Skip to main content
Log in

A Survey of the Research Status of Pedestrian Dead Reckoning Systems Based on Inertial Sensors

  • Review
  • Published:
International Journal of Automation and Computing Aims and scope Submit manuscript

Abstract

With the development of micro-electromechanical systems (MEMS), miniaturized, low-power and low-cost inertial measurement units (IMUs) have been widely integrated into mobile terminals and smart wearable devices. This provides the prospect of a broad application for the inertial sensor-based pedestrian dead-reckoning (IPDR) systems. Especially for indoor navigation and indoor positioning, the IPDR systems have many unique advantages that other methods do not have. At present, a large number of technologies and methods for IPDR systems are proposed. In this paper, we have analyzed and outlined the IPDR systems based on about 80 documents in the field of IPDR in recent years. The article is structured in the form of an introduction-elucidation-conclusion framework. First, we proposed a general framework to explore the structure of an IPDR system. Then, according to this framework, the IPDR system was divided into six relatively independent subproblems, which were discussed and summarized separately. Finally, we proposed a graph structure of IPDR systems, and a sub-directed graph, formed by selecting a combined path from the start node to the end node, skillfully constitutes a technical route of one specific IPDR system. At the end of the article, we summarized some key issues that need to be resolved before the IPDR systems are widely used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. X. Zheng, W. C. Zhou, W. W. Tang, X. C. Zheng, A. Peng, H. R. Zheng. A 3D indoor positioning system based on low-cost MEMS sensors. Simulation Modelling Practice and Theory, vol. 65, pp. 45–56, 2016. Doi: 10.1016/j.simpat.2016.01.003.

    Article  Google Scholar 

  2. A. Correa, M. Barcelo, A. Morell, J. L. Vicario. A review of pedestrian indoor positioning systems for mass market applications. Sensors, vol. 17, Article number 1927, 2017. Doi: 10.3390/s17081927.

    Google Scholar 

  3. J. Gimenez, A. Amicarelli, J. M. Toibero, F. d.Sciascio, R. Carelli. Iterated conditional modes to solve simultaneous localization and mapping in Markov random fields context. International Journal of Automation and Computing, vol. 15, no. 3, pp. 310–324, 2018. Doi: 10.1007/s11633-017-1109-4.

    Google Scholar 

  4. T. Z. Lv, C. X. Zhao, H. F. Zhang. An improved Fast-SLAM algorithm based on revised genetic resampling and SR-UPF. International Journal of Automation and Computing, vol. 15, no. 3, pp. 325–334, 2018. Doi: 10.1007/s11633-016-1050-y.

    Article  Google Scholar 

  5. R. Harle. A survey of indoor inertial positioning systems for pedestrians. IEEE Communications Surveys & Tutorials, vol. 15, no. 3, pp. 1281–1293, 2013. Doi: 10.1109/SURV. 2012.121912.00075.

    Article  Google Scholar 

  6. M. G. Puyol, P. Robertson, M. Angermann. Managing large-scale mapping and localization for pedestrians using inertial sensors. In Proceedings of IEEE International Conference on Pervasive Computing and Communications Workshops, San Diego, USA, 2013. Doi: 10.1109/PerComW.2013.6529468.

    Google Scholar 

  7. C. Fischer, P. T. Sukumar, M. Hazas. Tutorial: implementing a pedestrian tracker using inertial sensors. IEEE Pervasive Computing, vol. 12, no. 2, pp. 17–27, 2013. DOI: 10.1109/MPRV.2012.16.

    Article  Google Scholar 

  8. Q. L. Yuan, I. M. Chen. Simultaneous localization and capture with velocity information. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, USA, 2011. DOI: 10.1109/IROS.2011.6094447.

    Google Scholar 

  9. T. Gädeke, J. Schmid, M. Zahnlecker, W. Stork, K. D. Müller-Glaser. Smartphone pedestrian navigation by foot-IMU sensor fusion. In Proceedings of the Ubiquitous Positioning, Indoor Navigation, and Location Based Service, Helsinki, Finland, 2012. DOI: 10.1109/UPINLBS.2012. 6409787.

