1 so that the small-gain condition (16) or (17) holds.

Such a result is referred to as gain assignment theorem[43].

Theorem 4 states mild assumptions under which the global

stabilization problem for system (7) and (8) with incom-

plete state and dynamics information is solvable.

Theorem 4. Assume that the x1-system is ISS with a

gain γ1 of class K∞. It is further assumed that f2(x1, x2)

is dominated by σ1(|x1|) + σ2(|x2|) with σi being locally

Lipschitz and positive semi-definite. Then, the global sta-

bilization of system (7) and (8) is solvable by continuous

partial-state feedback law u = κ(x2).

The above result was initially developed in [43] and has

been applied to various control problems[36, 44, 46, 47]. More

recently, it has been extended to the context of nonlinear

feedback stabilization with quantized signals[48−52] .

3.2 Application to quantized feedback sta-
bilization

The convergence of control and communications has led

to many new control problems of practical interest. Quan-

tized stabilization with quantized signals is just one of them.

A quantizer is a nonlinear operator that converts a signal

from a continuous region to a discrete set of numbers, and

thus is a discontinuous function. This special feature poses

severe technical challenges to quantized controller design for

both linear and nonlinear systems, e.g., [53–57] for quan-

tized stabilization of linear systems and [58–61] for exten-

sions to nonlinear systems.

Despite its theoretic importance and practical relevance,

quantized feedback stabilization of nonlinear systems has

received little attention as of today. There are several tech-

nical obstacles one needs to overcome. First and foremost,

when quantization is introduced at the levels of output mea-

surement and/or control input, the feedback control law to

be implemented will be discontinuous with respect to the

state variable. The interplay of discontinuity with the non-

linearity and dimensionality of the system leads to an im-

mediate bottleneck of the use of recursive feedback design

tools such as backstepping. Second, dynamic quantization

is often preferable compared with logarithmic quantization

in handling the problem caused by the finite word length

of the quantizers in networked control systems. The key

idea of dynamic quantization is to adjust dynamically the

range of the quantizer through “zooming-in” and “zooming-

out” phases. To avoid finite-escape phenomenon during

the “zooming-out” phase, a common feature of the exist-

ing work[50, 61, 62] is that forward completeness and small-

time norm-observability are assumed for the (open-loop)

unforced system. Clearly, these assumptions severely limit

the class of nonlinear systems we can address for quantized

stabilization. Third, the closed-loop system with quantized

control is discontinuous and often hybrid. Stability analysis

of such systems is still a hot topic of research. Last but not

least, when large uncertainty occurs, the quantized feed-

back control of nonlinear systems is still a little explored

research arena.

As an illustration of the above points, let us consider

the quantized output-feedback control problem for a class

of nonlinear systems transformable into the generalized

output-feedback form

ż = Δz(z, y, d) (18)

ẋi = xi+1 + Δi(y, z, d), 1 ≤ i ≤ n (19)

xn+1 = qμ(u) (20)

y = x1 (21)

where z ∈ Rnz and x = (x1, · · · , xn) ∈ Rn are the un-

measured state variables, y ∈ R is the measured output,

u ∈ R is the control input and d ∈ Rnd is the (bounded

time-varying) disturbance input. qμ is the actuator quan-

tizer with quantization variable μ > 0. Δz and Δi, with

1 ≤ i ≤ n, are locally Lipschitz but unknown nonlinear

functions. Very often, the z-dynamics is referred to as dy-

namic uncertainty in [36, 43, 44].

It should be mentioned that the generalized output-

feedback form (18)–(21) was first introduced in [17] in the

absence of quantization and disturbance input d, and is an

extension of the conventional output-feedback form with

only output-nonlinearities[21, 35].

The control objective is to find, if possible, a quantized

output-feedback control law that drives the output signal

to within an arbitrarily small neighborhood of the origin,

while keeping the boundedness of all the closed-loop system

signals.

Like the past literature of nonlinear control theory, the

following assumptions are made on the generalized output-

feedback form system:

Assumption 1. The z-system is ISS and has a positive-

definite and radially unbounded ISS-Lyapunov function Vz

that satisfies the implication

Vz(z) ≥ max{γy
z (|y|), γd

z (|d|)} ⇒ ∇Vz(z)ż ≤ −αz(|z|)
where γy

z , γd
z and αz are class-K∞ functions.

