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Abstract: Recently, deep learning has achieved great success in visual tracking tasks, particularly in single-object tracking. This pa-
per provides a comprehensive review of state-of-the-art single-object tracking algorithms based on deep learning. First, we introduce ba-
sic knowledge of deep visual tracking, including fundamental concepts, existing algorithms, and previous reviews. Second, we briefly re-
view existing deep learning methods by categorizing them into data-invariant and data-adaptive methods based on whether they can dy-
namically change their model parameters or architectures. Then, we conclude with the general components of deep trackers. In this way,
we systematically analyze the novelties of several recently proposed deep trackers. Thereafter, popular datasets such as Object Tracking
Benchmark (OTB) and Visual Object Tracking (VOT) are discussed, along with the performances of several deep trackers. Finally,
based on observations and experimental results, we discuss three different characteristics of deep trackers, i.e., the relationships between
their general components, exploration of more effective tracking frameworks, and interpretability of their motion estimation compon-

ents.
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1 Introduction

Single object tracking is a fundamental and critical
task in the fields of computer vision and video processing.
It has various practical applications in areas such as nav-
igation, robotics, traffic control, and augmented reality.
Therefore, numerous efforts have been devoted to over-
coming the challenges in the single-object tracking task
and developing effective tracking algorithms. However,
this task remains challenging because of the difficulty in
balancing the effectiveness and efficiency of the tracking
algorithms. In addition, existing algorithms are not suffi-
ciently robust under complex scenes with multiple issues,
e.g., background clutter, motion blur, viewpoint changes,
and illumination variations.

Single object tracking aims at locating a given target
in all frames of a video. To this end, tracking algorithms
always extract certain features from the template of tar-
get appearance and a search frame, and then iteratively
match these features to locate the object. For retaining
effective target templates, the appearance of the object in
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the first frame is taken as the initialization and continu-
ously updated during tracking. In contrast, the matching
framework is manually designed and fixed during the en-
tire tracking process. As a result, the extracted features
are required to be representative to accurately distin-
guish the object from the background. However, because
these extracted features cannot comprehensively reflect
the characteristics of an object, conventional tracking al-
gorithms!4 tend to have relatively poor performance.
Therefore, the improvements of these conventional track-
ing algorithms are twofold: by exploring features that can
better reflect the characteristics of the object and by pro-
posing effective matching frameworks. For example, the
template-basedl!: 5 6 subspace-based”l, and sparse-repres-
entation® 9 methods use certain elements to represent an
object, rather than directly using cropped pixels or im-
age patches. Frameworks such as boosting[10: 11, support
vector machinel!?, random forest!3], multiple instance
learning(!4, and metric learning(!? have also been used to
enhance the matching ability of tracking algorithms.
With the advancements in deep learning mechanisms(6],
numerous studies have been proposed to conduct com-
puter visionl!7: 18] speech recognitionl!% 20, and natural
language processing tasks(2!: 22, Motivated by these break-
throughs, the deep learning mechanisms have also been
introduced for the single object tracking task[23-26], Mean-
while, several tracking datasets, such as Object Tracking

@ Springer


https://doi.org/10.1007/s11633-020-1274-8
https://link.springer.com/journal/11633
https://link.springer.com/journal/11633
www.ijac.net

312

Benchmark 2013 (OTB-2013)27 and Visual Object
Tracking 2013 (VOT-2013)28, have been proposed to
evaluate the performance of these tracking algorithms.
With these developments, several papers reviewed the ad-
vancements and challenges in deep-learning-based track-
ing algorithms. However, according to our statistical res-
ults (see Table 1), none of these existing reviews dis-
cusses tracking methods that are recently published in
top conferences and journals. In addition, existing re-
views mostly concentrate on classifying deep trackers ac-
cording to their methodologies or on evaluating their per-
formance. It can also be noted that none of the existing
reviews details specific components of existing deep track-
ers. For example, in the two latest reviews, Li et al.[32]
present comprehensive classification results based on
characteristics such as network architecture, network
function, and training frameworks. Yao et al.34 systemat-
ically detail methods that can jointly conduct the video
object segmentation and the visual object tracking tasks.
To facilitate the development of single object tracking al-
gorithms based on deep learning, in this work, we con-
clude with the general components of existing deep-learn-
ing-based tracking algorithms and present the popular
components of deep neural networks, which are proposed
for improving the representative ability of the features in

Table 1 Statistical results of existing reviews related to single
object tracking algorithms. In the newest work column, the year
of publications of the latest work is presented.

Papers  Published year The newest work Function
[29] 2013 2012 Classification
[30] 2017 2017 Classification
[31] 2018 2018 Evaluation
[32] 2019 2019 Classification
[33] 2018 2017 Classification
[34] 2019 2019 Classification

Ours - 2020 Specification
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the deep neural networks. In addition, we compare the re-
cently proposed deep trackers by collecting and analyz-
ing their metrics on benchmark datasets. In this way, we
provide some important observations. For example,
through making comparisons, we find that attention
mechanisms are widely used to combine the online-updat-
ing methods with offline-trained ones. On the other hand,
we find that since different components in the deep track-
ers have their special characteristics, improving only a
single component sometimes cannot facilitate the track-
ing process.

The rest of this paper is organized as follows. In Sec-
tion 2, we briefly introduce fundamental frameworks and
novel mechanisms of deep learning methods. In Section 3,
we present the general components of deep trackers. In
Section 4, the most popular tracking datasets are de-
tailed and compared with each other. We then present
popular metrics used for evaluating the tracking perform-
ance on popular tracking datasets. With these metrics, we
present and compare the performance of recently pub-
lished deep trackers in Section 5. Based on these compar-
ison results, we provide several observations in Section 6.
Finally, Section 7 summarizes this work.

2 Deep learning models

Deep learning models (i.e., deep neural networks) have
been widely studied and applied to several computer vis-
ion tasksB39, such as image classificationl3], object de-
tectionB6l, and image restorationl3]. In general, the
pipeline of the deep neural networks can be seen in Fig. 1.
During generating manually designed outputs, different
inputs (e.g., a single image for image restoration or con-
tinuous frames for video captioning) are fed through a
pre-processing module for data augmentation, which aims
at alleviating the huge requirement of training data and
enhancing the robustness of the networks. After that, sev-
eral feature processing modules are used to capture the
characteristics of the inputs. Based on the captured char-
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General pipeline of a deep neural network. Colored figures are available in the online version.
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acteristics and manual knowledge, a feature post-pro-
cessing module is then used to generate outputs, which
are supervised by computing the distance to the ground
truth. Finally, the calculated loss function is used to up-
date the network parameters through the back propaga-
tion. In this pipeline, it is easy to find that the most im-
portant part is the feature processing module, whose com-
ponents are organized in encoder-decoder (denoted by a
gray rectangle) or directly-stacked (denoted by a green
rectangle) schemes. However, as reported in [40, 41], these
two methods are time-consuming, error-prone and data-
invariant, always leading to a poor generalization per-
formance. Therefore, numerous feature processing com-
ponents have been proposed to address the above issues.
In addition, the skip connections between these compon-
ents and the architectures of these components are also
explored in the field of neural architecture search
(NAS)“l. According to whether the feature processing
module changes its configurations with respect to specific
inputs, we roughly split existing deep neural networks in-
to two classes: data-invariant and data-adaptive methods.

