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Abstract: Aiming to differentiate between MCI patients and elderly control subjects, this study proposes an integrated framework
based on spectral-temporal analysis for the automatic analysis of resting-state EEG recordings. This framework firstly eliminates noise
employing stationary wavelet transformation (SWT). Then, a set of features is extracted through spectral-temporal analysis. Next, a
new wrapper algorithm, named three-dimensional (3-D) evaluation algorithm, is proposed to derive an optimal feature subset. Finally,
the Support Vector Machine (SVM) algorithm is adopted to identify MCI patients on the optimal feature subset. Decision tree and
K-Nearest Neighbors (KNN) algorithms are also used to test the effectiveness of the selected feature subset. Twenty-two subjects
are involved in experiments, of which eleven persons were in an MCI condition and the rest were elderly control subjects. Extensive
experiments show that our method is able to classify MCI patients and elderly control subjects automatically and effectively, with the
accuracy of 96.94% achieved by the SVM classifier. Decision Tree and KNN algorithms also achieved superior results based on the
optimal feature subset extracted by the proposed framework. This study is conducive to timely diagnosis and intervention for MCI
patients, and therefore to delay cognitive decline and dementia onset.

Keywords: Electroencephalogram (EEG), Dementia early detection, Mild cognitive impairment (MCI), Stationary wavelet transfor-
mation (SWT), Support Vector Machine(SVM).

1 Introduction

Background. Alzheimers disease (AD) is the most com-
mon form of neurodegenerative dementia accounting for up
to 75% of all dementia cases [1]. Despite its prevalence, thus
far, no cure exists for AD. To make things worse, the diagno-
sis of Alzheimers disease is often missed or delayed in clini-
cal practice. The early detection of dementia would provide
opportunities for early intervention and symptomatic treat-
ments. Recent studies have demonstrated that AD has a
pre-symptomatic phase that can last for years, known as
mild cognitive impairment (MCI) [2, 3, 4, 5]. Obviously, de-
tecting MCI is essential and effective for potential patients.
However, the symptoms of MCI are easily dismissed as nor-
mal consequences of ageing, which makes the medical di-
agnosis of MCI difficult. The objective of this study is to
identify MCI patients and elderly control subjects automat-
ically and efficiently using resting-state electroencephalog-
raphy (EEG) signals.

Resting-state EEG signals. EEG-based methods have
emerged as non-invasive alternative techniques for the de-
tection of MCI. Via multiple electrodes placed on different
areas of the scalp, the electrical activities of the brain are
recorded in EEG signals, which are in the form of time series
of voltage fluctuations [6]. Based on diverse recording condi-
tions, EEG signals can be divided into two groups: event-
related potentials (ERPs) and resting-state EEG record-
ings. The former is recorded in relation to the occurrence of
some specific events, while the latter are spontaneous EEG
signals recorded without any kind of stimulus. Resting-
state EEG recordings are very easy and rapid to carry out
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in a clinical environment. Furthermore, it is more com-
fortable and less stressful for patients, especially for elderly
individuals [7]. In this study, resting-state EEG signals are
adopted.

Literature review. The EEG signals of each subject
contain dozens of channels and each channel consists of a
huge amount of data points[8]. Traditional specialist-led ap-
proaches are struggling to reach a correct decision efficiently
[9, 10]. Therefore, automatic detection methods based on
machine learning algorithms are getting more and more at-
tention. A typical MCI detection method consists of four
steps, namely data pre-processing, feature extraction, fea-
ture selection and classification. The most widely used EEG
pre-processing methods include visual inspection, resam-
pling, re-referencing, filtering, smoothing, channel selection
and data segmentation. Depending on the purpose and the
data acquisition conditions, some of these techniques can be
selected to refine the EEG signals. Usually, band-stop fil-
ters are a good choice for removing power grid interference
(50 or 60 Hz, depending on the region). Band-pass filters
can be used to enhance only EEG-related spectral com-
ponents [11, 12]. Feature extraction is generally performed
after data pre-processing. There are many widely used
techniques to extract features, such as statistical indices
[13], spectral analysis [14, 15] and spectral-temporal analysis
[16, 17, 18]. The third step, feature selection based on rele-
vance and redundancy analysis, is optimal, depending on
the total amount of epochs and features [19, 20]. In the final
step, a classifier is trained and evaluated based on machine
learning algorithms to differentiate between MCI patients
and elderly control subjects. The most commonly used ma-
chine learning algorithms in MCI detection include artificial
neural networks (ANNs) [21, 22, 23], k-nearest neighbour [2],
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decision trees [16], support vector machine (SVM) [24] and
neuro-fuzzy inference system [2, 25]. Although there are a
large amount of researches on MCI detection, their perfor-
mance is still not satisfactory. Furthermore, to our best
knowledge, there is no standard procedures are commonly
accepted in the area as yet. Most of the existing methods
are still in the exploratory stage. So, for specific applica-
tions and specific data, experienced data processing scien-
tists and engineers need to investigate further to achieve
desirable performance.

Proposed method. In this study, we propose an inte-
grated spectral-temporal analysis based framework for MCI
detection using resting-state EEG signals, aiming at im-
proving the accuracy of detection. Compared to existing
algorithms, our method has several noteworthy aspects:

1. Removing noise of EEG signals based on the spectral
characteristics of raw EEG signals. According to do-
main knowledge, we eliminate baseline drift and other
low-frequency noises by removing 0-0.5Hz components
of EEG signals, and also eliminate high-frequency
noises including grid interference by removing 32-128
Hz components, so as to denoise the EEG signals.