Assumption 2. For each i = 1, 2, · · · , n, the uncertain

function Δi is overbounded by a class-K∞ function ψΔi ,

i.e.,

|Δi(y, z, d)| ≤ ψΔi(|(y, z, d)|) .
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However, besides the above two commonly used assump-

tions, to deal with the quantized feedback control problem,

we need to introduce two additional assumptions on the

system:

Assumption 3. The unforced system (18)–(21) with

u = 0 is forward complete and small-time norm-observable

with y as the output[50, 62].

Assumption 4. The quantizer qμ satisfies the following

property

|qμ(u) − u| ≤ δμ, if |u| ≤Mμ

where M , δ are positive constants, Mμ is the range of the

quantizer, and δμ is the maximum quantization error for

all u in the range of the quantizer. As usual, μ is called

“zooming” variable.

As mentioned previously, the discontinuity of quantized

feedback control calls for new ideas and controller design

tools. Here, we begin with a reduced-order partial-state

estimator adapted from[36]

ξ̇i = ξi+1 + Li+1y − Li(ξ2 + L2y), 2 ≤ i ≤ n− 1 (22)

ξ̇n = qμ(u) − Ln(ξ2 + L2y) (23)

where Lis are the constants to be determined later.

By direct computation, the time-derivative of the obser-

vation error ζ = (x2 − L2y − ξ2, · · · , xn − Lny − ξn)T can

be written in compact form

ζ̇ = Aζ + Δ∗(y, z, d) (24)

where A is made a Hurwitz matrix thanks to the proper

use of the constants Lis, and each component of the vector-

valued function Δ∗ is a linear combination of the functions

Δi, with i = 1, 2, · · · , n.

As it can be directly checked, the ζ-system (24) is ISS

with respect to the inputs y, z and d and has a quadratic

ISS-Lyapunov function Vζ = ζTPζ, where P is the positive-

definite and symmetric matrix to solve the Lyapunov ma-

trix equation PA + ATP = −2In−1. More precisely, using

Assumption 2, there exist class-K∞ functions γy
ζ , γz

ζ , γd
ζ ,

αζ such that

Vζ(ζ) ≥ max{γy
ζ (|y|), γz

ζ (|z|), γd
ζ (|d|)} ⇒ ∇Vζ ζ̇ ≤ −αζ(|ζ|).

This fact, together with Assumption 1, implies that the

cascade-interconnected system comprised of z-system (18)

and ζ-system (24) is ISS with respect to the inputs y and

d.

With this in mind, we are ready to develop a novel

small-gain based quantized output-feedback controller de-

sign. The combined controller/observer system takes the

following form

ζ̇ = Aζ + Δ∗(y, z, d) (25)

ż = Δz(z, y, d) (26)

ẏ = ξ2 + L2y + ζ2 + Δ1(y, z, d) (27)

ξ̇i = ξi+1 + Li+1y − Li(ξ2 + L2y), 2 ≤ i ≤ n− 1 (28)

ξ̇n = u+ ũ− Ln(ξ2 + L2y) (29)

where ũ = qμ(u) − u is the input quantization error.

Obviously, system (25)–(29) is a higher-order variant of

the system (7)–(8) with x1 = (ζ, z) appended with more

than one nonlinear integrators.

The presence of the input quantization error ũ requires

a significant modification of the small-gain design method

of Section 3.1 and the need of dynamically updating the

zooming variable:

μ(tk+1) = Q(μ(tk)), k ∈ Z+ (30)

where Q represents the dynamic quantization logic and

tk+1 − tk = td > 0 for k ∈ Z+.

Without going into the details, Theorem 5 is proven in

[50] which may be seen as an extension of Theorem 4 to the

case of actuator quantization:

Theorem 5. Under Assumptions 1–4, the quantized

output-feedback control problem is solvable for nonlinear

systems transformable to the generalized output-feedback

form (18)–(21).

Remark 1. Under some mild conditions, the controller

can be fine tuned to achieve asymptotic convergence of the

state signals to the origin. See [63] for some initial results.

4 Event-based nonlinear control

The study of event-triggered control has recently at-

tracted considerable attention within the control systems

community. A usually considered event-triggered control

system can be viewed as a sampled-data system in which

data sampling is triggered by external events depending

on the real-time system state, and may not be periodic.