2.1 Data-invariant methods

In the early stage of developing deep neural networks,
the deep neural networks are static models, whose archi-
tectures are fixed and the parameters are iteratively up-
dated in the training stage. Once the network is trained,
its architectures and parameters are used to handle all
the testing samples. Therefore, it is easy to find that
these networks can be considered as data-invariant meth-
ods. Next, we detail three popular types of data-invari-
ant methods and discuss their improvements.

2.1.1 Convolution neural networks

The convolution neural network is the first genera-
tion of deep neural networks. Given an input, the convo-
lution neural network learns high-dimensional features
from the input and generates supervised outputs with re-
spect to the learned features. In this process, several lay-
ers, such as convolution layers, pooling layers, batch nor-
malization layers, rectified linear units (ReLU), and fully
connected layers, are used to first magnify the feature
channel (sometimes also change the spatial resolution),
and then gradually reduce the channel numbers. There-
fore, the convolution layer, whose function is shown in
Fig.2, is the most basic component of convolution neural
networks. In general, the convolution layer uses a trained
kernel to convolute the entire input. As such, the resolu-
tions of the outputs generated by convolution layers are
decided by factors such as dimension, stride, dilation, and
spatial resolution of the convolution kernel. All these
factors are closely related to the receptive field of each
convolution layer. Moreover, the factors of each convolu-
tion layer jointly influence the receptive field of convolu-
tion neural networks.

To enlarge the receptive field of the convolution neur-

Input = Kernel

Fig. 2 Illustration of a convolution layer, which is the basic
component of convolution neural networks. With different
convolution kernels, the convolution layer can change the
channels and spatial resolutions of the input feature.

al networks, the two simplest methods include increasing
their depth or width. For example, in the heuristic
work42, multiple convolution layers with small convolu-
tion kernels are incorporated along with a max-pooling
layer to form the VGG19 network. For obtaining a net-
work as deep as possible, He et al.43] employ the residual
connections in the hierarchical convolution layers. Con-
sequently, the Resl101 and Res152[43] are approximately
10 times deeper than their former networks, and there-
fore significantly outperform their counterparts. Follow-
ing these two representative works, designing deeper net-
works is considered as the most useful method to im-
prove the model performancel4 45l However, this ap-
proach is highly empirical and is limited by computing re-
sources. As a substitute, some methods try to increase
the width of convolution neural networks to enlarge their
receptive field. Szegedy et al.l[46] carefully find out the op-
timal local sparse structure in a convolution neural net-
work by using the Hebbian principle”). Based on this
sparse structure, the Inception modules are introduced by
implementing parallel branches. Later, Szegedy et al.[48l
use hierarchical convolution layers with small kernels to
replace convolution layers with large kernels and thus
propose the Inception-v2. However, modules proposed in
[46,48] are too various to be used in different tasks.
Therefore, Szegedy et al.[49] incorporate the existing In-
ception modules with residual connections to form the In-
ception-v4 and Inception-ResNet.

Although increasing the depth or width of neural net-
works yields a remarkable performance, these two meth-
ods are still unreasonable. To facilitate the designation of
neural networks and alleviate the computation resource
restriction, many studies have been conducted on the
characteristics of the convolution layers. To name a few,
Huo et al.[9 introduce a feature replay algorithm to learn
the parameters of the convolution layers. Similarly, Jeong
and Shinl% modify the standard convolution layer with a
channel-selectivity function and a spatial shifting func-
tion to dynamically emphasize important features, which
have the highest influence on the output vector. Qiao
et al.b1 also find that owing to the cascaded architecture
of the convolution layers, it is unnecessary to update all
the features during image recognition. As well as these
methods that abandon irrelevant or unimportant fea-
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tures to improve overall performancel®?, there are also
some methods that improve their performance by
exploring the interpretability of convolution neural net-
works[®3757, Geirhos et al.[53 find that convolution neural
networks (CNNs) trained with different datasets are
biased toward image textures or shapes. For example, Im-
ageNet-trained® CNNs are strongly biased toward im-
age textures. By systematically exploring such a bias,
Geirhos et al.l53] not only improve the performance of ex-
isting networks, but also improve their robustness.

2.1.2 Recurrent neural networks

Unlike the convolution neural networks, the recurrent
neural networks (RNNs) are proposed to handle sequen-
tial data such as videos and natural language. During
handling this information, each recurrent cell not only ob-
tains the hidden states from previous cells, but also takes
inputs based on the timestamp. Therefore, both short-
term and long-term relationships between the sequential
information are dynamically learned and transferred to
the subsequent cells. To this end, RNNs maintain a vec-
tor of the activation for each timestamp, which makes
most RNNs extremely deep. As a consequence, RNNs are
difficult to train because of the exploding and the vanish-
ing gradient problemsPs 9. It is widely known that the
first problem can be easily addressed by employing a hard
constraint over the norm of these gradients(6% 611, However,
the vanishing gradient problem is more complicated, and
two types of methods have been proposed to address this
problem.

On the one hand, novel models such as long short-
term memory (LSTM)I®2 and gated recurrent unit
(GRU)63 are designed. Compared with LSTM, GRU
makes it easier to forget long-term information, which is
always irrelevant to recent inputs, and thus has better
performance on most sophisticated tasks/®4. In detail, the
gated recurrent unit contains a reset gate and an update
gate, as shown in Fig.3. In each timestamp, the reset
gate takes the previous state h;; to drop any informa-
tion that is irrelevant later in the future, while the up-
date gate controls the degree of information that should

Reset gate

X, I
! Update gate

Fig. 3 Illustration of the gated recurrent unit (GRU). At each
timestamp, GRU takes hidden state h;-1 from the previous cells
and current inputs X; to model the temporal information
between sequential datal63].
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be carried over from the previous hidden state to the cur-
rent hidden state. When the reset gate is close to 0, the
hidden state is forced to ignore the previous hidden state
and reset with the current input X;. Thus, compared
with LSTM, GRU makes it easier to drop useless inform-
ation from the previous hidden states. The same method-
ology is also used in later proposed RNNsl(65 66], Other at-
tempts to overcome the vanishing gradient problem in-
volve using powerful second-order optimization algori-
thms to regularize weights of RNNs[67 68] or carefully ini-
tialize the weights of RNNsl®. In general, these above
methods aim at proposing deeper recurrent neural net-
works, rather than improving the mechanisms of previ-
ous RNNs. As a consequence, several RNNs can only
handle unidirectional temporal relationships between bid-
irectional sequential data.

