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Abstract: This paper describes a brain-inspired simultaneous localization and mapping (SLAM) system using oriented features from

accelerated segment test and rotated binary robust independent elementary (ORB) features of RGB (red, green, blue) sensor for a

mobile robot. The core SLAM system, dubbed RatSLAM, can construct a cognitive map using information of raw odometry and

visual scenes in the path traveled. Different from existing RatSLAM system which only uses a simple vector to represent features of

visual image, in this paper, we employ an efficient and very fast descriptor method, called ORB, to extract features from RGB images.

Experiments show that these features are suitable to recognize the sequences of familiar visual scenes. Thus, while loop closure errors

are detected, the descriptive features will help to modify the pose estimation by driving loop closure and localization in a map correction

algorithm. Efficiency and robustness of our method are also demonstrated by comparing with different visual processing algorithms.

Keywords: Simultaneous localization and mapping (SLAM), RatSLAM, mobile robot, oriented features from accelerated segment

test and rotated binary robust independent elementary (ORB) features of RGB (red, green, blue), cognitive map.

1 Introduction

Animals have an instinctive ability to explore and nav-

igate in an unknown space. Inspired by the spatial cogni-

tion of animals, in the past decades, many researchers were

investigating how animals perceive, store and maintain spa-

tial knowledge[1−7]. Tolman[1] first thought that cognitive

map may exist in rodent′s brain in 1948. In 1971, O′Keefe

and Dostrovsky[2] found place cells, located in hippocam-

pus, increase their firing rate when rodent is in a particular

position in a maze. With the development of neurology,

neurophysiological studies[3−6] then revealed that entorhi-

nal cortex (EC) has an internal representation of the envi-

ronment by spatially encoded cells identified as “grid cells”.

These cells are activated in a hexagonal pattern during spa-

tial navigation and are also independent of external envi-

ronment. Furthermore, experimental results[7] evidenced

that hippocampus can receive all sensory neocortical infor-

mation from EC due to connections between EC and hip-

pocampus. These biological findings motivated researchers

in robotics area to build a cognitive map by a process inte-

grating activity from both the grid cells and place cells in

the EC-hippocampal area[8−11].

These findings not only help us have a deeper under-

standing of brain “GPS” (global positioning system)[12],

but also trigger research on brain-inspired simultane-

ous localization and mapping (SLAM) and relevant
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algorithms[13−16] . Though the mechanism of brain “GPS”

still has many unknown factors, it can be safely claimed

that the SLAM system of rodents is not only based on in-

ternal path integration, but also involves external visual

cues of physical world. Rodent can update the pose by fus-

ing the external visual information and the neural activities

of place cells and grid cells. These behaviors are similar

to the prediction and update process in SLAM. Different

from the existing SLAM algorithms based on probabilistic

methods[17, 18], RatSLAM[19], a brain-inspired SLAM algo-

rithm, creates a cognitive map based on visual informa-

tion and the information of its previous experiences. Rat-

SLAM simulates the rodent′s spatial cognition mechanism

using pose cells, local view cells and cognitive maps. Pose

cells construct a continuous attractor network (CAN) which

is suggested to demonstrate the path integration for grid

cells in EC, local view cells functionally replace rodent′s
perceptual system and the cognitive map is an analogy of

place cells in the hippocampus. In practice, Milford and

Wyeth[19] successfully implemented a coherent map after

mapping a 66 km suburb using only a single web camera.

However, the vision algorithm of this method is not fit for

an office environment with many similar scenes. In order

to map an office environment, Tian et al.[20, 21] took advan-

tage of RGB-D (red, green, blue and depth) information to

construct a spatial cognitive map of an office environment.

Similarly, the above methods just simply extract intensity

scanline profiles from visual information and make a com-

parison among these scanline profiles.

In past years, various computer vision technologies

have been proposed to detect and describe local features,

which are widely applied in visual SLAM algorithms[22−24] .
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Scale-invariant feature transform (SIFT)[25] is a popular

and useful visual processing algorithm, which is highly in-

variant to image scaling and rotation, and even partially

invariant to the illumination. Even over a decade, SIFT

has been successfully applied in a set of applications. How-

ever, SIFT is not suitable for real time demand, because it

takes massive time for calculating the scale factor. There-

fore, many methods aimed at speeding up the computation

of SIFT have been published[26−32].