Compared with the traditional periodic sampling, event-

triggered sampling takes into account the system behavior

between the sampling time instants and has been proved

to be quite useful in reducing the waste of computation

and communication resources in networked control sys-

tems. Event-triggered sampling also provides solutions to

sampled-data control of nonlinear systems, for which peri-

odic sampling may not work very well.

Significant contributions have been made to the literature

of event-triggered control, e.g., [64–71] and the references

therein. Specifically, in [65, 69], impulsive control methods

are developed to keep the states of first-order stochastic sys-

tems inside certain thresholds. In [72, 73], prediction of the

real-time system state between the sampling time instants

was employed to generate the control signal, and the pre-

diction is corrected by data-sampling when the difference

between the true state and the predicted state is too large.

For event-based control of nonlinear systems, Tabuada[67]

considered the systems which admit controllers to guarantee

the robustness with respect to the sampling errors. Then,

the event trigger is designed such that the sampling er-

ror is bounded by a specific threshold (depending on the

real-time system state) for convergence of the system state.

Marchand et al.[74] proposed a universal formula for event-

based stabilization of general nonlinear systems affine in

the control by extending Sontag′s result for continuous-
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time stabilization[19] . Tallapragada and Chopra[75] pro-

posed a Lyapunov condition for tracking control of non-

linear systems. The designs have been extended to dis-

tributed networked control[76, 77], output-feedback control

and decentralized control[71] and systems with quantized

measurements[78], to name a few. The reader may consult

the nice tutorial[79] for the recent developments of event-

triggered control and self-triggered control. For practical

implementation of event-triggered control, infinitely fast

sampling should be avoided, i.e., the intervals between the

sampling time instants should be lower bounded by some

positive constant[80]. In the context of event-based control,

due to the hybrid nature, the forward completeness of the

closed-loop system is a complex issue.

By considering an event-triggered control system as an

interconnection of the controlled system and the event trig-

ger (as shown in Fig. 2), the small-gain theorem has been

applied to event-triggered control of nonlinear systems.

Specifically, with the small-gain methods, event-triggering

mechanisms can be designed to avoid infinitely fast sam-

pling, and at the same time, to achieve asymptotic stabiliza-

tion. The forward completeness issue with event-triggered

control can be addressed systematically by using ISS small-

gain arguments.

Fig. 2 Event-triggered control system as an iterconnection of

two subsystems

4.1 Small-gain based event-triggering con-
trollers

An event-triggered state-feedback control system is gen-

erally in the following form:

ẋ(t) = f(x(t), u(t)) (31)

u(t) = v(x(tk)), t ∈ [tk, tk+1), k ∈ S ⊆ Z+ (32)

where x ∈ Rn is the state, u ∈ Rm is the control input,

f : Rn × Rm → Rn is a locally Lipschitz function repre-

senting system dynamics, v : Rn → Rm is a locally Lips-

chitz function representing the control law. It is assumed

that f(0, v(0)) = 0. The time sequence {tk}k∈S is deter-

mined online based on the measurement of the real-time

system state. Suppose that x(t) is right maximally defined

for all t ∈ [0, Tmax) with 0 < Tmax ≤ ∞. With respect to

the possible finite-time accumulation of tk and finite-time

divergence of x(t), we consider three cases:

Case 1. S = Z+ and limk→∞ tk < ∞, which means

Zeno behavior[81].

Case 2. S = Z+ and limk→∞ tk = ∞. In this case, x(t)

is defined on [0,∞).

Case 3. S is a finite set {0, · · · , k∗} with k∗ ∈ Z+, i.e.,

there is a finite number of sampling time instants. In this

case, tk∗ < Tmax and we set tk∗+1 = Tmax for convenience

of discussions.

It should be noted that, in any case, x(t) is defined for

all t ∈ ⋃
k∈S[tk, tk+1). With an appropriate event trigger

design, we will show that infk∈S{tk+1 − tk} > 0, which

means that Case 1 is impossible. Also, by means of small-

gain arguments, we will prove that Tmax = ∞ for Case 3.

