Skip to main content
Log in

Study on Statistical Outlier Detection and Labelling

  • Research Article
  • Published:
International Journal of Automation and Computing Aims and scope Submit manuscript

Abstract

Outliers accompany control engineers in their real life activity. Industrial reality is much richer than elementary linear, quadratic, Gaussian assumptions. Outliers appear due to various and varying, often unknown, reasons. They meet research interest in statistical and regression analysis and in data mining. There are a lot of interesting algorithms and approaches to outlier detection, labelling, filtering and finally interpretation. Unfortunately, their impact on control systems has not been found sufficient attention in research. Their influence is frequently unnoticed, ignored or not mentioned. This work focuses on the subject of outlier detection and labelling in the context of control system performance analysis. Selected statistical data-driven approaches are analyzed, as they can be easily implemented with limited a priori knowledge. The study consists of a simulation study followed by the analysis of real control data. Different generation mechanisms are simulated, like overlapping Gaussian processes, symmetric and asymmetric, artificially shifted points and fat-tailed distributions. Simulation observations are confronted with industrial control loops datasets. The work concludes with a practical procedure, which should help practitioners in dealing with outliers in control engineering temporal data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. J. Dixon. Analysis of extreme values. The Annals of Mathematical Statistics, vol. 21, no. 4, pp. 488–506, 1950. DOI: https://doi.org/10.1214/aoms/1177729747.

    MathSciNet  MATH  Google Scholar 

  2. H. Wainer. Robust statistics: A survey and some prescriptions. Journal of Educational Statistics, vol. 1, no. 4, pp. 285–312, 1976. DOI: https://doi.org/10.3102/10769986001004285.

    Google Scholar 

  3. D. M. Hawkins. Identification of Outliers, Dordrecht, The Netherlands: Springer, 1980. DOI: https://doi.org/10.1007/978-944-015-3994-4.

    MATH  Google Scholar 

  4. R. A. Johnson, D. W. Wirchern. Applied Multivariate Statistical Analysis, 3rd ed., Englewood Cliffs, USA: Prentice-Hall, 1992.

    Google Scholar 

  5. V. Barnett, T. Lewis. Outliers in Statistical Data, 3rd ed., Chichester, UK: Wiley, 1994.

    MATH  Google Scholar 

  6. J. R. Xue, J. W. Fang, P. Zhang. A survey of scene understanding by event reasoning in autonomous driving. International Journal of Automation and Computing, vol. 15, no. 3, pp. 249–266, 2018. DOI: https://doi.org/10.1007/s11633-018-1126-y.

    Google Scholar 

  7. J. W. Osborne, A. Overbay. The power of outliers (and why researchers should always check for them). Practical Assessment, Research, and Evaluation, vol. 9, no. 9, Article number 6, 2004. DOI: https://doi.org/10.7275/qf69-7k43.

  8. N. N. Taleb. Statistical Consequences of Fat Tails: Real World Preasymptotics, Epistemology, and Applications. USA: STEM Academic Press, 2020.

    Google Scholar 

  9. P. J. Rousseeuw, A. M. Leroy. Robust Regression and Outlier Detection, New York, USA John Wiley & Sons, 1987.

    MATH  Google Scholar 

  10. I. Ben-Gal. Outlier detection. Data Mining and Knowledge Discovery Handbook, O. Maimon, L. Rokach, Eds., Boston, USA: Springer, pp. 131–146, 2005. DOI: https://doi.org/10.1007/0-387-25465-X_7.

    Google Scholar 

  11. B. Iglewicz, D. C. Hoaglin. How to Detect and Handle Outliers, Milwaukee, USA: ASQ Quality Press, 1993.

    Google Scholar 

  12. J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, H. E. Stanley. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A: Statistical Mechanics and its Applications, vol. 316, no. 1–4, pp. 87–114, 2002. DOI: https://doi.org/10.1016/S0378-4371(02)01383-3.

    MATH  Google Scholar 

  13. J. Barunik, T. Aste, T. Di Matteo, R. P. Liu. Understanding the source of multifractality in financial markets. Physica A: Statistical Mechanics and its Applications, vol. 391, no. 17, pp. 4234–4251, 2012. DOI: https://doi.org/10.1016/j.physa.2012.03.037.

    Google Scholar 

  14. B. Mandelbrot, R. L. Hudson. The Misbehavior of Markets: A Fractal View of Financial Turbulence, New York, USA: Basic Books, 2005.