2. Establishing a three-dimensional discrete feature
space, based on stationary wavelet transform and de-
scriptive statistical analysis. SWT decomposed EEG
signals into coefficients in the frequency domain and
descriptive statistical analysis extract the spectral-
temporal features from those coefficients.

3. Proposing a new wrapper algorithm, named 3-D eval-
uation algorithm, to select an optimal feature sub-
set instead of generating new features based on exist-
ing features in the feature selection step. It presents
both individual and incremental evaluation on three-
dimensional of feature space separately.

2 Methods

2.1 Dataset description

The EEG dataset1 is an open source dataset, which was
collected from subjects who had been admitted to cardiac
catheterization units of Sina and Nour Hospitals, Isfahan,
Iran [26]. The data collection was ethically approved by
the deputy of research and technology, Isfahan University
of Medical Sciences, Isfahan, Iran [2]. It is a collection of
resting-state scalp EEG signals from 27 subjects (16 cog-
nitively healthy subjects and 11 with an MCI) aged from
60 to 77 with elementary or higher education and a history
of coronary angiography over the past year. To avoid gen-
erating an imbalanced dataset in this study, we picked 11
MCI and 11 cognitively healthy subjects to form a balanced
dataset. Subjects with a history of substance misuse, major
psychiatric disorders, serious medical disease, head trauma,
and dementia were excluded.

1The dataset can be downloaded from:
http://www.biosigdata.com/?download=eeg-signals-from-normal-
and-mci-cases

All EEG signals were recorded in the morning for over
30 minutes while the subjects were resting comfortably in a
quiet room with their eyes closed but without being drowsy
during the procedure. EEG activities were recorded con-
tinuously through 19 electrodes positioned on the scalp
according to the International 10-20 System, using a 32-
channel digital EEG device (Galileo NT, EBneuro, Italy)
with 256Hz sampling rate [2]. The collected EEG signals
consist of 19 channels, namely, Fp1, Fp2, F7, F3, Fz, F4, F8,
T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2.

In light of Petersons criteria, all subjects underwent a
neuropsychiatric interview to diagnose MCI. A mini-mental
state examination (MMSE) was utilized to validate the MCI
diagnosis, where scores from 21 to 26 indicated MCI and
scores more than 26 indicated a cognitively healthy sub-
ject. The neuropsychiatry unit cognitive assessment tool
(NUCOG) was also used to confirm the diagnosis of MCI
[2].

2.2 Methodology

2.2.1 Architecture

The objective of this work is to identify MCI subjects and
elderly control subjects using the resting-state EEG signals.
As shown in Fig. 1, the proposed framework consists of
4 steps. The raw EEG signals are cleaned using SWT-
based methods in step 1. A hybridized method is proposed
to extract spectral-temporal features based on stationary
wavelet decomposition and descriptive statistical analysis in
step 2. Next, an optimal feature subset is selected through
the proposed 3-D evaluation algorithm. Finally, an SVM
model is chosen as the classifier in step 4. The subsequent
parts of this section describe the implementation of each
step in detail.

Resting-state 

EEG signals

SWT based 

denoising

Spectral-temporal 

feature extraction

Feature selection 

via 3-D evaluation  

SVM 

classifier

MCI subjects

Elderly control 

subjects

Step 1 Step 2

Step 3Step 4

Fig. 1 Work flow of the proposed framework

2.2.2 SWT based denoising

EEG signals contain kinds of noise, such as baseline
drift and power line interference. Mixing together with
EEG recordings, the large number of artefacts have differ-
ent time-frequency properties. This study employs wavelet
transform to provide information on both the time domain
and frequency domain, which makes it possible to preserve
the characteristics of EEG signals while minimizing noise.

Previous studies [27] have shown that the most important
frequency bands of EEG signals are between 0.5 Hz and 32
Hz. Therefore, we decompose raw EEG signals into coeffi-
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cients with different frequency range using SWT, setting an
appropriate decomposition level. Then, the high-frequency
(>32 Hz) coefficients and the low-frequency (<0.5 Hz) co-
efficients are removed as noise [28]. Finally, the cleaned
coefficients are reconstructed into time series signals as the
denoised EEG signals via inverse stationery wavelet trans-
formation (ISWT).

2.2.3 Spectral-temporal feature extraction

The goal of feature extraction is to obtain features from
denoised EEG signals. First of all, in order to form a dataset
with a large population, all channels of the denoised EEG
signals are divided into small segments synchronously.

Then, each channel in each segment is decomposed using
1-D SWT decomposition into four coefficients correspond-
ing to four frequency bands: f1(0.5-4 Hz), f2(4-8 Hz), f3
(8-16 Hz) and f4 (16-32 Hz). Those coefficients contain in-
formation in both time domain and frequency domain, thus
is suitable to obtain spectral-temporal features.

After that, the descriptive statistical analysis method is
used to extracted features from the decomposed coefficients
in the previous step. Nine widely used descriptive statis-
tical features, namely,median (med), standard deviation
(std), mean (me), mode (mo), interquartile range (iqr),
skewness (ske), kurtoses (kur), first quartile (Q1) and
third quartile (Q3) are extracted from each coefficient. To
reduce the impact of individual outliers, the descriptive sta-
tistical features maximum and minimum were not adopted
in this work.

