Skip to main content
Log in

Near Optimal PID Controllers for the Biped Robot While Walking on Uneven Terrains

  • Research Article
  • Published:
International Journal of Automation and Computing Aims and scope Submit manuscript

Abstract

The execution of the gaits generated with the help of a gait planner is a crucial task in biped locomotion. This task is to be achieved with the help of a suitable torque based controller to ensure smooth walk of the biped robot. It is important to note that the success of the developed proportion integration differentiation (PID) controller depends on the selected gains of the controller. In the present study, an attempt is made to tune the gains of the PID controller for the biped robot ascending and descending the stair case and sloping surface with the help of two non-traditional optimization algorithms, namely modified chaotic invasive weed optimization (MCIWO) and particle swarm optimization (PSO) algorithms. Once the optimal PID controllers are developed, a simulation study has been conducted in computer for obtaining the optimal tuning parameters of the controller of the biped robot. Finally, the optimal gait angles obtained by using the best controller are fed to the real biped robot and found that the biped robot has successfully negotiated the said terrains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Vukobratovic, A. A. Frank, D. Juricic. On the stability of biped locomotion. IEEE Transactions on Biomedical Engineering, vol. BME-17, no. 1, pp. 25–36, 1970. DOI: https://doi.org/10.1109/TBME.1970.4502681.

    Article  Google Scholar 

  2. S. Kajita, O. Matsumoto, M. Saigo. Real-time 3D walking pattern generation for a biped robot with telescopic legs. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Seoul, Korea, pp. 2299–2306, 2001. DOI: https://doi.org/10.1109/ROBOT.2001.932965.

    Google Scholar 

  3. M. Akhtaruzzaman, A. S. Amir, R. Khan. Quasi-inverse pendulum model of 12 DoF bipedal walking. International Journal of Automation and Computing, vol. 14, no. 2, pp. 179–190, 2017. DOI: https://doi.org/10.1007/s11633-016-1023-1.

    Article  Google Scholar 

  4. T. Mita, T. Yamaguchi, T. Kashiwase, T. Kawase. Realization of a high speed biped using modern control theory. International Journal of Control, vol. 40, no. 1, pp. 107–119, 1984. DOI: https://doi.org/10.1080/00207178408933260.

    Article  Google Scholar 

  5. D. J. Braun, M. Goldfarb. A control approach for actuated dynamic walking in biped robots. IEEE Transactions on Robotics, vol. 25, no. 6, pp. 1292–1303, 2009. DOI: https://doi.org/10.1109/TRO.2009.2028762.

    Article  Google Scholar 

  6. D. J. Braun, J. E. Mitchell, M. Goldfarb. Actuated dynamic walking in a seven-link biped robot. IEEE/ASME Transactions on Mechatronics, vol. 17, no. 1, pp. 147–156, 2012. DOI: https://doi.org/10.1109/TMECH.2010.2090891.

    Article  Google Scholar 

  7. J. S. Yeon, J. H. Park. A fast turning method for biped robots with foot slip during single-support phase. IEEE/ASME Transactions on Mechatronics, vol. 19, no. 6, pp. 1847–1858, 2014. DOI: https://doi.org/10.1109/TMECH.2014.2316007.

    Article  Google Scholar 

  8. E. Ohashi, T. Sato, K. Ohnishi. A walking stabilization method based on environmental modes on each foot for biped robot. IEEE Transactions on Industrial Electronics, vol. 56, no. 10, pp. 3964–3974, 2009. DOI: https://doi.org/10.1109/TIE.2009.2024098.

    Article  Google Scholar 

  9. T. H. S. Li, Y. T. Su, S. W. Lai, J. J. Hu. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 41, no. 3, pp. 736–748, 2011. DOI: https://doi.org/10.1109/TSMCB.2010.2089978.

    Article  Google Scholar 

  10. T. Sato, S. Sakaino, E. Ohashi, K. Ohnishi. Walking trajectory planning on stairs using virtual slope for biped robots. IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1385–1396, 2011. DOI: https://doi.org/10.1109/TIE.2010.2050753.