    Google Scholar 

  10. D. D. Pham, Y. S. Suh. Pedestrian navigation using footmounted inertial sensor and LIDAR. Sensors, vol. 16, no. 1, pp. 120–136, 2016. Doi: 10.3390/s16010120.

    Article  Google Scholar 

  11. C. Fischer, K. Muthukrishnan, M. Hazas, H. Gellersen. Ultrasound-aided pedestrian dead reckoning for indoor navigation. In Proceedings of ACM International Workshop on Mobile Entity Localization and Tracking in GPS-Less Environments, San Francisco, USA, pp. 31–36, 2008. DOI: 10.1145/1410012.1410020.

    Google Scholar 

  12. E. Foxlin. Pedestrian tracking with shoe-mounted inertial sensors. IEEE Computer Graphics and Applications, vol. 25, no. 6, pp. 38, 2005. DOI: 10.1109/MCG.2005. 140.

    Article  Google Scholar 

  13. J. C. Alvarez, D. Alvarez, A. López, R. C. González. Pedestrian navigation based on a waist-worn inertial sensor. Sensors, vol. 12, no. 8, pp. 10536–10549, 2012. DOI: 10. 3390/s120810536.

    Article  Google Scholar 

  14. S. K. Park, Y. S. Suh. A zero velocity detection algorithm using inertial sensors for pedestrian navigation systems. Sensors, vol. 10, no. 10, pp. 9163–9178, 2010. DOI: 10.3390/s 101009163.

    Article  Google Scholar 

  15. Z. C. Zhang, H. Y. Wang, Z. H. Zhao, Z. J. Wu. A SVM-based adaptive stance detection method for pedestrian inertial navigation. In Proceedings of the 10th International Conference on Sensing Technology, Nanjing, China, 2016. DOI: 10.1109/ICSensT.2016.7796271.

    Google Scholar 

  16. Y. L. Hsu, J. S. Wang, C. W. Chang. A wearable inertial pedestrian navigation system with quaternion-based extende. Kalman filter for pedestrian localization. IEEE Sensors Journal, vol. 17, no. 10, pp. 3193–3206, 2017. DOI: 10.1109/JSEN.2017.2679138.

    Article  Google Scholar 

  17. G. Panahandeh, N. Mohammadiha, A. Leijon, P. Handel. Continuous hidden Markov model for pedestrian activity classification and gait analysis. IEEE Transactions on In-strumentation and Measurement, vol. 62, no. 5, pp. 1073–1083, 2013. DOI: 10.1109/TIM.2012.2236792.

    Article  Google Scholar 

  18. H. M. Zhang, W. Z. Yuan, Q. Shen, T. Li, H. L. Chang. A handheld inertial pedestrian navigation system with accurate step modes and device poses recognition. IEEE Sensors Journal, vol. 15, no. 3, pp. 1421–1429, 2014. DOI: 10.1109/JSEN.2014.2363157.

    Article  Google Scholar 

  19. X. P. Yun, E. R. Bachmann, H. Moore, J. Calusdian. Self-contained position tracking of human movement using small inertial/magnetic sensor modules. In Proceedings of IEEE International Conference on Robotics and Automa-tion, Roma, Italy, pp. 2526–2533, 2007. DOI: 10.1109/ROBOT.2007.363845.

    Google Scholar 

  20. P. Kasebzadeh, G. Hendeby, C. Fritsche, F. Gunnarsson, F. Gustafsson. IMU dataset for motion and device mode classification. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Sapporo, Japan, 2017. DOI: 10.1109/IPIN.2017.8115956.

    Google Scholar 

  21. M. Edel, E. Köppe. An advanced method for pedestrian dead reckoning using BLSTM-RNNs. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Banff, Canada, 2015. DOI: 10.1109/IPIN. 2015.7346954.

    Google Scholar 

  22. M. Edel M, E. Köppe. Binarized-BLSTM-RNN based human activity recognition. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Alcala de Henares, Spain, 2016. DOI: 10.1109/IPIN.2016. 7743581.