To fully exploit the bidirectional temporal relation-
ship, there are also several methods that incorporate oth-
er mechanisms into RNN. For example, for input se-
quences whose starts and ends are known in advance, the
bidirectional RNNs can make full use of both forward and
backward temporal relationships?-78l. By using a CNN to
learn hidden states for each recurrent cell, Liu et al.[3]
propose a spatially variant recurrent network for several
image restoration tasks. Recently, a fully regulated neur-
al network (NN) with a double hidden layer structure is
designed, and an adaptive global sliding-mode controller
is proposed for a class of dynamic systems[”. Overall,
RNNs have been continuously enhanced to process the bi-
directional relationships, and the forgetting mechanism is
important for the above enhancements.

2.1.3 Graph neural networks

As we discussed earlier, CNNs and RNNs are widely
used to process Euclidean data (e.g., RGB images) or se-
quential data. However, these two networks cannot
handle data that are represented in the form of graphs.
For example, in chemistry, molecules are represented as
graphs, and their bioactivity needs to be identified as
edges constructed between multiple nodes. In a citation
network, articles are linked to each other via citations,
and most articles can be categorized into different groups.
Therefore, the wide application scenarios of graph data
have imposed significant challenges along with opportun-
ities for deep learning methods.

Recently, several graph neural networks (GNNs) have
been proposed to address the above challenges. In gener-
al, an image can be considered as a fully connected graph,
where all the pixels are connected by adjacent pixels.
Similarly, as Fig.4 illustrates, the standard convolution
layer can also be seen as a special graph convolution lay-
er, where all convolution kernels are connected in an un-
directed mannerl(™]. Therefore, it can be found that GNNs
can be achieved by employing constraints in the kernels
of traditional CNNs. Gori et al.80 first propose a GNN-
based method to process data with different characterist-
ics, such as directed, undirected, labeled and cyclic
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graphs. After this pioneering work, Scarselli et al.[8L 82]
find that, with GNN, the representations of a single node
can be obtained by propagating the neighbor information
in an iterative manner until a stable fixed point is
reached. With the above foundation, graphs are widely
embedded into convolution layers and neural networks.
Bruna et al.83] develop the graph convolution based on
the spectral graph theory. In [84], the graph kernels,
whereby graphs or nodes can be embedded into the fea-
ture space using a mapping function, is proposed to study
the random walk problem/83,

More recently, researchers find that Euclidean data
and sequential data can also be represented by special
graphs. Therefore, the graph neural networks are also
used to handle these datal86-88]. For example, to capture
topology and long-range dependencies of a lane graph, Li-
ang et al.[6] extend existing graph convolutions with mul-
tiple adjacency matrices and along-lane dilation. By or-
ganizing the features in the different channels as nodes, a
representative graph layer is proposed to dynamically
sample the most representative features/®, leading to less
computing consumption and more representative features.
Since the components of different data are sparsely or
closely related to their neighbors, most data can be rep-
resented in the form of different graphs. Hence, possible
future research directions include transforming un-graph
data into graphs and employing GNNs to handle these
transformed graphs.

2.2 Data-adaptive methods

As we mentioned previously, early deep neural net-
works are designed in the static mode. That is, once the
network is trained, its architecture and parameters will
not change regardless of the inputs. Therefore, these stat-
ic networks do not always generalize well, making practic-
al applications difficult. To address this issue, several
methods are proposed to change their components with
respect to the input. Thus, we categorize these methods
as data-adaptive methods and introduce several repres-
entative data-adaptive methods in the following sections.
2.2.1 Attention mechanisms

The field of neural language processing (NLP) has wit-
nessed significant development of attention mechanisms,
starting from the pioneering work(2!. Bahdanau et al.l2!]
introduce various attention factors and weight assign-

ment functions. In [89], these factors are further con-
sidered, and the inner product of the vectors, which en-
code the query and key contents, is recommended for
computing the attention weights. Later, the landmark
work(®] proposes a new standard, and its follow-up stud-
ies demonstrate that relative positions can provide better
generalization ability than the absolute positionsl!8,91-93],
Motivated by the success in the NLP tasks, the attention
mechanisms are also employed in computer vision (CV)
applications(?4-99., However, unlike the attention mechan-
isms used in NLP, the key and query of the attention
mechanisms in CV refer to certain visual elements, and
the formulation of attention mechanisms in CV is similar
to Transformerl®0].

As Fig.5 shows, given a query element (i.e., the yel-
low dot) and several key elements (i.e., all colored dots),
the attention mechanism aims at adaptively highlighting
the key contents based on the attention weights that
measure the compatibility of the query-key pairs. There-
fore, based on the aggregated domain, existing attention
mechanisms can be divided into two categories: spatial-
wise and channel-wise attention mechanisms.

Attention

pairs score

Eyy

- O -0~

Fig. 5 An example of the attention mechanisms used in
computer vision tasks. Given the query-key pairs, the attention
mechanism computes scores for each key[94799],

To name a few, an attention scaling network is intro-
duced to learn attention scores of different regions ac-
cording to an estimation result of the input images/l00].
Zhang et al.[l91] employ attention mechanisms in the gen-
erative adversarial network to model attention-driven and
long-range dependency for image generation tasks. In con-
trast, Dai et al.[l92] develop a novel attention module to
adaptively rescale the channel-wise features by using
second-order feature statistics. In general, the attention
mechanism is biologically plausible and has been widely
used in both CV and NLP fields. However, the best con-
figuration of the query-key pairs remains unknown[103],
Hence, there is much room for improving attention mech-
anisms.

2.2.2 Dynamic neural networks

Dynamic neural networks, which can adjust the net-
work architectures or network parameters depending on
the corresponding inputs, have been recently studied in
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the computer vision field. In early studies, these dynamic
neural networks are proposed for the image classification
and semantic segmentation tasks by dropping blocks[!04-107]
or pruning channels[™ 108] for efficient inference. For ex-
ample, in [109], a soft conditional gate is proposed to se-
lect scale transform paths for each layer. Wang et al.[109]
attempt to skip several convolution blocks by using a re-
inforce learning gating function. It is possible to think
that dynamic networks with gating functions, which ad-
just network architectures such as connections according
to inputs, appear to be similar to the neural architecture
search methods. In most NAS methods, the model para-
meters are iteratively initialized and trained, while the
model architectures are continuously varied. In contrast,
the parameters of the dynamic neural networks are all
initialized before the training phase, and their architec-
tures always remain unchanged. In addition, most NAS
methods search model components based on predefined
backbones, whereas the dynamic neural networks with
the gating functions remove unnecessary components
from predefined intact networks.