Define

w(t) = x(tk) − x(t), t ∈ [tk, tk+1), k ∈ S (33)

as the sampling error, and rewrite

u(t) = v(x(t) + w(t)). (34)

By substituting (32) into (31), we have

ẋ(t) = f(x(t), v(x(tk))) =: f̄(x(t), x(tk)). (35)

Then, by using (34), we have

ẋ(t) = f̄(x(t), x(t) + w(t)). (36)

If w(t) is not adjustable, then the event-triggered control

problem is reduced to the measurement feedback control

problem. The basic idea of event-triggered control is to ad-

just w(t) online with an appropriate data-sampling strategy,

to realize asymptotic convergence of x(t), if possible. From

this point of view, the structure of the closed-loop system

can be represented with the block diagram shown in Fig. 2.

By taking the advantage of the interconnection struc-

ture, we develop a nonlinear small-gain approach to event-

triggered control of nonlinear systems.

Assumption 5. System (36) is ISS with w as the input,

i.e., there exist β ∈ KL and γ ∈ K such that for any ini-

tial state x(0) and any measurable and locally essentially

bounded w, it holds that

|x(t)| ≤ max {β(|x(0)|, t), γ(‖w‖∞)} (37)

for all t ≥ 0.

By using the small-gain theorem, under Assumption 5, if

the event trigger is designed such that |w(t)| ≤ ρ(|x(t)|) for

all t ≥ 0 with ρ ∈ K satisfying

ρ ◦ γ < Id (38)

then x(t) asymptotically converges to the origin. Based on

this idea, the event trigger considered in this paper can be

defined as follows: if x(tk) �= 0, then

tk+1 = inf {t > tk : ρ(|x(t)|) − |x(t) − x(tk)| = 0} . (39)

The data sampling event is not triggered if

for some specific k∗ ∈ Z+, x(tk∗) = 0 or

{t > tk : ρ(|x(t)|) − |x(t) − x(tk)| = 0} = ∅. Note that,

under the assumption of f(0, v(0)) = 0, if x(tk∗) = 0, then
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u(t) = v(x(tk∗)) = 0 keeps the system state at the origin

for all t ∈ [tk∗ ,∞).

With the event trigger (39), given tk and x(tk) �= 0, tk+1

is the first time instant after tk such that ρ(|x(tk+1)|) −
|x(tk+1) − x(tk)| = 0. Since ρ(|x(tk)|) − |x(tk) − x(tk)| =

ρ(|x(tk)|) > 0 for any x(tk) �= 0 and x(t) is continuous on

[0,∞), we have ρ(|x(t)|) − |x(t) − x(tk)| > 0 for all t ∈
[tk, tk+1), k ∈ S. By using the definition of w(t) in (33), we

have

|w(t)| ≤ ρ(|x(t)|) (40)

for all t ∈ ⋃
k∈S[tk, tk+1).

Theorem 6 presents a condition on the ISS gain γ to find a

ρ for the event trigger (39) such that infinitely fast sampling

is avoided by infk∈S{tk+1 − tk} > 0, and moreover, x(t) is

defined for all t ∈ [0,∞) and asymptotically converges to

the origin.

Theorem 6. Consider the event-triggered control sys-

tem (36) with locally Lipschitz f̄ satisfying f̄(0, 0) = 0 and

w defined in (33). If Assumption 5 is satisfied with a locally

Lipschitz γ, then one can find a ρ ∈ K∞ such that ρ satisfies

(38) and ρ−1 is locally Lipschitz.

Moreover, with the sampling time instants triggered by

(39), it can always be guaranteed that

inf
k∈S

{tk+1 − tk} > 0 (41)

and, for any specific initial state x(0), the system state x(t)

satisfies

|x(t)| ≤ β̆(|x(0)|, t) (42)

with β̆ ∈ KL, for all t ≥ 0.

The original proof of Theorem 6 can be found in [82].

4.2 Decentralized event-based control

In this section, we consider the decentralized event-

triggered control for a large-scale system composed of N

subsystems, of which the i-th subsystem (i = 1, · · · , N)

takes the following form

ẋi = fi(x, ei) (43)

where xi ∈ Rni is the state of each isolated i-th system,

x = [xT
1 , · · · , xT

N ]T ∈ Rn, ei ∈ Rni represents the sampling

error of xi, fi : Rn × Rni → Rni satisfying fi(0, 0) = 0

represents the system dynamics.