    Article  Google Scholar 

  11. F. Iida, R. Tedrake. Minimalistic control of biped walking in rough terrain. Autonomous Robots, vol. 28, no. 3, pp. 355–368, 2010. DOI: https://doi.org/10.1007/s10514-009-9174-3.

    Article  Google Scholar 

  12. C. J. Liu, D. W. Wang, Q. J. Chen. Central pattern generator inspired control for adaptive walking of biped robots. IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 43, no. 5, pp. 1206–1215, 2013. DOI: https://doi.org/10.1109/TSMC.2012.2235426.

    Article  Google Scholar 

  13. R. X. Zhang, P. Vadakkepat. Motion planning of biped robot climbing stairs. In Proceedings of the FIRA Congress, 2003.

    Google Scholar 

  14. X. C. Chen, Z. G. Yu, W. M. Zhang, Y. Zheng, Q. Huang, A. G, Ming. Bioinspired control of walking with toe-off, heel-strike, and disturbance rejection for a biped robot. IEEE Transactions on Industrial Electronics, vol. 64, no. 10, pp. 7962–7971, 2017. DOI: https://doi.org/10.1109/TIE.2017.2698361.

    Article  Google Scholar 

  15. M. Goomer, P. Singh, S. K. Dwivedy. Design and control of biped robot. In Proceedings of the 14th National Conference on Machines and Mechanisms, Durgapur, India, 2009.

    Google Scholar 

  16. J. P. Ferreira, M. M. Crisóstomo, A. P. Coimbra. SVR versus neural-fuzzy network controllers for the sagittal balance of a biped robot. IEEE Transactions on Neural Networks, vol. 20, no. 12, pp. 1885–1897, 2009. DOI: https://doi.org/10.1109/TNN.2009.2032183.

    Article  Google Scholar 

  17. J. P. Ferreira, M. M. Crisóstomo, A. P. Coimbra. Adaptive PD-controller modeled via support vector regression for a biped robot. IEEE Transactions on Control Systems Technology, vol. 21, no. 3, pp. 941–949, 2013. DOI: https://doi.org/10.1109/TCST.2012.2191969.

    Article  Google Scholar 

  18. Z. J. Li, S. S. Ge. Adaptive robust controls of biped robots. IET Control Theory & Applications, vol. 7, no. 2, pp. 161–175, 2013. DOI: https://doi.org/10.1049/iet-cta.2012.0066.

    Article  MathSciNet  Google Scholar 

  19. K. Sukvichai, A. Fish Jr. The development of nonlinear model reference PID controller for a bipedal robot. Journal of Computer Science, Informatics & Electrical Engineering, vol. 3, no. 1, 2011.

    Google Scholar 

  20. G. Capi, S. Kaneko, K. Mitobe, L. Barolli, Y. Nasu. Optimal trajectory generation for a prismatic joint biped robot using genetic algorithms. Robotics and Autonomous Systems, vol. 38, no. 2, pp. 119–128, 2002. DOI: https://doi.org/10.1016/S0921-8890(01)00177-4.

    Article  MATH  Google Scholar 

  21. I. S. Lim, O. Kwon, J. H. Park. Gait optimization of biped robots based on human motion analysis. Robotics and Autonomous Systems, vol. 62, no. 2, pp. 229–240, 2014. DOI: https://doi.org/10.1016/j.robot.2013.08.014.

    Article  Google Scholar 

  22. P. R. Vundavilli, S. K. Sahu, D. K. Pratihar. Dynamically balanced ascending and descending gaits of a two-legged robot. International Journal of Humanoid Robotics, vol. 4, no. 4, pp. 717–751, 2007. DOI: https://doi.org/10.1142/S0219843607001266.

    Article  Google Scholar 

  23. P. R. Vundavilli, D. K. Pratihar. Balanced gait generations of a two-legged robot on sloping surface. Sadhana, vol. 36, pp. 525–550, 2011. DOI: https://doi.org/10.1007/s12046-011-0031-7.