    Google Scholar 

  15. H. P. Kriegel, P. Kröger, A. Zimek. Outlier detection techniques. In Proceedings of the 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, USA, 2010.

  16. K. G. Mehrotra, C. K. Mohan, H. M. Huang. Anomaly Detection Principles and Algorithms, Cham, Germany: Springer, 2017. DOI: https://doi.org/10.1007/978-3-319-67526-8.

    Google Scholar 

  17. B. Peirce. Criterion for the rejection of doubtful observations. Astronomical Journal, vol. 2, no. 45, pp. 161–163, 1852. DOI: https://doi.org/10.1086/100259.

    Google Scholar 

  18. J. Irwin. On a criterion for the rejection of outlying observations. Biometrika, vol. 17, no. 3–4, pp. 238–250, 1925. DOI: https://doi.org/10.1093/biomet/17.3-4.238.

    MATH  Google Scholar 

  19. E. S. Pearson, C. C. Sekar. The efficiency of statistical tools and a criterion for the rejection of outlying observations. Biometrika, vol. 28, no. 3–4, pp. 308–320, 1936. DOI: https://doi.org/10.1093/biomet/28.3-4.308.

    MATH  Google Scholar 

  20. F. E. Grubbs. Sample criteria for testing outlying observations. The Annals of Mathematical Statistics, vol. 21, no. 1, pp. 27–58, 1950. DOI: https://doi.org/10.1214/aoms/1177729885.

    MathSciNet  MATH  Google Scholar 

  21. N. A. Heckert, J. J. Filliben, C. M. Croarkin, B. Hembree, W. F. Guthrie, P. Tobias, J. Prinz. NIST/SEMATECH e-Handbook of Statistical Methods, 2012, [Online], Avalable: http://www.itl.nist.gov/div898/handbook/, February 08, 2020.

  22. F. Rosado. Outliers: The strength of minors. New Advances in Statistical Modeling and Applications, A. Pacheco, R. Santos, M. D. R. Oliveira, C. D. Paulino, Eds., Cham, Germany: Springer, 2014.

    Google Scholar 

  23. D. L. Whaley III. The Interquartile Range: Theory and Estimation, Master dissertation, Faculty of the Department of Mathematics, East Tennessee State University, USA, 2005.

    Google Scholar 

  24. G. L. Tietjen, R. H. Moore. Some grubbs-type statistics for the detection of several outliers. Technometrics, vol. 14, no. 3, pp. 583–597, 1972. DOI: https://doi.org/10.1080/00401706.1972.10488948.

    Google Scholar 

  25. M. Hubert, M. Debruyne. Minimum covariance determinant. WIREs Computational Statistics, vol. 2, no. 1, pp. 36–43, 2010. DOI: https://doi.org/10.1002/wics.61.

    Google Scholar 

  26. B. Rosner. Percentage points for a generalized ESD many-outlier procedure. Technometrics, vol. 25, no. 2, pp. 165–172, 1983. DOI: https://doi.org/10.1080/00401706.1983.10487848.

    MATH  Google Scholar 

  27. R. Thompson. A note on restricted maximum likelihood estimation with an alternative outlier model. Journa of the Royal Statistical Society: Series B (Methodological), vol. 47, no. 1, pp. 53–55, 1985. DOI: https://doi.org/10.1111/j.2517-6161.1985.tb01329.x.

    Google Scholar 

  28. P. J. Huber Hoboker, E. M. Ronchetti. Robust Statistics, 2nd ed., Hoboken, USA: Wiley, 2009. DOI: https://doi.org/10.1002/9780470434697.

    MATH  Google Scholar 

  29. R. K. Pearson. Mining Imperfect Data: Dealing with Contamination and Incomplete Records, Philadelphia, USA: SIAM, 2005.

    MATH  Google Scholar 

  30. N. N. Taleb. Real-world Statistical Consequences of Fat Tails: Papers and Commentary, UK: STEM Academic Press, 2018.

    Google Scholar 

  31. P. D. Domański Statistical measures. Control Performance Assessment: Theoretical Analyses and Industrial Practice, P. D. Domański, Ed., Cham, Germany: Springer, pp. 53–74, 2020. DOI: https://doi.org/10.1007/978-3-030-23593-2_4.