Compared with dynamic networks with gating func-
tions, the other types of dynamic neural networks only
learn parameters for certain components based on their
inputs. Among these models, the most important one is
[110], where the dynamic filter network is proposed to
learn filtering operations such as local spatial transforma-
tions, selective blurring/deblurring, or adaptive feature
extraction. After that, the method proposed in [111] dy-
namically learns two 1D kernels to replace standard 2D
convolution kernels. According to their results, this meth-
od not only remarkably reduces the number of paramet-
ers, but also improves the performance of video frame in-
terpolation. Since then, the dynamic neural networks
with parameter learners are found to be wuseful for
image/video restoration tasks. In [112], a dynamic neural
network is designed to learn upsampling filters and resid-
ual images, which avoid the requirement of explicitly
compensating for the motions of restored videos. Overall,
the second type of dynamic neural networks can be illus-
trated as in Fig.6, which is proposed in [113-115]. In
Fig.6, several standard convolution layers are used to
learn the dynamic kernels and bias, which are respect-

Dynamic
| kernels

I o L

Fig.6 An example of the dynamic neural network with a
parameter learner. With the low-resolution input ™™ the
dynamic neural network learns a set of convolution kernels and

biases, which are used to generate the high-resolution output
ml113-115]
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ively used to convolute a low-resolution image and fur-
ther enhance the quality of the high-resolution output. As
[115] discussed, a dynamic neural network that learns the
parameters for convolution layers can better handle vari-
ational degradation in the inputs. Therefore, the dynam-
ic neural networks can be further used to conduct vari-
ous tasks. However, to the best of our knowledge, there is
no work that effectively combines these two kinds of dy-
namic neural networks.
2.2.3 Other neural networks

Recently, neurological research has significantly pro-
gressed and continues to reveal new characteristics of the
biological neurons and brains. These new characteristics
have led to several new types of artificial neural net-
works that can selectively make forward inference based
on their inputs. For example, Dai et al.[l!6] find that us-
ing fixed convolution kernels to process different inputs
inevitably limits CNN to model geometric transformation.
Therefore, a 2D offset is learned from the preceding fea-
ture maps to regularize the learned convolution kernels.
After this work, improved deformable convolutional net-
works such as Deformable ConvNet V2[117 SqueezeSeg
V318 and Variational Context-Deformable ConvNets(!119]
are also proposed. For example, as shown in Fig.7, the
offsets are obtained by applying a standard convolution
layer over the same input feature map, thus it has the
same spatial resolution as that of the input feature map.
When applied to different tasks, the standard convolu-
tion layer can be replaced by different operations. There-
fore, the deformable convolution layer not only dynamic-
ally learns the feature maps, but can also be efficiently
used for various tasks. On the other hand, the spiking
neural networks (SNN) are introduced to mimic how in-
formation is encoded and processed in the human brain
by employing spiking neurons as computation units[120, 121],
Unlike standard CNNs, SNNs use temporal aspects for
the information transmission as in biological neural sys-
tems[!22], thereby providing a sparse yet powerful comput-
ing ability[!23]. However, due to the sparse nature of spike
events, SNNs are always used for image classification, ex-
cept in [121], where SNNs are successfully employed to

‘ N o
acd Offsets
Conv Offset field

= Deformable convolution

Input feature map Output feature map

Fig. 7 Tlustration of a 3 X 3 deformable convolution. Conv
indicates the standard convolution layers[116-119],
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the object detection task by using the DNN-to-SNN con-
versation method[124].

3 Deep tracker components

In this section, we detail several existing deep track-
ers, whose components can be generally concluded as in
Fig. 8. First, by considering that most deep trackers take
cascaded blocks (e.g., convolution layers or residual
blocks) to extract the features of the tracked targets, the
feature extraction module is concluded and discussed.
Second, because tracking algorithms aim at locating the
same target in different frames, the mechanisms of estim-
ating the motion patterns are compared. Third, we also
discuss how deep trackers obtain the bounding boxes,
which indicate precise locations of the tracked targets. Fi-
nally, we discuss how loss functions influence the per-
formance of deep trackers.

3.1 Feature extraction module

Feature extraction is important for tracking al-
gorithms. In general, the extracted features should effect-
ively and robustly represent the tracking target. However,
such a requirement is difficult to meet due to challenges
such as illumination variations or appearance variations
of the tracked targets. To address these challenges, sever-
al modules are designed in previous methods to extract
various local and statistical features. For example, Ross
et al.[7l propose a tracking method to incrementally learn
a low-dimensional subspace representation, which is con-
cluded as gray features in [30]. By taking mean shift iter-
ations, Comaniciu et al.['2%] introduce the color distribu-
tion of probable target models and the target candidates.
A texture feature is also proposed in [126]. Henriques et

Feature extraction module

Input

Motion
module

Share
parameters

Search frame

I'WQH—

al.127 extend the traditional RGB space to a 11-dimen-
sional color space and use the principle component ana-
lysis method to extract features from this 11-dimensional
color space. Later, Henriques et al.[128] further incorpor-
ate a correlation filter tracker with the kernel space and
propose the histogram of oriented gradient feature. Ex-
cept for these methods, other methods also employ mul-
tiple manually designed features to represent the tracked
target(29, However, these manually designed features
only concentrate on certain characteristics of the track-
ing targets, thus, they are easy to be violated during
tracking.

Since deep neural networks are effective at extracting
features with a powerful representative ability, they be-
come the substitutions of the above manually designed
features. For example, hierarchical convolution layers are
introduced into the correlation filter algorithm!30]. Exper-
imental results reported in [130] indicate that low-level
features contain more information of the target location,
whereas high-level features include more semantic inform-
ation and are more robust than low-level ones. Inspired
by this observation, Qi et al.131] extend the three convo-
lution layers used in [130] to six layers, and take dynam-
ic parameters to adaptively fuse features from these six
layers. After these methods, the methodology of the cor-
relation filter tracking algorithms is utilized to form the
Siamese networks. In [132], the first Siamese tracker, i.e.,
Siamese-FC, is designed with two parallel branches,
which respectively extract features from the first frame
and the remaining ones. With these two branches, the
features from the first frame are taken as a convolution
kernel to scan all positions of the features from other
frames. Finally, the response map is obtained, and the
max value in this map is seen as the target location.