    Google Scholar 

  23. B. Wagstaff, V. Peretroukhin, J. Kelly. Improving footmounted inertial navigation through real-time motion Springer classification. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation, Sapporo, Japan, 2017. DOI: 10.1109/IPIN.2017.8115947.

    Google Scholar 

  24. B. Beaufils, F. Chazal, M. Grelet, B. Michel. Stride detection for pedestrian trajectory reconstruction: A machine learning approach based on geometric patterns. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Sapporo, Japan, 2017. DOI: 10. 1109/IPIN.2017.8115867.

    Google Scholar 

  25. M. R. Ren, K. Pan, Y. H. Liu, H. Y. Guo, X. D. Zhang, P. Wang. A novel pedestrian navigation algorithm for a footmounted inertial-sensor-based system. Sensors, vol. 16, no. 1, pp. 139–151, 2016. DOI: 10.3390/s16010139.

    Article  Google Scholar 

  26. M. Elhoushi, J. Georgy, A. Noureldin, M. J. Korenberg. Motion mode recognition for indoor pedestrian navigation using portable devices. IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 1, pp. 208–221, 2016. DOI: 10.1109/TIM.2015.2477159.

    Article  Google Scholar 

  27. F. Inderst, F. Pascucci, M. Santoni. 3D pedestrian dead reckoning and activity classification using waist-mounted inertial measurement unit. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Banff, Canada, 2015. DOI: 10.1109/IPIN.2015.7346953.

    Google Scholar 

  28. M. N. Muhammad, Z. Salcic, K. I. K. Wang. Subtractive clustering as ZUPT detector. In Proceedings of the 11th IEEE International Conference on Ubiquitous Intelligence and Computing and the 11th IEEE International Conference on Autonomic and Trusted Computing and the 14th IEEE International Conference on Scalable Computing and Communications and Its Associated Workshops, Bali, Indonesia, pp. 349–355, 2014. DOI: 10.1109/UIC-ATCScalCom. 2014.114.

    Google Scholar 

  29. E. M. Diaz, A. L. M. Gonzalez, F. de Ponte Müller. Standalone inertial pocket navigation system. In Proceedings of IEEE/Institute of Navigation (ION) Position, Location and Navigation Symposium, Monterey, USA, pp. 241–251, 2014. DOI: 10.1109/PLANS.2014.6851382.

    Google Scholar 

  30. K. C. Lan, W. Y. Shih. On calibrating the sensor errors of a PDR-based indoor localization system. Sensors, vol. 13, no. 4, pp. 4781–4810, 2013. DOI: 10.3390/s130404781.

    Article  Google Scholar 

  31. J. Perry, J. M. Burnfield. Gait Analysis: Normal and Pathological Function, Thorofare, USA: SLACK Incoporated, 1992.

    Google Scholar 

  32. Y. S. Suh, S. Park. Pedestrian inertial navigation with gait phase detection assisted zero velocity updating. In Proceedings of the 4th International Conference on Autonomous Robots and Agents, Wellington, New Zealand, pp. 336–341, 2009. DOI: 10.1109/ICARA.2000.4803999.

    Google Scholar 

  33. A. Mannini, V. Genovese, S. A. Maria. Online decoding of hidden Markov models for gait event detection using footmounted gyroscopes. IEEE Journal of Biomedical and Health Informatics, vol. 18, no. 4, pp. 1122–1130, 2014. DOI: 10.1109/JBHI.2013.2293887.

    Article  Google Scholar 

  34. J. Ruppelt, N. Kronenwett, G. F. Trommer. A novel finite state machine based step detection technique for pedestrian navigation systems. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Banff, Canada, 2015. DOI: 10.1109/IPIN.2015.7346771.

    Google Scholar 

  35. Z. Q. Zhang, X. L. Meng. Use of an inertial/magnetic sensor module for pedestrian tracking during normal walking. IEEE Transactions on Instrumentation and Measurement, vol. 64, no. 3, pp. 776–783, 2015. DOI: 10.1109/TIM.2014.2349211.