Through this way, a discrete feature space with 3 dimen-
sions, namely, channel (Ch), frequency bands (FB) and
descriptive statistical feature (DSF ), are formed, as shown
in Fig. 2.
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Fig. 2 Three-dimensional discrete feature space

The value ranges of the three dimensions are shown in
the following lists,

Ch ={Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3,

Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2},
(1)

FB = {f1, f2, f3, f4}, (2)

DSF = {med, std,me,mo, iqr, ske, kur,Q1, Q3}. (3)

The discrete feature space is denoted as F ∈ RU×V ×W ,
where U denotes the number of channels; V denotes the
number of frequency bands; W denotes the number of de-
scriptive statistical feature, and then

n = U × V ×W (4)

denotes the total number of features extracted from each
segment. As shown in Fig. 2, F (u, v, w) (u ∈ [1, U ], v
∈ [1, V ],w ∈ [1,W ]) is a point or a specific feature in the
discrete feature space F , representing the w th statistical
feature extracted from the v th frequency band of the u th
channel. Fig. 2 also demonstrates that the feature subsets
denoted as F (u, :, :), F (:, v, :) and F (:, :, w) are planes in
the discrete feature space, where the symbol semicolon ‘:’
stands for all elements in corresponding dimension.

After extracting features from all segments, a dataset
[X|y] is generated. The input matrix X ∈ Rm×U×V ×W

and the output vector y ∈ Rm, where m denote the total
number of segments. The i th (i = 1, · · · ,m) sample in this
dataset is [ X(i, :, :, :) | yi ], where yi ∈ {0,1}, and ‘1’ means
MCI samples, ‘0’ means elderly control samples. X(i, :, :, :)
denotes all features extracted from the i th sample (seg-
ment). So,

X(i, :, :, :) =[X(i, 1, 1, 1), X(i, 1, 1, 2), · · · , X(i, u, v, w),

· · · , X(i, U, V,W )].

(5)

2.2.4 Feature selection based on 3-D evaluation al-
gorithm

Too many features might lead to bias and over-fitting for
MCI classification. Intensive computation and time over-
heads are other possible problems. Moreover, some of the
extracted features might be correlated and therefore provide
no new information, thus need to be removed. Compared
with those algorithms, such as principal component analy-
sis (PCA) and linear discriminant analysis (LDA), which
derive new features from existing features, we proposed
a wrapper method, named 3-D evaluation algorithm, to
choose an optimal feature subset from the existing feature
space F to maintain the interpretability of features.

The basic idea of wrapper algorithm is that the classifier
is considered as a black box and its performance is used to
select the optimal feature subset. Based on the 3-D discrete
feature space F established in Section 2.2.3, the proposed
3-D evaluation algorithm evaluate the elements in three di-
mensions specified in Equation (1), (2), and (3) individually
and incrementally.

More specifically, the pseudocode of individual and in-
cremental assessment on channel dimension is described in
Algorithm 1. The inputs are the dataset [X|y] formed
after feature extraction, the feature space F and a series
of scalars, m, U , V , W . After initialization, we conduct
individual channel assessment via evaluating the perfor-
mance of SVM classifier on the feature subset F (u, :, :) (u ∈
[1, U ]) (step 6-10), then seek out OptFeaSub, MaxAcc,
MaxSens, MaxSpec (step 11-14), where OptFeaSub de-
notes the selected optimal feature subset, and MaxAcc,
MaxSens, MaxSpec denote the corresponding accuracy,
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Algorithm 1 Individual and incremental evaluation on
channel dimention

1: Input: X ∈ Rm×U×V ×W , y, F ∈ RU×V ×W , m, U , V ,
W

2: Output: OptFeaSub, MaxAcc, MaxSens, MaxSpec
% inationalization

3: OptFeaSub =∅, MaxAcc=0, MaxSens=0,
MaxSpec=0;
% feature subset selection on channel dimension

4: for each u ∈ [1, U ] do
5: % Individual channel assessment
6: Xeva=X[:, u, :, :], yeva=y;
7: Xeva= reshape(Xeva,[m, 1 ∗ V ∗W ])
8: Randomly separate dataset [Xeva | yeva] into three

parts:[Xtrain | ytrain], [Xval | yval], [Xtest | ytest] in
a ratio of 0.6:0.2:0.2;

9: Train a SVM classifier using [Xtrain | ytrain]
10: Evaluate the trained SVM classifer using [Xval | yval],

and calculate Acc, Sens, Spec;
11: if Acc > MaxAcc then
12: OptFeaSub=F (u, :, :);
13: MaxAcc = Acc, MaxSens = Sens, MaxSpec =

Spec;
14: end if

% Incremental channel assessment
15: Xeva=X[:, 1 : u, :, :], yeva =y;
16: Xeva= reshape(Xeva,[m,u ∗ V ∗W ]);
17: Randomly separate dataset [Xeva | yeva] into three

parts:[Xtrain | ytrain], [Xval | yval], [Xtest | ytest] in
a ratio of 0.6:0.2:0.2;

18: Train a SVM classifier using [Xtrain | ytrain];
19: Evaluate the trained SVM classifer using [Xval | yval],

and calculate Acc, Sens, Spec;
20: if Acc > MaxAcc then
21: OptFeaSub=F (1 : u, :, :);
22: MaxAcc = Acc, MaxSens = Sens, MaxSpec =

Spec;
23: end if
24: end for
25: return OptFeaSub, MaxAcc, MaxSens, MaxSpec;

sensitivity and specificity achieved on this optimal feature
subset. The definitions of accuracy, sensitivity and speci-
ficity are specified in Section 2.3. Then, similarly, con-
duct incremental channel assessment on the feature subset
F (1 : u, :, :), where 1 : u means all elements between the 1 st
element to the u th element on the channel dimension. As u
changes form 1 to U , the number of features in feature sub-
set F (1 : u, :, :) increase incrementally. At last, OptFeaSub,
MaxAcc, MaxSens and MaxSpec are returned as outputs.