In general, the above deep trackers achieve better per-

Regeression |
module

Fig. 8 General components of deep trackers. In each timestamp, the feature extraction module extracts features from target templates
in the motion module and the search frame. Then these two kinds of features are fed through the regression module to generate the

bounding box.
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formance than most conventional trackers. However, with
the development of deep neural networks, deep networks
are also employed in learning-based trackers for further
improving their performance and robustness. There are
two types of methods for deepening learning-based track-
ers. The first type is to transfer pre-trained deep neural
networks to learning-based trackers. Among these trans-
fer-based methods, the most representative work is
presented in [133], where the authors find that the
learned feature representation for a target should remain
spatially invariant. In addition, they theoretically find the
zero-padding configuration of CNN trackers influences the
spatial invariance restriction. Based on this work, Lukez-
ic et al.134 use a ResNet50 as a backbone to simultan-
eously conduct the visual object tracking and video ob-
ject segmentation tasks. Similarly, the ResNet50 is also
taken as a backbone to implicitly and dynamically en-
code the camera geometric relationship, and hence ad-
dress missing target issues such as occlusion(!35: Chen et
al.136] view the tracking problem as a parallel classifica-
tion and regression problem, and take a pre-trained clas-
sification network to solve the former problem. In con-
trast, the other kind of method directly constructs deep
neural networks. By conducting extensive and systemic
experiments, Zhang and Pengl!37 find that the network
stride, receptive field and spatial size of network output
are important for constructing deep Siamese networks.
They then propose the cropping-inside residual (CIR)
units, down-sampling CIR unit, CIR-Inception and CIR-
NeXt units to design deeper or wider Siamese networks
than previous ones. Later, these units and observations
proposed in [137] are also widely used to form Siamese
trackers with deep architectures!38 139, However, Zhang
and Pengl!37 also indicate that the perceptual inconsist-
ency between the target template and the search frame
should be carefully designed for robust tracking. There-
fore, for tracking algorithms, it is unnecessary to form ex-
traction modules as deeply as possible. With this observa-
tion, several novel frameworks, such as generative ad-
versarial network (GAN) and attention mechanisms are
employed into deep trackers for effectively learning fea-
tures. On the other hand, the above indication also shows
that the motion pattern of tracked targets is another im-
portant consideration for deep trackers. Therefore, in the
next subsection, the motion estimation module is dis-

cussed to explore such importance.
3.2 Motion estimation module

Unlike the image classification task, single object
tracking aims at locating a given target in all frames.
Therefore, the motion pattern between consecutive
frames or tracked targets is important for enhancing the
robustness and effectiveness of the tracking algorithms. In
detail, for deep trackers such as Siamese networks, there
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is a branch that learns features related to previous target
appearances. As Fig.8 illustrates, the motion module is
designed for constructing a target template, hence deep
trackers can dynamically update the appearances of the
tracked targets. For example, Ning et al.l"0] first take an
object detection method to choose candidate samples,
which are then fed through LSTM blocks to generate ob-
ject locations. Inside LSTM blocks, the context relation-
ships between consecutive frames are used to select
samples related to the targets. Reinforcement learning
has also been used to capture motion patterns. In [63], an
action-decision tracker (ADNet) is proposed to predict
object locations by a learned agent. Specifically, this
agent is trained to foresee movement and scale-change
based on the present frame. However, since the motion
estimation module tends to forget the appearance from
the first frame, they are easily influenced by heavy occlu-
sions or out-of-the-view movements.

To address the above problem, recently proposed mo-
tion estimation modules take both the search frame and
other frames as inputs. For example, Teng et al.140] pro-
pose a neural network to explicitly exploit object repres-
entations from each frame and changes among multiple
frames in the same video. Thus, the proposed network
could integrate object appearances with their motions for
effectively capturing temporal variations among consecut-
ive frames. In [141], all frames in each tracking sequence
are used to train a reinforcement learning network, which
aims at producing a continuous action for predicting the
optimal object location. In contrast, Zhang et al.ll0l in-
troduce a motion estimation network to learn how to up-
date the object template. In detail, this motion estima-
tion network is provided with the first frame, the current
frame, and the template of the current frame. Thus, the
appearances from the first frame are always emphasized,
leading to a more robust tracking performance than its
counterparts. Li et al.l'42] innovatively use gradient in-
formation between consecutive frames and the current
frame. For better using of gradient information and
avoiding of the over-fitting problem, they also propose a
template generalization training method. According to
their experimental analysis, motion estimation modules
always learn a general template from the initial appear-
ance, and continuously fine-tune the general template
based on the appearances in the search frames. Therefore,
it can be concluded that the appearance from the initial
frame can help avoid the tracking-drifting problem to
some extent. However, excessive information from the ini-
tial frame will influence the overall tracking performance
(e.g., GRU tends to forget information from early
times>tamps, thus are more effective and robust than
LSTM). This indicates that balancing the importance of
the initial frame and other frames still needs more explor-
ation.
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3.3 Regression module

With the motion estimation module, deep trackers can
maintain a template of the tracking targets. Thus, the
feature extraction module can learn features from this
template and the search frame to locate tracking targets.
However, since the features in deep neural networks are
high-dimensional, regressing the bounding box from these
extracted features also requires more researches. In gener-
al, for regressing a bounding box, a response map is first
obtained via the following operation:

fo(z,2) = ¢o(2) * do(x) +b (1)

from which ¢ indicates the feature extraction module
with parameters 6, b denotes a bias term, z and =z
indicate the target template and search frame,
respectively. Then, the maximum value in the response
map is taken as the target location. In addition, for
processing the scale variations, several scale parameters
are first manually given and then gradually updated on
the basis of the search frames or fixed factors.

Recently, it is demonstrated that the manually
provided scale parameters cannot fully process the scale
variations. In addition, with the deepening of the feature
extraction module, more and more spatial information is
lost, leading to poor tracking performance. Therefore, to
alleviate the above issues, several methods take features
from different levels of the feature extraction module to
generate response maps, and dynamically fuse these re-
sponse maps to obtain the final one. During this process,
the multi-scale information in these features is incorpor-
ated together to handle the scale variation problem and
improve the precision of the final response map. For ex-
ample, in [143], several features are first used to obtain
the final response map with multiple channels, and then,
a classification sub-network and a regression one are used
to decode the location and scale information of the object.
Wang et al.[l44] first take a semi-supervised video object
segmentation network to obtain the segmentation results
of the object, then use different branches to regress the
bounding box and scores for each pixel. Fan and Lin(145]
leverage high-level semantic information and low-level
spatial information to obtain different response maps.
These response maps are then used to progressively fine-
tune the response map obtained by computing the final
output features of the feature extraction module. The
same methodology can also be found in [146]. In contrast,
Ge et al.l'47 search and select only partial features to
make the response map. This is the first work that con-
siders differences between features at different channels,
rather than features at different levels, and according to
their experimental results, the selected features could
provide better performance than multi-level features.
From this aspect, it seems that high-dimensional features
should not be entirely used to obtain the response maps.

Therefore, a possible research direction for the regression
module is the selection of optimal features from the fea-
ture extraction module to generate the response map and
scale parameters.