    MATH  Google Scholar 

  32. P. D. Domański. Non-Gaussian properties of the real industrial control error in SISO loops. In Proceedings of the 19th International Conference on System Theory, Control and Computing, IEEE, Cheile Gradistei, Romnnia, pp. 877–882, 2015. DOI: https://doi.org/10.1109/ICSTCC.2015.7321405

    Google Scholar 

  33. K. Malik, H. Sadawarti, G. S. Kalra. Comparative analysis of outlier detection techniques. International Journal of Computer Applications, vol. 97, no. 8, pp. 12–21, 2014. DOI: https://doi.org/10.5120/17026-7318.

    Google Scholar 

  34. S. A. Shaikh, H. Kitagawa. Top-k outlier detection from uncertain data. International Journal of Automation and Computing, vol. 11, no. 2, pp. 128–142, 2014. DOI: https://doi.org/10.1007/s11633-014-0775-8.

    Google Scholar 

  35. Z. G. Ding, D. J. Du, M. R. Fei An isolation principle based distributed anomaly detection method in wireless sensor networks. International Journal of Automation and Computing, vol. 12, no. 4, pp. 402–412, 2015. DOI: https://doi.org/10.1007/s11633-014-0847-9.

    Google Scholar 

  36. S. Banerjee, T. Chattopadhyay, U. Garain. A wide learning approach for interpretable feature recommendation for 1-d sensor data in iot analytics. International Journal of Automation and Computing, vol. 16, no. 6, pp. 800–811, 2019. DOI: https://doi.org/10.1007/s11633-019-1185-8.

    Google Scholar 

  37. N. N. R. Ranga Suri, N. Murty M. G. Athithan. Outlier Detection: Techniques and Applications: A Data Mining Perspective, Cham, Germany: Springer, 2019. DOI: https://doi.org/10.1007/978-3-030-05127-3.

    Google Scholar 

  38. A. Zimek, P. Filzmoser. There and back again: Outlier detection between statistical reasoning and data mining algorithms. WIRES Data Mining and Knowledge Discovery, vol. 8, no. 6, Article number e1280, 2018. DOI: https://doi.org/10.1002/widm.1280.

  39. P. J. Rousseeuw, M. Hubert. Anomaly detecrion by robust statistics. WIREs Data Mining and Knowledge Discovery, vol 8, no. 2, Article number e2236, 2088. DOI: https://doi.org/10.1002/widm.1236.

  40. M. Templ, J. Gussenbauer, P. Filzmoser. Evaluation of robust outlier detection methods for zero-inflated complex data. Journal of Applied Statistics, vol. 47, no. 7, pp. 1144–1167, 2020. DOI: https://doi.org/10.1080/02664763.2019.1671961.

    MathSciNet  Google Scholar 

  41. M. P. J. Van Der Loo. Distribution based Outlier Detection in Univariate Data. Technical Report Discussion Paper 00003, Statistics Netherlands, The Hague/Heerlen, Netherlands, 2010.

  42. G. Barbato, E. M. Barini, G. Genta, R. Levi. Features and performance of some outlier detection methods. Journal of Applied Statistics, vol. 38, no. 10, pp. 2133–2149, 2011. DOI: https://doi.org/10.1080/02664763.2010.545119.

    MathSciNet  MATH  Google Scholar 

  43. M. Gupta, J. Gao, C. Aggarwal, J. W. Han. Outlier Detection for Temporal Data, San Rafael, USA: Morgan & Clay-pool Publishers, 2014. DOI: https://doi.org/10.2200/S00573ED1V01Y201403DMK008.

  44. P. D. Domański. Statistical measures for proportional–integral–derivative control quality: Simulations and industrial data. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 232, no. 4, pp. 428–441, 2018. DOI: https://doi.org/10.1177/0959651817754034.

    Google Scholar 

  45. P. D. Domański, S. Golonka, P. M. Marusak, B. Moszowski. Robust and asymmetric assessment of the benefits from impoved control — industrial validation. IFAC-PapersOnLine, vol. 51, no. 18, pp. 815–820, 2018. DOI: https://doi.org/10.1016/j.ifacol.2018.09.260.

    Google Scholar 

  46. L. B. Klebanov. Big outliers versus heavy tails: What to use? https://arxiv.org/abs/1611.05410.

  47. C. Croux, C. Dehon. Robust estimation of location and scale. Encyclopedia of Environmetrics, A. H. El-Shaarawi, W. W. Piegorsch, Eds., Hoboken, USA: Wiley, 2013. DOI: https://doi.org/10.1002/9780470057339.vnn093.