The pseudocode of the whole 3-D evaluation algorithm
is specified in Algorithm 2. After evaluation in channel
dimension, we conduct evaluation in the frequency band
(FB) and descriptive statistical feature (DSF ) dimensions
in order, as described in step 10-23 of Algorithm 2. In-
dividual assessment on feature subset F (:, v, :) (u ∈ [1, U ]),
F (:, :, w) (u ∈ [1,W ]) and also incremental assessment on
feature subset F (:, 1 : v, :) and F (:, :, 1 : w) are carried out.

It should be noted that, when evaluating the latter two

dimensions, the initial values of OptFeaSub, MaxAcc,
MaxSens, and MaxSpec should be the returned values
from the previous dimension evaluation, instead of ∅ or 0,
as described in step 10 and 17 of Algorithm 2.

Algorithm 2 3-D evaluation algorithm

1: Input: X ∈ Rm×U×V ×W , y, F ∈ RU×V ×W , m, U , V ,
W

2: Output: OptFeaSub, MaxAcc, MaxSens, MaxSpec
% initialization

3: OptFeaSub =∅, MaxAcc=0, MaxSens=0,
MaxSpec=0, seed=1;
% feature subset selection on channel dimension

4: for each u ∈ [1, U ] do
5: Individual channel assessment on feature subset

F (u, :, :)
6: Seek out OptFeaSub, MaxAcc, MaxSens, MaxSpec

as described in step 11-14 of Algorithm 1
7: Incremental channel assessment on feature subset

F (1 : u, :, :)
8: Seek out OptFeaSub, MaxAcc, MaxSens, MaxSpec

as described in step 20-23 of Algrothm 1
9: end for

% feature subset selection on FB dimension
10: Initiate OptFeaSub, MaxAcc, MaxSens, MaxSpec as

the result of step 8;
11: for each v ∈ [1, V ] do
12: Individual FB assessment on feature subset F (:, v, :)
13: Seek out OptFeaSub, MaxAcc, MaxSens, MaxSpec

similarly as step 6
14: Incremental FB assessment on feature subset

F (:, 1 : v, :)
15: Seek out OptFeaSub, MaxAcc, MaxSens, MaxSpec

similarly as step 8
16: end for

% feature subset selection on DSF dimension
17: Initiate OptFeaSub, MaxAcc, MaxSens, MaxSpec as

the result of step 15;
18: for each w ∈ [1,W ] do
19: Individual DSF assessment on feature subset

F (:, :, w)
20: Seek out OptFeaSub, MaxAcc, MaxSens, MaxSpec

similarly as step 6
21: Incremental DSF assessment on feature subset

F (:, :, 1 : w)
22: Seek out OptFeaSub, MaxAcc, MaxSens, MaxSpec

similarly as step 8
23: end for
24: return OptFeaSub, MaxAcc, MaxSens, MaxSpec;

2.2.5 Classification based on SVM

SVM has been widely used in pattern recognition and re-
gression due to its computational efficiency and good gen-
eralization performance [29, 30]. The core of the SVM al-
gorithm for binary classification is mapping the input data
into a linearly separable space using a kernel function. It
also applies a minimization algorithm to minimize the ob-
jective function and maximize the margins between two
classes at the same time. SVM is stable and effective at
dealing with the small or medium scale of data, because
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only support vectors are used to construct the separating
hyperplane. Considering the scale of our dataset, SVM is
chosen as the classification algorithm.

In order to further demonstrate the effectiveness of the
extracted and selected optimal feature subset, two well-
known machine learning classifiers, Decision Tree and KNN,
are also adopted to verify the classification performance of
the proposed framework.

2.3 Performance evaluation

To evaluate the proposed algorithm and compare it with
other state-of-the-art algorithms, three widely used metrics
in this domain based on the confusion matrix are adopted.
A confusion matrix C is a square matrix whose size k is
equal to the total number of classes to be classified. The
element C(i, j) is the count of samples known to be in class
i (true condition) and predicted to be in class j (predicted
condition), where i =1, 2, · · · , k and j =1, 2, · · · , k.

The confusion matrix for binary classification is shown in
Table 1. The element C11 is also known as true negatives
(TN), which indicates the count of observations predicted
to be negative and also known to be negative in the true
condition. Similarly, we can get the meaning of false posi-
tives (FP ), false negatives (FN) and true positives (TN).
Obviously,

Total Population = TN + FP + FN + TP. (6)

Table 1 Confusion matrix for binary classification

Total Population predicted negatives predicted positives

true negatives TN FP

true positives FN TP

The three metrics to evaluate the performance of a clas-
sifier are defined as Equation (7), (8), (9) respectively[31].
Sensitivity (Sens) is a measure of the capacity to correctly
identify true positives. Specificity (Spec) reflects the ca-
pacity to correctly identify true negatives and accuracy
(Acc) is the proportion of correct classified instances.