For the i-th subsystem and for a sequence of event-

triggering time instants {tik}k∈Si with Si = {0, 1, 2, · · · } ⊆
Z+ and ti0 = 0, define sampling error ei as

ei(t) = xi(t
i
k) − xi(t), t ∈ [tik, t

i
k+1), k ∈ Si. (44)

Here, the sequence {tik}k∈Si of the i-th subsystem is sup-

posed to be triggered by comparing the sampling error

|xi(t
i
k) − xi(t)| with a continuous, positive threshold sig-

nal μi : R+ → R+. Specifically, the event-triggering time

instants are generated by

tik+1 = inf
t>ti

k

{
|xi(t

i
k) − xi(t)| = μi(t)

}
, k ∈ Si. (45)

If Si ⊂ Z+, then Si = {0, 1, · · · , k∗}. In this case, for

convenience of notations, we define tik∗+1 = ∞. Like in

the subsection 4.1, the combination of (43), (44) and (45)

implies that the closed-loop, decentralized event-triggered

system is a hybrid system. Suppose that x(t) is right max-

imally defined on [0, Tmax). Then, it holds that

Tmax ≥ sup
k∈Si

{tik} (46)

for i = 1, · · · , N . It is worth noting that the sequence

{tik}k∈Si defined by (45) may be aperiodic so it differs fun-

damentally from traditional sampled-data control based on

periodic sampling. This fact makes the stability analysis

more challenging, at the price of saved communication and

computation.

Recall the definition of ei(t) in (44). The event trigger

defined by (45) guarantees that

|ei(t)| ≤ μi(t) (47)

for all t ∈ [0, Tmax).

For practical implementation of the event-triggered con-

trol law, infinitely fast sampling should be avoided. We aim

to develop a new approach to decentralized event-triggered

control such that the following two objectives are achievable

at the same time.

Objective 1. Infinitely fast sampling is avoided, i.e., for

any specific x(0) and any specific μi(0) > 0, i = 1, · · · , N ,

the intervals tik+1 − tik between the event-triggering time

instants for each xi-subsystem (i = 1, · · · , N) are lower

bounded by a positive constant.

Objective 2. The closed-loop event-triggered system is

forward complete, i.e., x(t) is defined for all t ≥ 0 and all

initial condition x(0). In addition, x(t) globally asymptot-

ically converges to the origin.

In this paper, we focus on the event trigger design,

and assume, without loss of generality[21], that local feed-

back control laws have been designed such that each xi-

subsystem is input-to-state stable with the inputs ei and

xj for j �= i.

Assumption 6. For i = 1, · · · , N , each xi-subsystem is

ISS with an ISS-Lyapunov function Vi : Rni → R+, which

is locally Lipschitz on Rni\{0} and satisfies

αi(|xi|) ≤ Vi(xi) ≤ αi(|xi|) (48)

Vi(xi) ≥ max
j �=i

{χj
i (Vj(xj)), γi(|ei|)} ⇒

∇Vi(xi)fi(x, ei) ≤ −αi(Vi(xi)) a.e. (49)

where αi, αi ∈ K∞, χj
i , γi ∈ K ∪ {0}, and αi is continuous

and positive definite.

With Assumption 6 satisfied, the large-scale system (43)

is ISS with ei for i = 1, · · · , N as the inputs, if the intercon-

nection gains χj
i satisfy the cyclic-small-gain condition. If,

additionally, the event triggers are designed such that Ob-

jective 1 is achieved and each ei(t) asymptotically converges

to the origin, then x(t) globally asymptotically converges to

the origin. In this section, we propose a new class of decen-
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tralized event triggers for the large-scale nonlinear system

by using ISS small-gain arguments.

In this paper, each threshold signal μi is generated by a

dynamic system of the form

η̇i(t) = −φi(ηi(t)) (50)

μi(t) = ϕi(ηi(t)) (51)

where ηi ∈ R+ is the state, φi : R+ → R+ is locally Lips-

chitz and positive definite, and ϕi : R+ → R+ is continu-

ously differentiable on (0,∞) and of class K∞. The initial

state ηi(0) is chosen to be positive. So, μi(0) is positive.