In particular, features from accelerated segment test

(FAST)[28] and binary robust independent elementary fea-

tures (BRIEF)[30] are two arguably outstanding meth-

ods. FAST uses machine learning to derive corner de-

tector and provides a suitable way to finding key points

in real-time systems, such as, parallel tracking and map-

ping (PTAM)[33]. BRIEF is a binary feature descriptor

that relies on a relatively small number of intensity dif-

ference tests to represent an image patch. One great ad-

vantage of BRIEF descriptors is that they are very fast

to compute and to compare. Gálvez-López and Tardos[34]

proposed a real-time visual place recognition method by

both FAST and BRIEF. Furthermore, by integrating FAST

and BRIEF, Rublee et al.[35] developed a visual processing

method named oriented FAST and rotated BRIEF (ORB),

which is an efficient alternative to SIFT. ORB uses FAST

algorithm to detect key points in images, filters the key fea-

tures using Harris corner measure[36] and computes binary

descriptors using oriented BRIEF. ORB can provide good

performance with low cost computation, it is suitable to

construct a semi-dense map in real-time[37].

Inspired by these implementations of ORB and Rat-

SLAM, ORB is adopted to replace RatSLAM algorithm′s
vision processing method in this paper. By fusion of RGB

information and raw odometry information, a cognitive map

can be built. This map contains a set of spatial coordinates

that robot has traveled. In order to fully verify the effec-

tiveness of our method, we also make a comparison with

other visual processing method below. The experiment re-

sults show that ORB can significantly enhance robustness

of the proposed SLAM system.

This paper is organized as follows. Section 1 has in-

troduced the background of brain-inspired SLAM and dis-

cussed the purpose of this paper. An overview is given in

Section 2 to describe system architecture and robot plat-

form. In Section 3, visual processing method is explained

in detail. The cognitive model of brain-inspired SLAM is

described in Section 4. Experimental results are demon-

strated in Section 5 to show the effectiveness of our pro-

posed method. Finally, Section 6 gives a conclusion.

2 System overview

Fig. 1 shows the hardware architecture of robot in experi-

ment. The robot consists of a mobile base, a RGB-D camera

and a miniPC. We use Pioneer 3-DX as mobile base. The

mobile base is a compact differential-drive mobile robot,

which includes a motion controller with built-in encoders.

The robot′s embedded motion controller performs velocity

control of the robot and offers odometry information. A

RGB-D camera is mounted on mobile base to capture vi-

sual information of environment. The miniPC is used to

process visual information, odometry information and cog-

nitive model.

Fig. 1 Robot platform

A schematic overview of the cognitive map building sys-

tem is shown in Fig. 2. The system mainly consists of vi-

sual processing module and cognitive map model. The vi-

sual processing module is responsible for extracting ORB

features. In cognitive map model, the ORB features are as-

sociated to local view cells which represent existing cues at

specific location. Raw odometry information from mobile

base is involved in path integration process. The internal

CAN dynamics ensures cognitive map model to converge at

a steady state even without external sensors. Eventually,

local view cells activity, path integration process and CAN

dynamics work together to build a cognitive map.

3 Visual processing

Visual processing is an irreplaceable part of our SLAM

algorithm. During mapping process, visual information is

adopted to determine the generation of local view cells

and eliminate redundant images; while in global localiza-

tion process, robot captures incoming frames and compares

them with recorded visual templates to determine its loca-

tion. In previous implementation, Milford and Wyeth[19]

built a coherent map on large suburban areas. Milford′s
vision algorithm adopts a scanline intensity profile to de-

duce the translation and rotation with previously seen vi-

sual information. The scanline intensity profile is a one-

dimensional vector by summing pixels in column and then
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normalizing the vector. However, this processing way is im-

precise and not a good fit for an office environment with

many similar scenes. In this paper, we use ORB algo-

rithm to replace the simple vision algorithm. The method

is proved to be well-performing in experiments which will

be illustrated in Section 5.