    Article  Google Scholar 

  36. X. C. Tian, J. B. Chen, Y. Q. Han, J. Y. Shang, N. Li. A pedestrian navigation system based on MEMS inertial measurement unit. In Proceedings of the 35th Chinese Control Conference, Chengdu, China, pp. 5325–5328, 2016. Doi: 10.1109/ChiCC.2016.7554183.

    Google Scholar 

  37. R. Feli. Alonso, E. Zalama Casanova, J. Gómez García-Bermejo. Pedestrian tracking using inertial sensors. Journal of Physical Agents, vol. 3, no. 1, pp. 353, 2009. Doi: 10.14198/JoPha.2009.3.1.05.

    Google Scholar 

  38. C. L. Huang, Z. Y. Liao, L. Zhao. Synergism of INS and PDR in self-contained pedestrian tracking with a miniature sensor module. IEEE Sensors Journal, vol. 10, no. 8, pp. 1349–1359, 2010. Doi: 10.1109/JSEN.2010.2044238.

    Article  Google Scholar 

  39. F. Montorsi, F. Pancaldi, G. M. Vitetta. Design and implementation of an inertial navigation system for pedestrians based on a low-cost MEMS IMU. In Proceedings of IEEE International Conference on Communications Workshops, Budapest, Hungary, pp. 57–61, 2013. Doi: 10.1109/ICCW. 2013.6649201.

    Google Scholar 

  40. Y. Li, J. G. Wang. A pedestrian navigation system based on low cost IMU. Journal of Navigation, vol. 67, no. 6, pp. 929–949, 2014. DOI: 10.1017/S0373463314000344.

    Article  Google Scholar 

  41. X. C. Zheng, H. Yang, W. W. Tang, S. X, Pu, L. X. Zheng, H. R. Zhng, B. Liao, J. Wang. Indoor pedestrian navigation with shoe-mounted inertial sensors. Multimedia and Ubiquitous Engineering, J. Park, S. C. Chen, J. M. Gil, N. Yen, Eds., Berlin Heidelberg, Germany: Springer, pp. 67–73, 2014. DOI: 10.1007/978-3-642-54900-7—10.

    Chapter  Google Scholar 

  42. L. X. Zheng, W. C. Zhou, W. W. Tang, X. C. Zheng, H. Yang, S. X. Pu, C. X. Li, B. Y. Tang, Y. N. Tang. A footmounted sensor based 3D indoor positioning approach. In Proceedings of IEEE International Symposium on Autonomous Decentralized Systems, Taichung, Taiwan, China, pp. 145–150, 2015. DOI: 10.1109/ISADS.2015. 49.

    Google Scholar 

  43. M. Ilyas, K. Cho, S. H. Baeg, S. Park. Drift reduction in IMU-only pedestrian navigation system in unstructured environment. In Proceedings of the 10th Asian Control Conference, Kota Kinabalu, Malaysia, 2015. DOI: 10.1109/ASCC.2015.7244849.

    Google Scholar 

  44. M. Benoussaad, B. Sijobert, K. Mombaur, C. Azeved. Coste. Robust foot clearance estimation based on the integration of foot-mounted IMU acceleration data. Sensors, vol. 16, no. 1, pp. 12–24, 2016. DOI: 10.3390/s16010012.

    Google Scholar 

  45. M. Ilyas, K. Cho, S. H. Baeg, S. Park. Drift reduction in pedestrian navigation system by exploiting motion constraints and magnetic field. Sensors, vol. 16, no. 9, Article number 1455, 2016. DOI: 10.3390/s16091455.

    Google Scholar 

  46. I. Skog, P. Handel, J. O. Nilsson, J. Rantakokko. Zero-velocity detection-An algorithm evaluation. IEEE Transactions on Biomedical Engineering, vol. 57, no. 11, pp. 2657–2666, 2010. DOI: 10.1109/TBME.2010.2060723.

    Article  Google Scholar 

  47. A. Mikov, A. Moschevikin, A. Fedorov, A. Sikora. A localization system using inertial measurement units from wireless commercial hand-held devices. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Montbeliard-Belfort, France, 2013. DOI: 10.1109/IPIN.2013.6817924.