    Article  Google Scholar 

  24. P. Online dynamically balanced ascending and descending gait generations of a biped robot using soft computing.. International Journal of Humanoid Robotics, vol. 4, no. 4, pp. 777–814, 2007. DOI: https://doi.org/10.1142/S0219843607001254.

    Google Scholar 

  25. P. R. Vundavilli, D. K. Pratihar. Near-optimal gait generations of a two-legged robot on rough terrains using soft computing. Robotics and Computer-integrated Manufacturing, vol. 27, no. 3, pp. 521–530, 2011. DOI: https://doi.org/10.1016/j.rcim.2010.09.007.

    Article  Google Scholar 

  26. J. Y. Kim, I. W. Park, J. Lee, M. S. Kim, B. K. Cho, J. H. Oh. System design and dynamic walking of humanoid robot KHR-2. In Proceedings of IEEE International Conference on On Robotics and Automation, IEEE, Barcelona, Spain, pp. 1443–1448, 2005. DOI: https://doi.org/10.1109/ROBOT.2005.1570316.

    Google Scholar 

  27. J. P. Ferreira, M. Crisóstomo, A. P. Coimbra. Tuning a PDcontroller based on an SVR for the control of a biped robot subject to external forces and slope variation. International Journal of Advanced Robotic Systems, vol. 11, no. 3, Article number 32, 2014. DOI: https://doi.org/10.5772/57526. DOI: https://doi.org/10.5772/57526.

    Google Scholar 

  28. L. Zouari, H. Abid, M. Abid. Sliding mode and PI-controllers for uncertain flexible joint manipulator. International Journal of Automation and Computing, vol. 12, no. 2, pp. 117–124, 2015. DOI: https://doi.org/10.1007/s11633-015-0878-x.

    Article  Google Scholar 

  29. D. Devaraj, B. Selvabala. Real-coded genetic algorithm and fuzzy logic approach for real-time tuning of proportional-integral-derivative controller in automatic voltage regulator system. IET Generation, Transmission & Distribution, vol. 3, no. 7, pp. 641–649, 2009. DOI: https://doi.org/10.1049/iet-gtd.2008.0287.

    Article  Google Scholar 

  30. K. Rajarathinam, J. B. Gomm, D. Y. Yu, A. S. Abdelhadi. PID controller tuning for a multivariable glass furnace process by genetic algorithm. International Journal of Automation and Computing, vol. 13, no. 1, pp. 64–72, 2016. DOI: https://doi.org/10.1007/s11633-015-0910-1.

    Article  Google Scholar 

  31. Z. L. Gaing. A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Transactions on Energy Conversion, vol. 19, no. 2, pp. 384–391, 2004. DOI: https://doi.org/10.1109/TEC.2003.821821.

    Article  Google Scholar 

  32. K. M. Ravi, K. S. Manas, P. R. Vundavilli. Optimization of PID controller parameters for 3-DOF planar manipulator using GA and PSO, new developments in expert systems research. Computer Science, Technology and Applications, pp. 67–88, 2015.

    Google Scholar 

  33. G. R. Murthy, M. S. Arumugam, C. K. Loo. Hybrid particle swarm optimization algorithm with fine tuning operators. International Journal of Bio-Inspired Computation, vol. 1, no.1–2, pp. 14–31, 2009. DOI: https://doi.org/10.1504/IJBIC.2009.022771.

    Article  Google Scholar 

  34. Z. Bingul. A new PID tuning technique using differential evolution for unstable and integrating processes with time delay. In Proceedings of the 11th International Conference on Neural Information Processing, Springer, Calcutta, India, pp. 254–260, 2004. DOI: https://doi.org/10.1007/978-3-540-30499-9_38.

    Chapter  Google Scholar 

  35. D. P. Kwok, F. Sheng. Genetic algorithm and simulated annealing for optimal robot arm PID control. In Proceedings of the 1st IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, IEEE, Orlando, USA, pp. 707–713, 1994. DOI: https://doi.org/10.1109/ICEC.1994.349971.