Fig. 2 System architecture

ORB is a combination of FAST detector and oriented

BRIEF descriptor with modifications to enhance the perfor-

mance. As the classical visual processing algorithm, FAST

is very useful to detect key points. However, FAST cannot

produce multi-scale features and does not have an orien-

tation component. To solve the former limitation, a scale

pyramid of the image was employed to generate FAST fea-

tures at each level in the pyramid. For latter limitation,

the major improvement over FAST is that the intensity

centroid is introduced to measure corner orientation. As

for descriptor, BRIEF is one of the fastest available fea-

ture descriptors for calculation and matching, however it

is variant to in-plane rotation. In order to address this

limitation, Rublee adopts a steered BRIEF to improve the

performance. The BRIEF descriptors in ORB should have

two properties: lower correlation and high variance among

binary tests. Low correlation among binary tests indicates

each new test will bring new information into the descrip-

tors, thus maximizing the amount of information recorded

in descriptor. High variance among binary tests makes fea-

tures of image more discriminative. Rublee developed a

learning method to ensure descriptors have these two prop-

erties. This method searches for a set of uncorrelated binary

tests in an image patch, as shown in Fig. 3.

Fig. 3 presents a flow chart of the learning method in

ORB to choose a good set of binary features with high vari-

ance and low correlation. In this method, all possible binary

tests in an image patch are firstly ordered to obtain high

variance binary tests. After that, a greedy search process

is implemented to filter the high correlation binary tests.

Finally, the selected binary tests form an ORB descriptor.

Fig. 3 Flow chart of learning method to choose a good set of binary features with high variance and low correlation
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By the integration of FAST and BRIEF approaches,

ORB method has been proposed. Experimental results

showed that for the same number of features, the process-

ing time of ORB is faster than speeded up robust features

(SURF) by an order of magnitude and over two orders faster

than SIFT. ORB was used to achieve the good performance

for place recognition[37, 38]. Comparing with the other fea-

ture descriptions such as SIFT, SURF and FAST, major

advantages of ORB include: 1) It provides a fast calcula-

tion and matching algorithm. 2) ORB retains the ability

of invariance to image scaling and rotation. 3) ORB is

relatively immune to image noise, lighting and perspective

distortion.

Thus, ORB method is employed in this paper to extract

features from images as visual template. When the current

image matches prior visual templates, it is considered that

robot reached this place previously. Otherwise, a new visual

template is added to local view cells, as shown in Fig. 4.

4 Cognitive map model

The cognitive map model mainly contains several com-

ponents: local view cells, CAN dynamics, path integration

process and cognitive map construction process. In this sec-

tion, we give a description of these components in detail.

4.1 Local view cells

Local view cells are constructed as a vector, in which each

element is associated with a cell unit in CAN. In visual pro-

cessing module, if visual templates are sufficiently similar

to recorded view templates, cognitive map model will inject

an energy to associated cell unit. In contrast, significantly

different images are treated as new templates and pushed

into the vector. The inject energy will produce an activity

packet at inactive zone in CAN model. This will help sys-

tem to perform path integration and correct loop closure in

system. This change in cognitive map model caused from

local view is described as

ΔPxiyiθi =
∑

i

βixiyiθiVi (1)

where β is a connection matrix from local view cells Vi to

associated CAN cells P .

4.2 CAN dynamics

The core of the cognitive map model is a continuous at-

tractor neural network, known as pose cell model. This

model is widely used to simulate brain “GPS”. In Rat-

SLAM, pose cells are arranged in (x, y, θ) coordinates, (x, y)

is corresponding to a location in pose cell planes, and θ rep-

resents robot head direction. In addition, the dynamics of

CAN structure ensures the activity P in pose cells to re-

main steady by following phases: an excitatory update, an

inhibition and a normalisation.