3.4 Loss function

After detailing the general components of deep track-
ers, in this section, we introduce popular loss functions
used for training these deep trackers. First, we present
statistical results of the loss functions. As listed in Table 2,
among works recently published in top conferences or
journals (e.g., IEEE Transactions on Image Processing,
IEEE Transactions on Pattern Analysis and Machine In-
telligence, and Furopean Conference on Computer
Vision), the cross entropy loss function, logistic loss func-
tion, and smooth L1 loss function are the three most pop-
ular loss functions. Because both the cross entropy loss
function and logistic loss function supervise categories of
each location and the latter loss function is a special ver-
sion of the former one, we only introduce the cross en-
tropy loss function, which is also the basis for the focal
loss function. In addition, we discuss the smooth L1 loss
function since it directly supervises the bounding box.
3.4.1 Cross entropy loss function

In general, the cross entropy loss function can be
defined as follows:

Loss(p,q)=— Y, (p(x)logq(x) + (1 — p(x)) log(1 — q(x)))
' (2)

where p is the expected contribution of the sample x, and
q is the generated contribution. However, for the single
object tracking task, there are only two kinds of samples,
i.e., target and background samples, which are respec-
tively consisted of pixels belonging to the tracked target
and other pixels. Therefore, in some tracking algorithms,
the cross entropy loss function is used to force these
algorithms to learn the discriminative features of the
object and background. For example, in [148], the cross
entropy loss function is incorporated along with the focal
loss function to supervise the feature extraction module.

Table 2 Statistical results of loss functions used in
recent deep trackers

Loss function Number Citations
Cross entropy loss 19 [136, 139, 143, 145, 148-162]
Logistic loss 10 [137, 141, 142, 144, 150, 162-166]
SmoothLiloss 10 189139,145,150, 192,150,
L2 loss 6 [140, 147, 150, 167-169]
L1 loss 6 (158,167, 170-173]
Focal loss 5 [148, 167, 169, 171, 162]
IoU loss 4 [136, 143, 148, 157]
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In [161], this loss function is used to force a classifier to
accurately classify pixels. However, since the cross
entropy loss function only concentrates on the categories
of each pixel, it cannot directly supervise tracking
algorithms to generate accurate bounding boxes. Thus,
the cross entropy loss function is typically used along
with other loss functions such as the focal loss function or
the IoU loss function.
3.4.2 Smooth L1 loss function

It is widely known the smooth L1 loss function is a
special version of the L1 loss function, and the L1 loss
function is the square root of the L2 loss function. There-
fore, these three loss functions can be defined as

Ll(x) = |z| ®)
L2(x) = «° @
B Az?, iflz| < B
SmoothLl(iC) = { |l" — 7, otherwise (5)

where A\, 8 and 7 are the pre-defined parameters. Clearly,
compared with the L2 loss function, the smooth L1 loss
function tends to generate relatively small values. In
addition, the smooth L1 loss function tends to generate
higher values than the L1 loss function, when |z| < 3.
This ensures that during training deep trackers, the
gradient value is appropriate to get off the local optimal
solution. However, although the smooth L1 loss function
can directly supervise the bounding box, it tends to force
deep trackers prior to short-term templates.

Therefore, not only the smooth L1 loss function but
also its methodology are widely used to train deep track-
ers. For example, in [133], the smooth L1 loss function is
used together with a classification loss function. In [150],
the methodology of the smooth L1 loss function is used to
update a short-term template, thus the model drifting
and inconsistency of target template problems are
avoided. Overall, even with an effective feature extrac-
tion module, motion estimation module, and regression
module, the loss function is also important for obtaining
an effective tracker.

However, since a single loss function cannot effect-
ively supervise all modules, multiple loss functions are of-
ten jointly used in the weighted summation manner.

4 Visual tracking datasets

It is widely known that most deep learning methods
rely on benchmark datasets with a large amount of
labeled data. In addition, with the developments in deep
learning trackers, previous datasets with limited data
cannot fully validate their effectiveness. Therefore, sever-
al tracking datasets have been proposed in recent years
(see Table 3). In this section, we discuss several conven-
tional datasets and two newly proposed ones.
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4.1 Object tracking benchmark datasets

In general, the Object Tracking Benchmark datasets
are the most widely used datasets for evaluating tracking
algorithms. In [27], a testing dataset namely OTB-2013 is
the first proposed dataset to address and analyze the ini-
tialization problem of object tracking. In OTB-2013, there
are a total of 51 sequences with manually annotated
bounding boxes in each frame!. For further analyzing the
tracking performance, all these 51 sequences are categor-
ized with 11 attributes, i.e., illumination variation, scale
variation, occlusion, deformation, motion blur, fast mo-
tion, in-plane rotation, out-of-plane rotation, out-of-view,
background clutters, and low resolution. After that, Wu
et al.l77 later extend OTB-2013 by adding other 48 addi-
tional videos to obtain OTB-2015, which is also denoted
by OTB-1002. In addition, 50 difficult and representative
sequences in OTB-100 are selected to form other datasets,
namely OTB-50.

4.2 Visual object tracking datasets

The other datasets, which are denoted as Visual Ob-
ject Tracking datasets(28: 176, 178, 179, 192-194] ' are also popu-
lar for tracker evaluation. Unlike OTB datasets, trackers
are initialized by themself in this dataset, and they are al-
lowed to be reinitialized when a failure is detected by
comparing the predicted bounding box with the ground-
truth annotations. In the first proposed VOT-2013[28]
each frame of the released 16 sequences is labeled with
different attributes. After VOT-2013, the VOT datasets
are updated per year, and in the VOT-2019 challengell79],
there are in total 60 sequences.

4.3 Large-scale single object tracking data-
set

A large-scale dedicated benchmark with a high qual-
ity of training and testing sequences is proposed in [175].
Considering that this dataset contains 1400 videos with
large-scale variants, it is called as large-scale single ob-
ject tracking (LaSOT) Dataset. LaSOT is different from
existing datasets, since it provides both visual bounding
box annotations and rich natural language specifications.
This dataset also takes the class imbalance into consider-
ation, thus each video in LaSOT contains 2 512 frames
and is categorized into only one class. In addition, LaSOT
provides two different evaluation protocols. In the first
protocol, all the 1400 sequences are used for evaluation,
and the tracking algorithms are allowed to use any se-
quence from the other dataset for training. In the second

In the jogging video, two different targets are annotated.
Therefore, there are totally 50 videos and 51 sequences.

2Except the jogging video, there is also a sequence (i.e., skating2)
with two different annotated targets. Therefore, there are only

98 videos and 100 sequences.
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Table 3 Statistical results of existing tracking datasets. The label indicates that this attribute is not considered.
Several results are referred from [174, 175].