Sens =
TP

TP + FN
× 100% (7)

Spec =
TN

TN + FP
× 100% (8)

Acc =
TP + TN

TP + FN + TN + FP
× 100% (9)

Obviously, accuracy is the average of sensitivity and
specificity, so we only take accuracy into account when com-
paring the performance of two algorithms. Sensitivity and
specificity are used as a reference to determine whether an
algorithm is biased towards a single category.

3 Results

All the experimental works are simulated and imple-
mented under the MATLAB 2018a software environment.
Some built-in functions are called from the ‘Wavelet Tool-
box’ and ‘Statistics and Machine Learning Toolbox’. The
following parts of this section describe the parameter set-
tings and the experiment results.

3.1 Results of SWT-based denoising

3.1.1 Setting of SWT decomposition

SWT decomposition and reconstruction are implemented
by calling the built-in functions ‘swt’ and ‘iswt’ from the
‘Wavelet Toolbox’ of Matlab. The mother wavelet basis
function used in this work is sym9, which is chosen from
the Symlets mother wavelet family. Because sym9 is re-
ported to be suitable for denoising, decomposition, recon-
struction, and sub-band feature extraction [32]. Since the
sampling rate of the collected EEG signals is 256 Hz, the de-
composition level, following the Nyquist criterion, is set to
8 to obtain the coefficients with the appropriate frequency
band. Fig. 3 demonstrates the level-8 1-D SWT decomposi-
tion process. SWT applies low-pass and high-pass filters to
decompose the input signals and produces two time-series
sequences, namely, approximation coefficient Ai and detail
coefficient Di at level i. The two coefficients have the same
length as the input signal to be composed. In Fig. 3, SR
denotes the sampling rate of the EEG signals; and Hi D
and Lo D denote the high-pass and low-pass decomposi-
tion separately. Level 6 and 7 are omitted.

3.1.2 Results of denoising

As described in Section 2.2.2, in denoising stage, after
decomposing via SWT, we keep the components with the
frequency of 0.5-32 Hz, and remove components with other
frequency.

First, we call ‘swt’ function to decompose each channel of
the raw EEG signals to obtain coefficients: A8 (0-0.5 Hz),
D2 (32-64 Hz) and D1 (64-128 Hz). Then, we reconstruct
them to get the time series signals as the to be removed
noise, by calling ‘iswt’ function in Matlab. Finally, the
reconstructed noise is subtracted from the original EEG
signals to get the denoised EEG signals.

Fig. 4 demonstrates the 19-channel EEG signals of an
MCI subject in the time domain. Subplot (a) shows the raw
EEG signals, and subplot (b) is the denoised EEG signals.

Fig. 5 illustrates the denoising process in the frequency
domain. The signals in Fig. 5 are transformed from time
series signals by Fourier transform. The different coloured
lines represent different channels. Fig. 5 (a) shows the raw
EEG signals in the frequency domain. It is obvious that the
frequency components from 0 to 0.5 Hz are extraordinarily
large, which is chiefly caused by baseline drift. Further-
more, there is a peak amplitude of 50 Hz, which is mainly
caused by power line interference. Fig. 5 (b) shows the low-
frequency noise to be removed in 0-0.5 Hz. The partially
enlarged detail in Fig. 5 (b) shows that the components
with the frequency less than 0.5 Hz will be eliminated. Fig.
5 (c) presents the high-frequency noise to be removed in 32-
128 Hz including the obvious 50 Hz power line interference.
Since there are no ideal bandpass filters, some components
< 32Hz are removed too. However, their amplitudes are too
small to interfere with the results, as shown in the partially
enlarged detail of Fig. 5 (c). Fig. 5 (d) are the denoised
signals after removing signals in (b) and (c) from (a). As
a schematic diagram, Fig. 5 is plotted based on a 4-second
segment split from an MCI object.
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Fig. 4 The 19-channel EEG signals of an MCI subject in time
domain. (a) The raw EEG signals; (b) The denoised EEG sig-
nals.

3.2 Results of spectral-temporal feature
extraction

As mentioned in Section 2.2.3, we do segmentation be-
fore feature extraction. The length of the sliding window
and the proportion of overlap between two neighbour seg-
ments are two factors which need to be considered in the
segmentation process. Considering the basic information of
our dataset (30 minutes’ duration, 22 subjects and a quite
large number of features will be extracted ), we tried sev-
eral possible values, i.e., 0.5s, 1s, 2s, 4s, of window length.
Finally, the window length is fixed at 2 seconds in this work
due to the performance of MCI detection. The overlapping
rate is set to 0% to avoid bias result. In this case, the
stride of the sliding window is equal to the length of the
window. So, the total number of segments (samples) in our
experiments is

m =

[
floor

(
signal length− window length

stride

)
+ 1

]
× ns,

(10)
where, signal length is the total lasting seconds of a sig-
nal, which equals to 1800 seconds in our experiments;
window length means total lasting seconds of a segment,
which equals to 2 seconds; stride=2 seconds means the in-

terval between two segment starting points and ns=22 de-
notes the number of subjects. According to Equation (1),
m = 19800.

For each segment, every channel specified in Equation (1)
is decomposed into four coefficients: A5 (0.5-4Hz), D5(4-
8Hz), D4(8-16Hz) and D3(16-32Hz) via 1-D SWT. The
mother wavelet basis function is still set to sym9 and 5 is
the appropriate decomposition level to achieve the desired
frequency resolution, as shown in Fig. 3.