4.2.1 Excitatory update

In this phase, a three-dimensional Gaussian distribution

is employed to create an excitatory weight matrix ε, which

drives activity P from each cell to all other cells in the pose

cells matrix. The distribution is defined by

εabc = e
− a2+b2

σxy e
− c2

σθ (2)

where σxy and σθ are variances for the distribution in (x, y)

plane and θ dimension. Indexes a, b and c mean x, y, θ are

within the distribution in pose cells co-ordinates. Then, the

change of activity ΔPx,y,θ in pose cells is given by

ΔPx,y,θ =

DimX∑

xi=0

DimY∑

yi=0

Dimθ∑

θi=0

Pxi,yi,θiε(a−xi)(b−yi)(c−θi) (3)

where Dim X, Dim Y and Dim θ are three dimensions of

pose cells, we set Dim X = Dim Y = 60 and Dim θ = 36

in our experiment.

Fig. 4 Templates matching process for local view cells. ORB features are extracted from environment scenes as visual template which

is compared against all visual templates associated with local view cells Lvi. When current visual template matches a prior template

in visual templates, the associated local view Lvi fires and injects energy to cognitive map model. Otherwise, add a new local view

cell Lvj to Lv.
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4.2.2 Inhibition

Each cell also restrains neighboring cells via an inhibitory

weight matrix ξ. ξ has the same form as excitatory weight

matrix, but non-positive weights. After excitatory phase,

the opposite inhibition will result in convergence in network.

By performing inhibition and adding a global inhibition μ,

the change of activity is given by

ΔPx,y,θ =

DimX∑

xi=0

DimY∑

yi=0

Dimθ∑

θi=0

Pxi,yi,θiξ − μ (4)

where ξ is inhibitory weight matrix and activity P in pose

cell model is limited to non-negative value.

4.2.3 Normalization

Finally, the normalization will ensure the number of ac-

tivity P in pose cells to remain at one. The activity after

normalization is

P t+1
x,y,θ =

P t
x,y,θ

DimX∑
xi=0

DimY∑
yi=0

Dimθ∑
θi=0

P t
xi,yi,θi

. (5)

4.3 Path integration

The path integration shifts the pose cell activity away

from the existing one based on raw odometry information.

This process eliminated the need of tuning parameters in

pose cell model. Furthermore, path integration process is

independent of volatile robot velocity and sensory informa-

tion. The activity update process is defined as

P t+1
xiyiθi

=

ρx+1∑

a=ρx

ρy+1∑

b=ρy

ρθ+1∑

θ=ρθ

αabcP
t
(xi+a)(yi+b)(θi+c) (6)

where ρx, ρy and ρθ are integer offset compared to current

activity position (xi, yi, θi). The activity P t+1
xiyiθi depends

on previous time step activity P t
xiyiθi and a residue compo-

nent α. The residue component is based on the fractional

part of the offset. The integer offset is calculated by

⎡

⎢⎣
ρx

ρy

ρθ

⎤

⎥⎦ =

⎡

⎢⎣
�λxυ cos θi�
�λyυ sin θi�

�λθω�

⎤

⎥⎦ (7)

where υ is translational velocity, ω represents rotation ve-

locity and θi is the preferred cell orientation. λx, λy and λθ

are path integration constants.

4.4 Cognitive map construction

Cognitive map is a topological map that represents spa-

tial relationship among landmarks of an environment. Each

point in cognitive map can be represented by a triple

ei = {Pi, Vi,pi} (8)

where ei, called experience, is a point in cognitive map.

Pose cells Pi and local view cells Vi are associated to ei.

Finally, pi is the location of ei within map space. In this

paper, if the distance between the pose cells of existing ex-

periences and current pose cell reaches a threshold, then a

new experience is created:

ej = {Pj , Vj ,pi + Δpij} (9)

where the translation Δpij between two experiences is ob-

tained from mobile base. Finally, when cognitive map

model detects a loop closure in experience ei, the change

in the position of experience ei is obtained by

Δpi = α

⎡

⎣
Nf∑

j=1

(pj − pi − Δpij) +

Nt∑

k=1

(pk − pi − Δpki)

⎤

⎦

(10)

where α = 0.5 is a correction rate constant, Nf is the num-

ber of links from experience ei to other experiences, Nt is

the number of links from other experiences to experience

ei.