Total Train Test
Dataset
Classes Videos Boxes Classes Videos Boxes Classes Videos Boxes
OTB-2013[27] 10 50 29k - - - 10 50 29k
VOT-2014[176] 11 25 10k - - - 11 25 10k
OTB-20150177] 22 100 59k - - - 22 100 59k
VOT-20170178] 24 60 21k - - - 24 60 21k
VOT-2019(17) 30 60 19.9k - - - 30 60 19.9k
ALOV 440180 59 314 16k - - - 59 314 16k
NUS PRO[!81 12 365 135k - - - 12 365 135k
TColor128/182] 27 129 55k - - - 27 129 55k
Nifsl183] 33 100 38k - - - 33 100 38k
UAV123[184 9 123 113k - - - 9 123 113k
UAV20L[184] 5 20 59k - - - 5 20 59k
OxUvALl!85] 22 366 155k - - - 22 366 155k
LaSOT!175] 70 1.4k 3.3M 70 1.1k 2.8M 70 280 685k
TrackingNet!186] 21 31k 14M 21 30k 14M 21 511 226k
MOT15![!87] 1 22 101k 1 11 43k 1 11 58k
MOT16/170188] 5 14 293k 5 7 200k 5 7 93k
KITTI!8) 4 50 59k 4 21 - 4 29 -
ILSVRC-VIDI!90] 30 5.4k 2.7M 30 5.4k 2.7M - - -
YT-BBI[191] 23 380k 5.6M 23 380k 5.6M - - -
GOT-10k[174 563 10k 1.5M 480 9.34k 1.4M 84 420 56k

protocol, both the training and testing sets are pre-
defined to make fair comparisons.

4.4 GOT-10k dataset

Unlike the LaSOT, the GOT-10k dataset aims at
providing a wide coverage of common moving objects in
the wild. Specifically, GOT-10k contains over 10 000
video segments with more than 1.5 million manually
labeled bounding boxes. These video segments have over
560 classes of moving objects and 87 motion patterns. To
ensure a comprehensive and unbiased coverage of diverse
moving objects, GOT-10k also uses the semantic hier-
archy of WordNet!!%] to guide class populations. Thus,
each sequence in GOT-10k is labeled with 2D labels: ob-
ject and motion classes. The former label denotes the tar-
get that will be tracked, whereas the other one describes
the motion patterns of the target.

5 Performance evaluation

After introducing several datasets used for training
and testing deep trackers, in this section, we first intro-
duce several popular metrics that are used to evaluate the
performance of these trackers. We then present quantitat-
ive results of recently proposed methods. Finally, we also

discuss the changes and differences between methods that
achieve state-of-the-art performance.

5.1 Evaluation metrics

As we previously discussed, four datasets, i.e., the
OTB, VOT, LaSOT, and GOT-10k datasets, are widely
used to train and test tracking algorithms. Therefore, in
this subsection, we introduce several metrics used in these
datasets, such as precision, success, robustness, and ac-
curacy.

5.1.1 Precision

The precision metric is based on the most basic met-
ric, i.e., center location error, which is defined as the av-
erage Euclidean distance between the center locations of
the generated bounding box and the corresponding
ground truth. Therefore, a simple method to evaluate the
tracking performance is to summarize the average center
location errors over the entire sequence. However, this
simple method is unsuitable when the model drifting
problem occurs, since the drifted bounding box is ran-
domly distributed. Therefore, the precision metric is pro-
posed to measure the percentage of frames, in which the
estimated location is within the given threshold distance
of the ground truth. The default threshold is 20 pixels. In
addition, by varying this threshold, the precision plot can
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be obtained to make thorough comparisons.
5.1.2 Success and accuracy

Evaluating the tracking performance based on the
center location error is sometimes ineffective. Therefore,
the overlap ratio (also known as accuracy) between the
generated bounding and labeled boxes is also considered
for evaluation. Given a generated bounding box r; and a
labeled one r,, their overlap ratio is defined as follows:

g e N 7al 6)
|re U ral

where N and U indicate the intersection and union of
these two boxes, and |-| represents the number of pixels in
the region. On the one hand, by averaging the values of
accuracy in all frames, the average accuracy can be
obtained to evaluate the tracking performance. On the
other hand, for computing the metric success, a threshold
t, is also given, and the default value of ¢, is always fixed
as 0.5. Thus, frames whose overlap S is greater than ¢,
are seen as frames where the target is successfully
tracked. By counting the number of these frames, the
success can be calculated. However, since the default
value of t, cannot fully represent the overall performance,
values of ¢, are always varied from 0 to 1 for obtaining
the success plot. For quantitative comparison, the success
plot is always compared with the area under curve
(AUC).
5.1.3 Robustness

For evaluating a tracking algorithm, a conventional
method is to run this algorithm throughout a sequence
with initialization from the ground truth position in the
first frame, and then compute certain metrics such as pre-
cision and success. However, because several tracking al-
gorithms are sensitive to the initialization, the above con-
ventional method is partial. For this reason, the robust-
ness metric is proposed. Specifically, there are two kinds
of robustness metrics. The first kind of robustness met-
rics is calculated by initializing the ground truth position
from different frames. Therefore, it is named the tempor-
al robustness evaluation (TRE). In contrast, the second
kind of robustness metrics are computed by perturbing
the initialization from different positions in the first
frame. Therefore, it is named the spatial robustness eval-
uation (SRE).

5.2 Quantitative results

In this subsection, we present metrics of recently pro-
posed deep trackers on benchmark datasets such as OTB-
2013, OTB-2015 and LaSOT. First, metrics such as preci-
sion and success applied to these three datasets are
presented in Tables 4-6, from which we can find that
visual tracking via adversarial learning (VITAL)153, dis-
criminative and robust online learning for Siamese visual
tracking (DROL-RPN)[%0] and Siam R-CNNE03 achieve
the best performance on these datasets. In detail, on the
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OTB-2013 dataset, VITAL achieves the highest value of
precision and comparable performance in term of success.
By comparing the mechanisms of the two best methods,
it can be found that both of them consider the imbal-
anced distributions of the target samples and back-
ground samples. In addition, VITAL additionally con-
siders the overlap between the target samples. For ad-
dressing the above issues, VITAL takes the adversarial
learning, while Yang et al.149 use a novel online training
strategy. As their performance indicates, the adversarial
learning is more effective. On the OTB-2015 dataset,
there are also two outperforming methods,i.e., Siamese
visual tracking (DROL-RPN)I%0 and deformable Sia-
mese attention networks (SiamAttn)!39. Among these
two methods, the former one uses a Siamese attention
mechanism to generate deformable self-attention and
cross-attention weights, leading to an online-updated tar-
get and representative features from both the target tem-
plate and the search frame. In contrast, the latter one
combines an online module with an offline Siamese net-
work via the attention mechanisms. Empirically speaking,
by jointly extracting representative features from the tar-
get template and search frame, DROL-RPN is more ef-
fective and robust than SiamAttn. Similar to SiamAttn,
the long-term tracking with meta-updater (LTMU)208l
also combines offline-trained Siamese architectures with
the online-update-based trackers, which takes target ap-
pearance from the first frame and the previous appear-

Table 4 Precision and success of deep trackers on the OTB-
2013 dataset. Red: the best result; blue: the second best result.