    Google Scholar 

  48. W. C. Zhang, X. H. Li, D. Y. Wei, X. C. Ji, H. Yuan. A foot-mounted PDR system based on IMU/EKF+HMM+ ZUPT+ZARU+HDR+Compass algorithm. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Sapporo, Japan, 2017. DOI: 10. 1109/IPIN.2017.8115916.

    Google Scholar 

  49. Z. Y. Xu, J. M. Wei, B. Zhang, W. J. Yang. A robust method to detect zero velocity for improved 3D personal navigation using inertial sensors. Sensors, vol. 15, no. 4, pp. 7708–7727, 2015. DOI: 10.3390/s150407708.

    Article  Google Scholar 

  50. N. Castaneda, S. Lamy-Perbal. An improved shoe-mounted inertial navigation system. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland, 2010. DOI: 10.1109/IPIN. 2010.5646858.

    Google Scholar 

  51. S. Lamy-Perbal, M. Boukallel, N. Castaneda. An improved pedestrian inertial navigation system for indoor environments. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, USA, pp. 2505–2510, 2011. DOI: 10.1109/IROS.2011. 6094456.

    Google Scholar 

  52. A. Perttula, H. Leppäkoski, M. Kirkko-Jaakkola, P. Davidson, J. Collin, J. Takala. Distributed indoor positioning system with inertial measurements and map matching. IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 11, pp. 2682–2695, 2014. DOI: 10.1109/TIM. 2014.2313951.

    Article  Google Scholar 

  53. J. Taborri, E. Palermo, S. Rossi, P. Cappa. Gait partitioning methods: a systematic review. Sensors, vol. 16, no. 1, pp. 66–85, 2016. DOI: 10.3390/s16010066.

    Article  Google Scholar 

  54. K. Abdulrahim, C. Hide, T. Moore, C. Hill. Aiding MEMS IMU with building heading for indoor pedestrian navigation. In Proceedings of Ubiquitous Positioning Indoor Navigation and Location Based Service, Kirkkonummi, Finland, 2010. DOI: 10.1109/UPINLBS.2010.5653986.

    Google Scholar 

  55. J. Pinchin, C. Hide, T. Moore. A particle filter approach to indoor navigation using a foot mounted inertial navigation system and heuristic heading information. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Sydney, Australia, 2013. DOI: 10. 1109/IPIN.2012.6418916.

    Google Scholar 

  56. J. Pinchin, C. Hide, K. Abdulrahim, T. Moore, C. Hill. Integration of heading-aided MEMS IMU with GPS for pedestrian navigation. In Proceedings of the 24th International Techni cal Meeting of The Satelli te Di vision of the Institute of Navigation, Oregon, Portland, pp. 1346–1356, 2011.

    Google Scholar 

  57. Y. Gu, Q. Song, Y. H. Li, M. Ma. Foot-mounted pedestrian navigation based on particle filter with an adaptive weight updating strategy. Journal of Navigation, vol. 68, no. 1, pp. 23–38, 2015. DOI: 10.1017/S0373463314000496.

    Article  Google Scholar 

  58. Gu, Q. Song, Y. H. Li, M. Ma, Z. M. Zhou. An anchor-based pedestrian navigation approach using only inertial sensors. Sensors, vol. 16, no. 3, Article number 334, 2016. DOI: 10.3390/s16030334.

    Google Scholar 

  59. A. R. Jiménez, F. Seco, J. C. Prieto, J. Guevara. Indoor pedestrian navigation using an INS/EKF framework for yaw drift reduction and a foot-mounted IMU. In Proceedings of the 7th Workshop on Positioning, Navigation and Communication, Dresden, Germany, pp. 135–143, 2010. DOI: 10.1109/WPNC.2010.5649300.

    Google Scholar 

  60. I. Skog, J. O. Nilsson, P. Händel. Evaluation of zero-velocity detectors for foot-mounted inertial navigation systems. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland, 2010. DOI: 10.1109/IPIN.2010.5646936.

    Google Scholar 

  61. H. Fourati, N. Manamanni, L. Afilal, Y. Handrich. Position estimation approach by Complementary Filter-aided IMU for indoor environment. In Proceedings of European Control Conference, Zurich, Switzerland, pp. 4208–4213, 2013. DOI: 10.23919/ECC.2013.6669211.