Fig. 6 demonstrates the spectral-temporal characteristics
of Channel O1, which is picked from a segment of an MCI
subject after denoising. Fig. 6 (a) presents 5 signals in
time domain, namely, the denoised channel O1 and its 4
coefficients of D3, D4, D5, A5. While Fig.6 (b) shows those
5 signals in frequency domain.

As shown in Fig. 6, the decomposed coefficients reflect
the spectral-temporal characteristics of EEG signals. We
employ descriptive statistical analysis to extract features
from those coefficients. Specifically, 9 descriptive statistical
features listed in Equation (3) are extracted from each co-
efficient by calling the corresponding built-in functions in
Matlab. Therefore, the total number of features extracted
form each segment n=19×4×9=684 according to Equation
(4), where 19 denotes the number of channels, 4 indicates
the number of frequency bands, and 9 means the number
of descriptive statistical features.

3.3 Results of 3-D evaluation algorithm
for feature selection

The proposed 3-D evaluation feature selection method is
a kind of wrapper model. An SVM classifer is used as a
black box and its performance is used to select the opti-
mal feature subset. We implement the SVM classifer using
the built-in functions in ‘Statistics and Machine Learning
Toolbox’ of Matlab. Particularly, we create a ’Classifica-
tionSVM’ object as the binary classier, and train it with
the ’fitcsvm’ function, then use ’predict’ function to make
prediction with the trained SVM classifer. In order to sim-
plify calculation, the ’KernelFunction’ is set as ’polynomial’
and ’PolynomialOrder’ is set as 2. ’KernelScale’ is set as
’auto’, ’BoxConstraint’ is set as 2, and ’Standardize’ is set
as true. Other parameters is set as default. The SVM mod-
els share the same settings in step 3 (3-D evaluation) and
step 4 (classification) of the proposed framework, as shown
in Fig. 1.

As described in Algrothm 1 and Algrothm 2, we
evaluate the feature subset in channel dimension firstly.
Fig.7(a) and the left part of Table 2 show the results of indi-
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Fig. 5 The frequency domain EEG signals with 19 channels of an MCI subject. (a) The raw EEG; (b) The low frequency noise; (c)
The high frequency noise; (d) The denoised signals.
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vidual assessment. The solid lines in Fig.7 gives the perfor-
mance on training set while the dash lines is on validation
set. As emphasized with bold text in Table 2, after in-
dividual evaluation, OptFeaSub = F (13, :, :) and MaxAcc
= 75.28% on the corresponding validation set. Obviously,
using features extracted from any single channel can not
achieve good MCI detection performance. When evaluating
incrementally on channel dimension, as marked by bold text
in the right part of Table 2, we get the best performance on
F (1 : 19, :, :), which means that OptFeaSub = F (1 : 19, :, :)
and MaxAcc = 94.74%. Since we have 19 channel in total,
the evaluation results on channel dimension indicates that
the best performance is achieved on the whole feature set.

The evaluation results on frequency band dimension are
show in Fig. 8 and Table 3. We emphasized the best per-
formance of individual assessment and incremental assess-
ment with bold-type, and both of them are no better than
MaxAcc = 94.74%. According to the description in Algo-
rithm 2, still OptFeaSub = F (1 : 19, :, :) and MaxAcc =
94.74%.

As for the evaluation results on the descriptive statistical
feature dimension, we demonstrated in Fig. 9 and Table 4.
The best performance of individual evaluation is marked in
bold-type, and it is the best one so far. So, OptFeaSub =
F (:, :, 5) and MaxAcc = 97.45%. The best performance of
incremental evaluation is also marked in bold-type, and it
is deprecated because it is less than 97.45%.

As a conclusion, the final optimal feature subset selected
is OptFeaSub = F (:, :, 5), which means the 5 th descriptive
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Fig. 7 Evaluation results on channel dimension. (a) Individual assessment (b) Incremental assessment.

Table 2 Numerical results of feature subset evaluation on channel dimension (performance on validation set)

Individual evaluation Incremental evaluation

feature subset accuracy sensitivity specificity feature subset accuracy sensitivity specificity