    Google Scholar 

  48. S. Verboven, M. Hubert. LIBRA: A MATLAB library for robust analysis. Chemometrics and Intelligent Laboratory Systems, vol. 75, no. 2, pp. 127–136, 2005. DOI: https://doi.org/10.1016/j.chemolab.2004.06.003.

    Google Scholar 

  49. J. H. McCulloch. Simple consistent estimators of stable distribution parameters. Communications in Statistics — Simulation and Computation, vol. 15, no. 4, pp. 1109–1136, 1986. DOI: https://doi.org/10.1080/03610918608812563.

    MathSciNet  MATH  Google Scholar 

  50. I. A. Koutrouvelis. Regression-type estimation of the parameters of stable laws. Journal of the American Statistical Association, vol. 75, no. 372, pp. 918–928, 1980. DOI: https://doi.org/10.1080/01621459.1980.10477573.

    MathSciNet  MATH  Google Scholar 

  51. E. E. Kuruoglu. Density parameter estimation of skewed α-stable distributions. IEEE Transactions on Signal Processing, vol. 49, no. 10, pp. 2192–2201, 2001. DOI: https://doi.org/10.1109/78.950775.

    MathSciNet  MATH  Google Scholar 

  52. S. Borak, A. Misiorek, R. Weron. Models for heavy-tailed asset returns. Statistical Tools for Finance and Insurance, 2nd ed., P. Cizek, W. K. Härdle, R. Weron, Eds., Berlin, Heidelberg, Germany: Springer, pp. 21–55, 2011. DOI: https://doi.org/10.1007/978-3-642-18062-0_1.

    Google Scholar 

  53. A. Alfons, M. Templ, P. Filzmoser. Robust estimation of economic indicators from survey samples based on pareto tail modelling. Journal of the Royal Statistical Society: Series C, vol. 62, no. 2, pp. 271–286, 2013. DOI: https://doi.org/10.1111/j.1467-9876.2012.01063.x.

    MathSciNet  Google Scholar 

  54. J. Danielsson, L. M. Ergun, L. De Haan, C. G. De Vries. Tail Index Estimation: Quantile Driven Threshold Selection, Bank of Canada Staff Working Paper 2019–28, Bank of Canada.

  55. P. D. Domański. Control Performance Assessment: Theoretical Analyses and Industrial Practice, Cham, Germany: Springer, 2020. DOI: https://doi.org/10.1007/978-3-030-23593-2.

    MATH  Google Scholar 

  56. M. C. Bryson. Heavy-tailed distributions: Properties and tests. Technometrics, vol. 16, no. 1, pp. 61–68, 1974. DOI: https://doi.org/10.1080/00401706.1974.10489150.

    MathSciNet  MATH  Google Scholar 

  57. L. B. Klebanov, I. Volchenkova. Outliers and the ostensibly heavy tails. https://arxiv.org.abs/1807.08715vl.

  58. G. Marsaglia, W. W. Tsang. A simple method for generating gamma variables. ACM Transactions on Mathematical Software, vol. 26, no. 3, pp. 363–372, 2000. DOI: https://doi.org/10.1145/358407.358414.

    MathSciNet  MATH  Google Scholar 

  59. N. L. Johnson, S. Kotz, N. Balakrishnan. Continuous Univariate Distributions, 2nd ed., New York, USA: Wiley, 1995.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł D. Domański.

Additional information

Pawel D. Domański received the M.Sc. degree, Ph.D. degree and D.Sc. degree in control engineering from Faculty of Electronics and Information Technology, Warsaw University of Technology, Poland in 1967, 1991 and 1996, respectively. He works in the Institute of Control and Computational Engineering, Warsaw University of Technology, Poland from 1991. He is the author of one book and more than 100 publications. Apart from scientific research, he participated in dozens of industrial implementations of advanced process control and optimization in power and chemical industries all over the world.

His research interests include industrial advanced process control applications, control performance quality assessment and optimization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domański, P.D. Study on Statistical Outlier Detection and Labelling. Int. J. Autom. Comput. 17, 788–811 (2020). https://doi.org/10.1007/s11633-020-1243-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11633-020-1243-2

Keywords

Navigation