    Google Scholar 

  62. M. H. Afzal, V. Renaudin, G. Lachapelle. Magnetic field based heading estimation for pedestrian navigation environments. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Gu imaraes, Portugal, 2011. DOI: 10.1109/IPIN.2011.6071947.

    Google Scholar 

  63. M. Ma, Q. Song, Y. H. Li, Y. Gu, Z. M. Zhou. A heading error estimation approach based on improved Quasi-static magnetic Field detection. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Alcala de Henares, Spain, 2016. DOI: 10.1109/IPIN. 2016.7743588.

    Google Scholar 

  64. V. Renaudin, C. Combettes, C. Marchand. Toward a free inertial pedestrian navigation reference system. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Busan, South Korea, pp.167-176, 2015. DOI: 10.1109/IPIN.2014.7275481.

    Google Scholar 

  65. J. Borestein, L. Ojeda, S. Kwanmuang. Heuristic reduction of gyro drift in IMU-based personnel tracking systems. In Proceedings of SPIE Defense, Security and Sensing Conference, Orlando, USA, 2009. DOI: 10.1117/12.816921.

    Google Scholar 

  66. R. Ashkar, M. Romanovas, V. Goridko, M. Schwaab, M. Traechtler, Y, Manoli. A low-cost shoe-mounted inertial navigation system with magnetic disturbance compensation. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Montbeliard-Belfort, France, 2014. DOI: 10.1109/IPIN.2013.6817896.

    Google Scholar 

  67. E. M. Diaz. Inertial pocket navigation system: Unaided 3D positioning. Sensors, vol. 15, no. 4, pp. 9156–9178, 2015. DOI: 10.3390/s150409156.

    Article  Google Scholar 

  68. H. Martin, J. A. Besada, A. M. Bernardos, E.Metola, J. R. Casar. Simplified pedestrian tracking filters with positioning and foot-mounted inertial sensors. International Journal of Distributed Sensor Networks, vol. 2014, Article number 850835, 2014. DOI: 10.1155/2014/850835.

  69. H. Benzerrouk, A. Nebylov, P. Closas. MEMS IMU/ZUPT based cubature Kalman filter applied to pedestrian navigation system. In Proceedings of International Electronic Conference on Sensors and Applications, 2014. DOI: 10.3390/ecsa-1-e002.

    Google Scholar 

  70. H. Fourati. Heterogeneous data fusion algorithm for pedestrian navigation via foot-mounted inertial measurement unit and complementary filter. IEEE Transactions on Instrumentation and Measurement, vol. 64, no. 1, pp. 221–229, 2014. DOI: 10.1109/TIM.2014.2335912.

    Article  Google Scholar 

  71. H. F. Xing, J. L. Li, B. Hou, Y. J. Zhang, M. F. Guo. Pedestrian stride length estimation from IMU measurements and ANN based algorithm. Journal of Sensors, vol. 2017, Article number 6091261, 2017. DOI: 10.1155/2017/6091261.

    Google Scholar 

  72. H. Weinberg. An-602: Using the ADXL202 in pedometer and personal navigation applications. Application Notes American Devices, Norwood, USA: Analog Devices Inc., 2002.

    Google Scholar 

  73. J. Scarlet. Enhancing the performance of pedometers using a single accelerometer. Application Notes American Devices, Analog Devices AN-900, Norwood, USA: Application Note Inc., 2005.

    Google Scholar 

  74. J. W. Kim, H. J. Jang, D. H. Hwang, C. Park. A Step, Stride an. Heading Determination for the Pedestrian Navigation System. Journal of Global Positioning Systems, vol. 3, no. 1–2, pp. 273–279, 2004. DOI: 10.5081/jgps.3. 1.273.

    Article  Google Scholar 

  75. A. G. Mikov, A. S. Galov. Data processing algorithms for MEMS based multi-component inertial measurement unit for indoor navigation. In Proceedings of the 24th Saint Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, Russia, 2017. DOI: 10.23919/ICINS.2017.7995564.