F (1, :, :) 69.44% 66.14% 72.65% F (1, :, :) 69.44% 66.14% 72.65%

F (2, :, :) 68.10% 73.06% 63.28% F (1 : 2, :, :) 76.24% 78.91% 73.64%

F (3, :, :) 63.52% 66.75% 60.39% F (1 : 3, :, :) 80.13% 80.91% 79.37%

F (4, :, :) 64.86% 63.62% 66.07% F (1 : 4, :, :) 83.37% 84.61% 82.16%

F (5, :, :) 66.48% 58.95% 73.79% F (1 : 5, :, :) 85.06% 86.40% 83.76%

F (6, :, :) 66.96% 65.67% 68.21% F (1 : 6, :, :) 85.97% 86.92% 85.05%

F (7, :, :) 67.42% 73.27% 61.73% F (1 : 7, :, :) 88.52% 89.99% 87.10%

F (8, :, :) 68.20% 64.19% 72.10% F (1 : 8, :, :) 90.34% 91.59% 89.14%

F (9, :, :) 67.52% 64.70% 70.25% F (1 : 9, :, :) 90.34% 91.59% 89.14%

F (10, :, :) 68.63% 67.16% 70.05% F (1; 10, :, :) 90.60% 91.94% 89.29%

F (11, :, :) 68.63% 67.98% 69.26% F (1 : 11, :, :) 90.65% 92.30% 89.04%

F (12, :, :) 73.66% 73.32% 73.99% F (1 : 12, :, :) 91.96% 93.28% 90.68%

F (13, :, :) 75.28% 74.81% 75.73% F (1 : 13, :, :) 93.91% 94.61% 93.22%

F (14, :, :) 71.54% 69.98% 73.04% F (1 : 14, :, :) 93.58% 94.61% 92.58%

F (15, :, :) 71.71% 75.63% 67.91% F (1 : 15, :, :) 93.98% 94.92% 93.07%

F (16, :, :) 69.89% 73.22% 66.67% F (1 : 16, :, :) 94.19% 94.97% 93.42%

F (17, :, :) 74.60% 75.89% 73.34% F (1 : 17, :, :) 94.14% 95.02% 93.27%

F (18, :, :) 71.99% 75.68% 68.41% F (1 : 18, :, :) 94.08% 95.18% 93.02%

F (1 : 19, :, :) 72.65% 80.71% 64.82% F (1 : 19, :, :) 94.74% 95.90% 93.62%

Table 3 Numerical results of feature subset evaluation on frequency band dimension (performance on evaluation set)

Individual evaluation Incremental evaluation

feature subset accuracy sensitivity specificity feature subset accuracy sensitivity specificity

F (:, 1, :) 75.53 % 80.66 % 70.55 % F (:, 1, :) 75.53 % 80.66 % 70.55 %

F (:, 2, :) 79.90 % 84.09 % 75.83 % F (:, 1 : 2, :) 82.86 % 85.79 % 80.02 %

F (:, 3, :) 83.37 % 86.51 % 80.32 % F (:, 1 : 3, :) 89.13 % 91.64 % 86.70 %

(F (:, 4, :) 88.62 % 89.12 % 88.14 % F (:, 1 : 4, :) 94.62 % 95.84 % 93.42 %
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Table 4 Numerical results of feature subset evaluation on descriptive statistical feature dimension

Individual evaluation Incremental evaluation

feature subset accuracy sensitivity specificity feature subset accuracy sensitivity specificity

F (:, :, 1) 68.30 % 76.40 % 60.44 % F (:, :, 1) 68.30 % 76.40 % 60.44 %

F (:, :, 2) 96.94 % 97.43 % 96.46 % F (:, :, 1 : 2) 89.79 % 92.00 % 87.64 %

F (:, :, 3) 64.61 % 77.37 % 52.22 % F (:, :, 1 : 3) 88.47 % 90.30 % 86.70 %

F (:, :, 4) 91.94 % 93.89 % 90.03 % F (:, :, 1 : 4) 90.34 % 92.25 % 88.49 %

F (:, :, 5) 97.45% 97.74 % 97.16 % F (:, :, 1 : 5) 94.41 % 95.43 % 93.42 %

F (:, :, 6) 66.56 % 70.81 % 62.43 % F (:, :, 1 : 6) 93.20 % 94.56 % 91.88 %

F (:, :, 7) 64.11 % 68.55 % 59.79 % F (:, :, 1 : 7) 92.75 % 94.30 % 91.23 %

F (:, :, 8) 97.14 % 97.38 % 96.91 % F (:, :, 1 : 8) 93.63 % 94.97 % 92.33 %

F (:, :, 9) 96.79 % 97.38 % 96.21 % F (:, :, 1 : 9) 94.69 % 95.84 % 93.57 %
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Fig. 8 Evaluation results on frequency band dimension. (a)
Individual assessment. (b) Incremental assessment.

statistical feature, i.e., interquartile range, extracted from
all frequency bands listed in Equation (2) and all channels
listed in Equation (1). The total number of features in the
extracted optimal feature subset is,

nopt = U × V × 1 = 19× 4× 1 = 72. (11)

Considering the total number of features n=684 calcu-
lated by (4), the suppression ratio of the proposed 3-D eval-
uation feature selection algorithm is

suppression ratio =
nopt

n
× 100% =

72

684
× 100% = 11.11.%

(12)

3.4 Results of classification

Finally, we test the performance of the proposed frame-
work on the test set and compare it with other MCI detec-
tion algorithms based on EEG signals.

As described in section 3.3, F (:, :, 5) is the final optimal
feature subset. So, in this stage, we only picked the data
with feature subset F (:, :, 5) to test the classification per-
formance.In order to get an unbiased results, we test the
performance on the test set [Xtest | ytest], which has not
been seen by the classifier when training.

Besides SVM, we also implement two well-known s[33]

(Decision Tree and KNN) to verify the effectiveness of the
selected feature subset in the classification stage. All those
three classifiers are implemented by the built-in functions in
‘Statistics and Machine Learning Toolbox’ of Matlab. The
SVM classifier keeps the same setting described in Section
3.3. We use the built-in function fitcknn to optimize the
hyperparameters automatically for KNN classifier. As a
result, the optimised NumNeighbors is set to 5 and the
Distance is set as seuclidean. Other parameters keep the
default setting. Similarly, we use fitctree to implement
and optimize the Decision Tree classifier and the parameter
MinLeafSize is set to 9.