5 Experiment result

We evaluate the different aspects of our proposed algo-

rithm in the following sections. In Section 5.1, we compare

ORB algorithm with SIFT and the effectiveness of adopting

RGB-D information. Next, we present the mapping result

of our method in Section 5.2. In Section 5.3, we evaluate the

performance of localization ability when facing noise data.

The experiment data[20] comes from an office in Singapore

Research Institute, which contains many corridors, uniform

furniture and moving people.

5.1 Feature extraction

In this section, we demonstrate ORB performance by

making a comparison between SIFT and Tian′s method[20].

SIFT is one of the most popular feature extraction methods

and a good fit for visual SLAM. Tian′s visual processing

method adopted RGB-D information to build a cognitive

map successfully. To better illustrate the ability of ORB,

SIFT and Tian′s method, we select some events from ex-

periment.

We firstly show the main idea of visual processing method

of Tian′s work based on RGB-D information in Fig. 5. From

Fig. 5, intensity profiles of neighboring environment scenes

are firstly extracted. Then, these profiles are processed by

a sum of absolute differences (SAD) method to get the dis-

tance di. This distance is the sum of absolute differences

between pixels value in these intensity profiles. Each dis-

tance di from both RGB and depth frames are finally as-

signed by using different weights to construct the distance

d. It extracts one dimensional intensity profiles from both

RGB and depth images. And these one dimensional inten-

sity profiles are processed to calculate the distance between

current image and recorded visual templates in local view

cells. This method discards much information from physi-

cal environment, although it is simple and efficient. Unlike

the above method, SIFT and ORB provided a better way
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to extract features from incoming RGB frame to describe

the surrounding environment.

In Fig. 6, image features based on SIFT and ORB are pre-

sented with circles and matched features are connected with

lines. In the first row, the extracted features of neighbor-

ing frames are shown from both SIFT and ORB methods.

It is obvious that these two methods provided the similar

image matching capability. In the second row, we specially

selected a loop-closure circumstance from the experiment,

the result shows that both methods can verify that these

two images captured in different time representing the same

location in the map. Different from SIFT, ORB is more

suitable to extract features in objects that are at a middle

and farther distance.

Fig. 5 A pair of neighboring RGB-D frames is showed. The top row is RGB information. The bottom row is depth information. Both

RGB and depth information are captured simultaneously. And then, intensity profiles of neighboring environment scenes are extracted.

These intensity profiles are processed by a sum of absolute difference to get a distance di. Distances di from RGB and depth images

are weighted and then contributed to d, which is used to distinguish different scenes.

Fig. 6 Example of features matched by using SIFT (pair on the left) and ORB descriptors (pair on the right) in the first and second

rows. The first row presents neighboring frames captured by camera. The second row presents a loop closure event in experiment. It

is obvious that both SIFT and ORB can provide sufficient corresponding matched points.



570 International Journal of Automation and Computing 14(5), October 2017

Furthermore, one of the advantages of ORB method is its

higher efficiency on a standard CPU, this can be compared

with SIFT which needs a lot of calculation time. In our

experiment, the feature extraction process was executed in

a single thread running on an Intel i7 3.6 GHz processor.

The parameters of ORB implementation are to extract 500

key points, at 8 different pyramid levels with a scale factor

of 1.2.

We compare the processing time for both SIFT and ORB

by testing them on our experiment data set including 3 732

frames. The comparison results are summarized in Table 1.

Our results show that ORB features are almost as reli-

able as SIFT features for detecting loop closure and match-

ing neighboring frames. As advantages, ORB features not

only are invariant to image scale and rotation, but also are

much faster to process, speeding up the visual processing

method.
Table 1 Comparison of visual processing time

Methods ORB Tian[20] SIFT

Visual information RGB RGB-D RGB

Time per frame (ms) 4.77 4.54 196.83

Total time for 3 732 frames (s) 16.43 14.23 734.46

5.2 Cognitive map

In this section, cognitive mapping results are showed to

demonstrate the performance of our proposed method. As

shown in Fig. 7, the mapping process includes three ma-

jor steps: 1) The external RGB images and internal self-

motion are used to generate and shift active packets in the

pose cell model. 2) Local view cells correct accumulative

errors caused by the path integration when a loop closure

is formed. 3) The cognitive map will persistently update

throughout the process. In the following, we will describe

these processes in the local view cells, pose cells and cogni-

tive map construction.