    Google Scholar 

  36. W. D. Liao, Y. Y. Hu, H. Q. Wang. Optimization of PID control for DC motor based on artificial bee colony algorithm. In Proceedings of International Conference on Advanced Mechatronic Systems, IEEE, Kumamoto, Japan, pp. 23–27, 2014. DOI: https://doi.org/10.1109/ICAMechS.2014.6911617.

    Google Scholar 

  37. V. K. Kadiyala, R. K. Jatoth, S. Pothalaiah. Evolutionary soft computing tools based tuning of PID controller for EMA-AFC. In Proceedings of IEEE Region 10 Conference, IEEE, Singapore, 2009. DOI: https://doi.org/10.1109/TENCON.2009.5396089.

    Google Scholar 

  38. U. Rajput, M. Kumari. Mobile robot path planning with modified ant colony optimisation. International Journal of Bio-inspired Computation, vol. 9, no. 2, pp. 106–113, 2017. DOI: https://doi.org/10.1504/IJBIC.2017.083133.

    Article  Google Scholar 

  39. M. Farahani, S. Ganjefar, M. Alizadeh. PID controller adjustment using chaotic optimisation algorithm for multi-area load frequency control. IET Control Theory & Applications, vol. 6, no. 13, pp. 1984–1992, 2012. DOI: https://doi.org/10.1049/iet-cta.2011.0405.

    Article  MathSciNet  Google Scholar 

  40. N. Razmjooy, M. Khalilpour. A new design for PID controller by considering the operating points changes in hydroturbine connected to the equivalent network by using invasive weed optimization (IWO) algorithm. International Journal of Information, Security and System Management, vol. 4, no.2, pp. 468–475, 2015.

    Google Scholar 

  41. H. A. Ismail, M. S. Packianather, R. I. Grosvenor. Multi-objective invasive weed optimization of the LQR controller. International Journal of Automation and Computing, vol. 14, no. 3, pp. 321–339, 2017. DOI: https://doi.org/10.1007/s11633-017-1061-3.

    Article  Google Scholar 

  42. Y. Li, F. Yang, J. Ouyang, H. J. Zhou. Yagi-Uda antenna optimization based on invasive weed optimization method. Electromagnetics, vol. 31, no. 8, pp. 571–577, 2011. DOI: https://doi.org/10.1080/02726343.2011.621108.

    Article  Google Scholar 

  43. S. Karimkashi, A. A. Kishk. Invasive weed optimization and its features in electromagnetics. IEEE Transactions on Antennas and Propagation, vol. 58, no. 4, pp. 1269–1278, 2010. DOI: https://doi.org/10.1109/TAP.2010.2041163.

    Article  Google Scholar 

  44. O. Abedinia, A. A. Foroud, N. Amjady, H. A. Shayanfar. Modified invasive weed optimization based on fuzzy PSS in multi-machine power system. In Proceedings of International Conference on Artificial Intelligence, Las Vegas, USA, pp. 73–79, 2012.

    Google Scholar 

  45. Y. R. Naidu, A. K. Ojha. A hybrid version of invasive weed optimization with quadratic approximation. Soft Computing, vol. 19, no. 12, pp. 3581–3598, 2015. DOI: https://doi.org/10.1007/s00500-015-1896-x.

    Article  Google Scholar 

  46. R. Rajendra, D. K. Pratihar. Analysis of double support phase of biped robot and multi-objective optimization using genetic algorithm and particle swarm optimization algorithm. Sadhana, vol. 40, no. 2, pp. 549–575, 2015. DOI: https://doi.org/10.1007/s12046-014-0327-5.

    Article  MathSciNet  Google Scholar 

  47. B. Aghbali, A. Yousefi-Koma, A. G. Toudeshki, A. Shahrokhshahi. ZMP trajectory control of a humanoid robot using different controllers based on an offline trajectory generation. In Proceedings of the 1st RSI/ISM International Conference on Robotics and Mechatronics, IEEE, Tehran, Iran, 2013. DOI: https://doi.org/10.1109/ICRoM.2013.6510161.