The classification results are shown in the last three
rows of Table 5. We can see that, with the right features
OptFeaSub selected by the proposed framework, all the
three classifiers can achieve superior performance compared
with other similar works [2, 34, 35, 36, 37] reported recently,
especially the work in [2], which uses the same dataset with
us. Among that three classifiers, the SVM classifier is with
a narrow lead.

4 Discussion

4.1 Effectiveness of the spectral-temporal
feature extraction method

The spectral-temporal characteristics of each channel is
reflected on the four decomposed coefficients, i.e. D3, D4,
D5, A5. The present study extract descriptive statistical
features from those coefficients, so the extracted features
contain information in both time domain and frequency
domin.

As shown in the last row of the right parts of Table 2, 3
and 4, F (1 : 19, :, :) = F (:, 1 : 4, :)= F (:, :, 1 : 9) denotes the
whole feature space F . The accuracy is located in the range
of [94.62%, 94.74%] on the whole feature space F , which is
outperformed other algorithms listed in Table 5. Thus, the
proposed spectral-temporal feature extraction strategy is
quite effective.

There is no large deviation between the sensitivity and
specificity of the proposed framework, which indicates that
the strategy of choosing a balanced data set is effective in
reducing the inconsistency caused by the data structure.
Moreover, the accuracy achieved on the whole feature set
F is slightly different, ranging from 94.62% to 94.74% as
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Fig. 9 Evaluation results on the statistical feature dimension. (a) Individual assessment (b) Incremental assessment.

Table 5 Performance comparison

algorithms accuracy sensitivity specificity classification

NF-KNN [2] 88.89% 100% 83.33% MCI vs. healthy control

Christoph Lehmann et al. [34] 88.5% 89% 88% MCI vs. healthy control

Joseph C.McBride et al. [35] 92.59% 100% 84.61% MCI vs. healthy control

Paolo M.Rossini et al. [36] 93.46% 95.87% 91.06% MCI vs. healthy control

wavelet+SVM [37] 91.7% 91.7% 91.7% MCI vs. healthy control

OptFeaSub +
SVM 96.94% 96.89% 96.99% MCI vs. healthy control

Decision Tree 95.47% 95.38% 95.55% MCI vs. healthy control

KNN 96.89% 97.25% 96.54% MCI vs. healthy control

shown in Table 2, 3 and 4. The reason behind is that,
when evaluating on different dimensions, the order we in-
crementally add into the feature subset is different, thus the
initialization state of SVM classifier is different. However,
this nuance does not affect the consistency of results.

4.2 Discussion on 3-D evaluation algo-
rithm

Ranking all channels in descending order of accuracy
based on the individual evaluation results in the channel
dimension, the result is: T5, T6, T4, O2, O1, Pz P3, P4, Fp1,
Cz, C4, T3, Fp2, C3, F8, F4, Fz, F3, F7. Considering the
location of the 19 channels on the scalp as shown in Fig. 10,
we discover that the temporal and occipital areas are more
effective for MCI detection than the frontal and central ar-
eas. Similarly, the frequency band sequence in descending
order is D3, D4, D5, A5, which means coefficients of higher
frequency bands are more effective than lower ones in the
frequency scope of 0.5-32 Hz for MCI detection. The de-
scending order of the descriptive statistical feature sequence
is iqr, 1stq, std, 3rdq, mode, median, ske, mean and kur
in the statistical feature dimension. Fig. 9 (a) and the left
part of Table 4 further demonstrates that Q1, std and Q3

are also quite effective in differentiating subjects with an
MCI and those who are cognitively healthy.

The results of the individual evaluation on channel and
frequency band dimensions show that a single channel or a
single frequency band can hardly achieve good performance
in MCI detection. As for descriptive statistical feature di-
mension, the optimal feature subset is F (:, :, 5) which con-
tains only one descriptive statistical feature, i.e. iqr, but
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Fig. 10 The international 10-20 system of electrode placement.
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includes all channels and frequency bands. So, we can draw
a conclusion that every channel and frequency band has
unique information for MCI detection, whereas the statis-
tical features are highly redundant and iqr is the properly
selected descriptive statistical feature in this problem.

The presented 3-D evaluation algorithm is efficient and
effective for feature selection, because with a suppression
ratio of 11.11%, the selected feature subset F (:, :, 5) can
obtain the best performance, which is even better than that
on the full feature space. Conversely, with the same number
of inappropriate features, for example, the feature subset of
F (:, :, 7), the accuracy is only 64.11%, as shown in Table 4
marked with bold-type.

4.3 Limitations and perspectives

Although the aforementioned advantages, this work also
suffers from a problem of the limited dataset. The total
number of subjects involved in the experiments is 22, which
makes the trained model can hardly be used in non-patient
specific scenes. In future work, we plan to collect more data
and try the automatic feature extraction method based on
deep learning algorithms. Multi-class classification between
MCI, healthy control and AD patients will also be involved.

5 Conclusions

A systematic framework is proposed to identify MCI pa-
tients and elderly control subjects using resting-state EEG
signals. The proposed scheme can efficiently eliminate the
baseline drift and power line interference from the raw EEG
signals. It also takes advantage of extracting information
from both time domain and frequency domain, and a set
of highly representative spectral-temporal features are ex-
tracted. Moreover, an effective feature subset is selected
through the proposed 3-D evaluation algorithm. Extensive
experiments were conducted based on clinical data. The
results show that, compared with other similar works, our
method achieves a better performance.
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