5.2.1 Local view cell activity

The learned view template versus frame generated from

RatSLAM using one-dimensional profiles and ORB features

are showed in this section.

Fig. 7 Cognitive mapping process

The local view cell learned 1 365 visual templates during

mapping process, as shown in Fig. 8 (a). The graph shows

the learned visual template versus frame generated from

ORB based visual processing module. The y-axis indicates

the addition of learned visual templates and x-axis indicates

the number of incoming frames captured by camera. Dura-

tion of without new template means that either the robot

travels along places that have been learned, or the robot

stays static. Furthermore, the number of newly added local

view cells will gradually decrease after robot loops the en-

vironment several times. Compared with Fig. 8 (b), which

is generated from one dimensional intensity profiles[19], it

is obvious that many false positives have been produced,

directly leading to wrong loop closure and failures in spa-

tial representation. Hence, it is desirable to use ORB to

construct a more accurate map.

5.2.2 Pose cell activity

During mapping process, there is an active packet in pose

cell model. The active packet represents robot′s location.

Normally, it moves around according to self-motion infor-

mation from mobile base. However, there are two typical

events in the pose cell model during mapping process, as

shown in Fig. 9.

Fig. 8 Activity of local view cells during mapping process. Graphs (a) and (b) are view template versus frame generated from ORB

features and intensity profiles, respectively. While making a comparison with (a) and (b), it is obvious that ORB can help RatSLAM

significantly reduce the number of false positives.
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Generally, the number of cell units in pose cell model

is inadequate to present all corresponding places in physi-

cal environment. There is a one-to-many relationship: One

cell unit can have many physical environment places as-

sociated to it. Therefore, pose cells are arranged with a

recurrent structure to keep continuity of pose cell model.

Hence, sometimes partially activity packet makes a leap to

opposite face in the pose cell, as shown in Fig. 9 (a).

Local view cells play an important role in loop closure

process. When robot enters a place that has been reached

before, active local view cells transmit an energy to asso-

ciated pose cell. Fig. 9 (b) and Fig. 9 (c) show that system

encounters a familiar scene, and then local view cells inject

energy to pose cells, eventually, create two peaks in pose

cells. However, the pose cell model is capable of maintain-

ing or correcting its beliefs, the dynamics of pose cells filters

ambiguity caused by the similar visual cues and converges

pose cell model into one single peak.

Fig. 9 Activity packets are present by the orange zone, the lighter part means higher activation level. In (a), one active packet shifts

to opposite face to keep the consistency active packet. In (b), when the robot recognizes a sufficient similar environment scene, local

view cells inject energy into pose cells and then two active packets emerge in pose cells. In (c), only one packet has survived after both

two activity packets undergo CAN internal dynamics.

Fig. 10 (a) Self-motion information directly obtained from mobile base encoders contains “drift” phenomenon. (b) System detects

loop closure and correct the error. The red circle means the robot current place. (c) and (d) are cognitive maps generated from mapping

system based on ORB features and one-dimensional intensity profile respectively.
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5.2.3 Cognitive map construction

The mapping system does not track visual features across

several frames and does not take geometric relationship of

landmarks into consideration. It only connects and records

the simple spatial relationship of places in environment.

However, the map will constantly do map correction dur-

ing the whole process. When the robot reaches a familiar

environment scene, active local view cell injects energy to

associated pose cell, causing the robot to localise its cur-

rent pose. These behaviors prevent the robot from losing

its way, as shown in Figs. 10 (a) and 10 (b). In Fig. 10 (a), it

is obvious that robot falsely locates itself when it returns to

previously explored area. This is because self-motion infor-

mation from mobile base contains errors, directly leading to

the “drift” phenomenon. But, RatSLAM can detect loop

closure and reset its position, after local view cell stimulates

associated pose cell in Fig. 10 (b).