The design of the event triggers depends on the dynamic

behavior of the closed-loop event-triggered system. Based

on the estimation of the convergence rate of the closed-

loop event-triggered system, the functions φi and ϕi can be

found for the decentralized event triggers to achieve Objec-

tives 1 and 2.

Lemma 1 provides an estimate on the convergence rate

of the closed-loop event-triggered system.

Lemma 1. Under Assumption 6, suppose that the large-

scale system composed of (43) satisfies the cyclic-small-gain

condition.

1) For each i = 1, · · · , N , there exists a σi ∈ K∞ being

locally Lipschitz on (0,∞) such that

V̄i(xi) = σi(Vi(xi)) (52)

is an ISS-Lyapunov function of the xi-subsystem, that sat-

isfies

V̄i(xi) ≥ max
j �=i

{
χ̄j

i (V̄j(xj)), γ̄i(|ei|)
}
⇒

∇V̄i(xi)fi(x, ei) ≤ −α′
i(V̄i(xi)) a.e. (53)

where χ̄j
i ∈ K∪ {0} satisfies χ̄j

i < Id, γ̄i = σi ◦ γi, and α′
i is

continuous and positive definite.

2) Consider the large-scale system composed of (43), (50)

and (51). Suppose that (47) holds for t ∈ [0, Tmax) for

i = 1, · · · , N . By choosing ϕi such that γ̄i ◦ ϕi < Id for

i = 1, · · · , N , the function

V (x, η) = max
i=1,··· ,N

{V̄i(xi), ηi} (54)

satisfies

D+V (x(t), η(t)) ≤ −α(V (x(t), η(t))) (55)

for all t ∈ [0, Tmax), where

α(s) = min
i=1,··· ,N

{α′
i(s), φi(s)} (56)

for s ∈ R+.

Based on the estimation of the convergence rate of the

closed-loop event-triggered system, we summarize our main

result of decentralized event trigger design in Theorem 7.

Theorem 7. Consider the interconnected system com-

posed of (43), (50) and (51) subject to (45), with Assump-

tion 6 satisfied. The two objectives of decentralized event-

triggered control are achievable if there exists a γ̄ ∈ K∞

such that γ̄ ≥ maxi=1,··· ,N{γ̄i} and α−1
i ◦ σ−1

i ◦ γ̄ is locally

Lipschitz for i = 1, · · · , N .

Please see [83] for the original proofs of Lemma 1 and

Theorem 7.

5 Conclusions and future work

This paper has presented a review of recent results in the

field of constructive nonlinear control design, with a focus

on the nonlinear small-gain tools in solving the problems of

quantized feedback stabilization and event-triggered control

for nonlinear systems.

In view of the convergence of control, computing and

communications, there are quite a few fundamental and ba-

sic research problems that are open and await new solutions

and tools. The following listed subjects are closely related

to the preliminary results presented in this review article.

1) Event-triggered control of nonlinear systems with

quantized and/or delayed measurements. In networked con-

trol systems, data-sampling and quantization usually co-

exist. In the quantized control results, we use ISS gains

to represent the influence of quantization error, while for

event-based control, we employ an ISS gain to represent the

influence of data-sampling. This creates an opportunity to

develop a unified framework for event-triggered and quan-

tized control of nonlinear systems. Time-delays also arise

from networked control systems. Note that [78] has stud-

ied event-triggered control for linear systems with quantiza-

tion and delays, also see our recent preliminary work[84, 85].

Based on the recent theoretical achievements for nonlinear

systems with time-delays[86], it is of interest to study the

event-triggered control problem for nonlinear systems by

taking into account the effects of time-delays.

2) Distributed event-triggered control. The idea of small-

gain design also bridges event-triggered control and our re-

cent distributed control results. In [87], it is shown that a

distributed control problem for nonlinear uncertain systems

can ultimately be transformed into a robust stability prob-

lem of a network of ISS subsystems. By integrating the idea

in this paper, distributed control could be realized through

event-triggered information exchange. Note that such ideas

have been implemented for linear systems[76, 88−90] .

3) Data-driven nonlinear control. An emerging topic

under current investigation is to develop a new class of

data-driven controllers for robust optimal control of nonlin-

ear uncertain systems, leveraging techniques from reinforce-

ment learning and adaptive dynamic programming. Some

prior results are presented in [91–94] and references therein.
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