    Google Scholar 

  48. J. J. Alcaraz-Jiménez, D. Herrero-Pérez, H. Martínez-Barberá. A simple feedback controller to reduce angular momentum in ZMP-based gaits. International Journal of Advanced Robotic Systems, vol. 10, no. 2, 2013. DOI: https://doi.org/10.5772/52448.

    Google Scholar 

  49. W. Suleiman, F. Kanehiro, K. Miura, E. Yoshida. Improving ZMP-based control model using system identification techniques. In Proceedings of the 9th IEEE-RAS International Conference on Humanoid Robots, IEEE, Paris, France, 2009. DOI: https://doi.org/10.1109/ICHR.2009.5379600.

    Google Scholar 

  50. A. R. Mehrabian, C. Lucas. A novel numerical optimization algorithm inspired from weed colonization..Ecological Informatics, vol. 1, no. 4, pp. 355–366, 2006. DOI: https://doi.org/10.1016/j.ecoinf.2006.07.003.

    Article  Google Scholar 

  51. M. Ghasemi, S. Ghavidel, J. Aghaei, M. Gitizadeh, H. Falah. Application of chaos-based chaotic invasive weed optimization techniques for environmental OPF problems in the power system. Chaos, Solitons & Fractals, vol. 69, pp. 271–284, 2014. DOI: https://doi.org/10.1016/j.chaos.2014.10.007.

    Article  MATH  Google Scholar 

  52. A. Basak, S. Pal, S. Das, A. Abraham, V. Snasel. A modified invasive weed optimization algorithm for time-modulated linear antenna array synthesis. In Proceedings of IEEE Congress on Evolutionary Computation, IEEE, Barcelona, Spain, pp. 1–8, 2010. DOI: https://doi.org/10.1109/CEC.2010.5586276.

    Google Scholar 

  53. G. G. Roy, S. Das, P. Chakraborty, P. N. Suganthan. Design of non-uniform circular antenna arrays using a modified invasive weed optimization algorithm. IEEE Transactions on Antennas and Propagation, vol. 59, no. 1, pp. 110–118, 2011. DOI: https://doi.org/10.1109/TAP.2010.2090477.

    Article  Google Scholar 

  54. J. Kennedy, R. Eberhart. Particle swarm optimization. In Proceedings of IEEE International Conference on Neural Networks, IEEE, Perth, Australia, pp. 1942–1948, 1995. DOI: https://doi.org/10.1109/ICNN.1995.488968.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Kumar Mandava.

Additional information

Recommended by Associate Editor Veljko Potkonjak

Ravi Kumar Mandava received the B. Tech. degree in mechanical engineering from Acharya Nagarjuna University, India in 2008. He received the M. Eng. degree in CAD/CAM from Andhra University, India in 2010. Currently, he is a Ph. D. degree candidate in mechanical engineering from School of Mechanical Sciences, Indian Institute of Technology (IIT) Bhubaneswar, India. He has published about 10 technical papers in various national, international conferences and journals. He is an active reviewer of some of the international conferences and journals.

His research interests include legged robotics, motion planning and soft computing.

Pandu Ranga Vundavilli received the B. Tech. degree in mechanical engineering from Jawaharlal Nehru Technological University, India in 2000, and M. Tech. degree in computer integrated manufacturing from National Institute of Technology, India in 2003. He received the Ph. D. degree in mechanical engineering from the Indian Institute of Technology, India in 2009. He is working at present, as assistant professor in the School of Mechanical Sciences of IIT Bhubaneswar, India. He has published about 75 technical papers in various national, international conferences and journals. He is an active reviewer of many international journals.

His research interests include robotics, modeling of manufacturing systems, genetic algorithms, differential evolution, particle swarm optimization, neural networks, fuzzy logic and others.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandava, R.K., Vundavilli, P.R. Near Optimal PID Controllers for the Biped Robot While Walking on Uneven Terrains. Int. J. Autom. Comput. 15, 689–706 (2018). https://doi.org/10.1007/s11633-018-1121-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11633-018-1121-3

Keywords

Navigation