For comparison purpose, a map is built by one dimen-

sional intensity profiles[19], as shown in Fig. 10 (d). It has

been observed that this method failed to perform loop clo-

sure and is unable to construct a correct map of office en-

vironment. And conversely, in Fig. 10 (c), RatSLAM can

eliminate the ambiguous scenes and correct loop closure,

eventually, construct a correct cognitive map with the help

of ORB features.

5.3 Global localization

In the above section, we have studied the effectiveness

of different visual processing methods for cognitive map

building. In this section, how different visual processing

methods affect localization results will be focused on. In

order to test the ability of localization, we randomly se-

lected 1 244 frames from the raw database as the test data

set. From Table 1 in Section 5.1, SIFT algorithm needs to

spend about 200 ms extracting features even for each frame.

This slow calculation makes it hard to fit real-time robotics

applications. So we only compare the localization results

based on ORB and Tian′s method[20] in the following ex-

periment. The experiment results include two cases:

1) Images are clean without any noise.

2) Images are simulated to rotate with small degrees.

For the first case, the comparison results are summarized

in Table 2.

Fig. 11 This figure shows a snapshot of environment. (a) Original image selected from experiment. (b), (c) and (d) are environment

scenes and are clockwise rotated by 3, 5 and 7 degrees, respectively. With the increase of rotation angles, it is more difficult for system

to locate itself within the map.
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From Table 2, it is observed that a satisfactory accuracy

of localization based on ORB method can be achieved which

only requires RGB information of images (about 99.6%).

This accuracy is almost the same as Tian′s method in which

both RGB and depth information are used together. It is

concluded that ORB is almost as reliable as adopting RGB-

D information. These results also demonstrate that ORB

features are capable of distinguishing various scenes in en-

vironment.

For the second case, in order to study the robustness of

ORB features, we first simulate images with noise by rotat-

ing the clean images with a few small orientations as shown

in Fig. 11.

The localization performance for the simulated noise is

given in Table 3. Table 3 shows that both ORB and Tian′s
method can provide the good localization performance with

the accuracy above 95% when images are rotated by an an-

gle up to 7 degrees. This implies that ORB features are

capable of dealing with perceptual ambiguity in office envi-

ronment without depth information.

Table 2 Comparison of localization result

Method Visual information Trials
Miss matched Accuracy

images (%)

ORB RGB 1244 6 99.5

Tian[20] RGB-D 1 244 4 99.7

Table 3 Localization result (with rotation noise)

Method
Visual Rotation Miss matched Accuracy

information angles images (%)

1◦ 7 99.4

2◦ 9 99.3

3◦ 13 99.0

ORB RGB
4◦ 24 98.0

5◦ 35 97.4

7◦ 52 95.8

1◦ 4 99.7

2◦ 4 99.7

3◦ 4 99.7

Tian[20] RGB-D
4◦ 4 99.7

5◦ 4 99.7

7◦ 16 98.7

6 Conclusions

In this paper, we applied ORB feature extraction ap-

proach into RatSLAM system to build a cognitive map for

a mobile robot. In order to test ORB method, the per-

formance of extracted features has been demonstrated by

comparing a few different visual processing approaches. We

also compared the performance of different visual process-

ing methods such as SIFT approach and existing feature

extraction methods[19, 20] for both RGB and RGB-D sig-

nals. The feature extraction section showed that ORB is

not only suitable for matching neighboring frames with in-

plane camera motion, but also satisfying real-time visual

processing requirement. In global localization section, the

proposed brain-inspired SLAM system is able to realize the

localization in the map with the help of ORB features. Fur-

thermore, the cognitive mapping results verified that ORB

can significantly enhance the robustness of SLAM system in

indoor environment. Specifically, the proposed SLAM sys-

tem can greatly reduce false positives and repeatedly correct

loop closure even facing accumulative odometry error, and

eventually, constructs a cognitive map.
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