    Google Scholar 

  76. A. Perttula, H. Leppäkoski, M. Kirkko-Jaakkola, P. Davidson, J. Collin, J. Takala. Distributed indoor positioning system with inertial measurements and map matching. IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 11, pp. 2682–2695, 2014. DOI: 10.1109/TIM.2014. 2313951.

    Article  Google Scholar 

  77. W. Kang, Y. Han. SmartPDR: Smartphone-based pedestrian dead reckoning for indoor localization. IEEE Sensors Journal, vol. 15, no. 5, pp. 2906–2916, 2015. DOI: 10.1109/JSEN.2014.2382568.

    Article  Google Scholar 

  78. J. Hightower, G. Borriello. Particle filters for location estimation in ubiquitous computing: A case study. International Conference on Ubiquitous Computing, N. Davies, E. D. Mynatt, I. Siio, Eds., Berlin Heidelberg, Germany: Springer, pp. 88–106, 2004. DOI: 10.1007/978-3-540-30119-6*6.

    Google Scholar 

  79. O. Woodman, R. Harle. Pedestrian localisation for indoor environments. In Proceedings of the 10th International Conference on Ubiquitous Computing, ACM, Seoul, Korea, pp. 114–123, 2008. DOI: 10.1145/1409635.1409651.

    Google Scholar 

  80. D. A. Medina, M. Schwaab, D. Plaia, M. Romanovas, M. Traechtler, Y. Manoli. A foot-mounted pedestrian localization system with map motion constraints. In Proceedings of the 12th Workshop on Positioning, Navigation and Communication, Dresden, Germany, 2015. DOI: 10.13140/RG.2.1.1385.1289.

    Google Scholar 

  81. C. Y. Yu, N. El-Sheimy, H. Y. Lan, Z. B. Liu. Map-based indoor pedestrian navigation using an auxiliary particle filter. Micromachines, vol. 8, no. 7, pp. 225–240, 2017. DOI: 10.3390/mi8070225.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development of China (No. 2017YFB1002800)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Xiu Du.

Additional information

Recommended by Associate Editor Jangmyung Lee

Yuan Wu received the B. Sc. degree in computer science and technology from Southwest University, China in 2016. He is now a master student in computer application technology at Insititute of Automation, Chinese Academy of Sciences, China.

His research interests include motion tracking based on inertial sensors, human-computer interaction and virtual reality.

Hai-Bing Zhu received the B.Sc. degree in automation and the M. Sc. degree in pattern recognition and intelligent control from University of Science and Technology, China in 1997 and 2000, respectively. He received the Ph. D. degree in control theory and control engineering from the Institute of Automation, Chinese Academy of Sciences, China in 2003. He was an assistant researcher at the Institute of Automation, Chinese Academy of Sciences from 2003 to 2007, and has been a senior engineer since 2007.

His research interests include intelligent robots, sensors and automation technologies, and embedded system applications.

Qing-Xiu Du received the B. Sc. and M. Sc. degrees in computer science and engineering from Harbin Institute of Technology, China in 1982 and 1985, respectively. She is currently a professor at Institute of Automation, Chinese Academy of Sciences, China.

Her research interests include intelligent perception, intelligent human interaction, virtual reality, and digital media technology.

Shu-Ming Tang received the Ph. D. degree in control theory and control engineering from Graduate University of Chinese Academy of Sciences, China in 2005. Currently, she is an associate research professor in the Institute of Automation, Chinese Academy of Sciences. She has published extensive papers in her research areas. She is a committee member of Robot Sports in China, an associate editor of the IEEE Transactions on Intelligent Transportation Systems, a co-chair of the Technical Committee on Automatic Train Supervision (ATS) of Intelligent Transportation Systems Society.

Her research interests are include intelligent vehicles and intelligent transportation systems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zhu, HB., Du, QX. et al. A Survey of the Research Status of Pedestrian Dead Reckoning Systems Based on Inertial Sensors. Int. J. Autom. Comput. 16, 65–83 (2019). https://doi.org/10.1007/s11633-018-1150-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11633-018-1150-y

Keywords

Navigation