Trackers Precision Success
SiamFC+[137] 0.880 0.670
SiamRPN+[137) 0.920 0.670
ST-LSTMI140] 0.911 0.681
DP-Siaml[141] 0.918 0.686
GDTU61] 0.938 0.711
Yang et al.[149] 0.941 0.702
Sa-Siaml[163] 0.896 0.677
VITALI!53] 0.950 0.710
TADTI196] 0.896 0.680
MemTrack/197] 0.849 0.642
DSLTH69] 0.934 0.683
SiamF C[198] 0.809 0.607
StructSiam![165] 0.880 0.638
SSDI160] 0.813 0.637
CR-RE[199] 0.677 0.538
HCFTI200] 0.923 0.638
EMDSLTI166] 0.853 0.626
MDSLTI66] 0.815 0.600
LSSiaml(162] 0.884 0.663
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Table 5 Precision and success of deep trackers on the OTB-
2015 dataset. Red: the best result; blue: the second best result.

Trackers Precision Success
SiamRPN++[133] 0.914 0.696
SiamFC+137] 0.850 0.640
SiamRPN+[137] 0.900 0.670
SiamAttnl139] 0.926 0.712
ST-LSTMI140] 0.881 0.656
GradNet[142] 0.861 0.639
GDTU61 0.910 0.683
DROL-RPNI130] 0.937 0.715
VITALL!53] 0.917 0.682
TADT96] 0.866 0.660
MemTrack[197] 0.820 0.626
DSLTI169] 0.909 0.660
StructSiam(165] 0.851 0.621
CR-RE[%] 0.617 0.486
SiamRPN[52] 0.851 0.637
GCT64] 0.854 0.648
UDTI[01 0.760 0.594
ROAML[68] 0.908 0.681
Siam R-CNNI202] 0.891 0.701
MetaCREST-01[155] 0.856 0.637

DaSiamRPNI203] 0.865 -

DRL-IS[204] 0.909 0.671
PG-Net[159] 0.892 0.691
PTAVI[205] 0.862 0.632

Table 6 Precision and success of deep trackers on the LaSOT
dataset. Red: the best result; blue: the second best result.

Trackers Precision Success
GradNetl[142] 0.351 0.365
SiamCAR/[143] 0.510 0.507
MDNet/[24] 0.373 0.397
VITALI!S3] 0.360 0.390
StructSiaml(163] 0.333 0.335
ROAMUU68] 0.368 0.390
ROAM++[168] 0.445 0.447
Siam R-CNNI202] - 0.648
Dimp50[206] 0.564 0.568
LTMUI(207] 0.572 0.572
GlobalTrack!208] 0.528 0.517
ATOMI[209] 0.500 0.501

ance to model target templates. Evidently, not only
mechanisms of the motion estimation module but also in-
puts to the motion estimation module are important for

obtaining discriminative target templates.

Here, we also introduce historical results on the VOT
challenges. As Fig.9 illustrates, the best performance on
VOT challenges is gradually increased. Among these met-
rics, the robustness has been remarkably enhanced in
2020. By analyzing the methodologies of these top track-
ers, it can be found that Siamese trackers are still the
most popular methods. In addition, in 2020, most Sia-
mese trackers are designed with multiple tasks, such as
video segmentation and object detection, leading to su-
perior precision and robustness. Therefore, multi-task
learning is a possible methodology to design effective
trackers and achieve semi-supervised/un-supervised track-
ers.

Best performance on VOT dataset
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Fig. 9 Historical results on the VOT datasets. A and R
indicate the accuracy and robustness metrics, while EAO and
AO denote the expected average overlap and average overlap.

All results are collected from official presentations of existing
VOT challenges28, 175, 176, 178, 179, 192, 193],

6 Discussions

6.1 Relationship among different compon-
ents

Different components of deep trackers have different
functions and characteristics. For the feature extraction
module, the most important function is to extract repres-
entative features that can be used to separate the object
from the background. Therefore, the feature extraction
module should dynamically focus on the most salient
parts of the object appearance. However, since the ap-
pearance of the tracked objects always varies along the
entire sequence, the feature extraction module is easily
fooled by these appearance variants. In addition, the en-
vironment around the object seriously influences this ap-
pearance. To address these two issues, improving the ro-
bustness of the feature extraction module and the regres-
sion module is helpful. For example, the global informa-
tion of an object usually changes less than the local one.
Thus, taking features generated by convolution layers
with a big receptive field can help easily determine the
coarse location of the object. However, tracking al-
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gorithms are always designed to precisely locate the giv-
en targets. As a result, the local information is also used
to regress the fine locations of the object. It is easy to
find that different features in the feature extraction mod-
ule can be used to enhance performance of the regression
module. Therefore, the feature extraction module and re-
gression modules are complementary to each other. On
the other hand, the motion estimation module, which
maintains the previous target templates, is also based on
the feature extraction module. This is because the target
template is always updated with a certain loss function,
which uses the feature extraction module to extract the
features. However, the motion estimation module is some-
what different from the above two modules. This is be-
cause, for maintaining effective target templates, the ap-
pearances in all frames are useful. However, the above
two modules must handle all frames to locate the track-
ing target. This contradiction is also the reason why sev-
eral works iteratively emphasize the initial appearance
during tracking. Overall, the feature extraction module is
complementary with the regress module, whereas the mo-
tion estimation module is based on the feature extraction
module and has its own special characteristics.

6.2 Exploration of more effective frame-
works

In Section 3, the general pipeline of deep trackers is
concluded in two steps: 1) The feature extraction module
extracts features from the search frame and target tem-
plates of the motion estimation module, 2) The regres-
sion module takes these two kinds of features to generate
the response map, and then estimates the max value in
the response map to regress the bounding box. It is easy
to find that this pipeline is similar to the correlation fil-
ter methods, which heavily rely on manually defined fea-
tures. Therefore, the main difference between these two
kinds of tracking algorithms lies in the extracted features.
However, it is demonstrated that features extracted by
deep neural networks are always redundant and some-
times noisy®% 210-212]. Therefore, in the field of image clas-
sification, several mechanisms are proposed to address
this issue and achieve better performance than previous
classification methods. In contrast, the above issue has re-
mained largely unexplored in the field of visual tracking.
Therefore, we believe that more effective frameworks can
be proposed by exploring the inherent characteristics of
the features in these deep trackers.

6.3 Interpretability of motion estimation
module

It is widely known that deep learning mechanisms are
somewhat unreasonable, which is also a popular research
point. However, existing research related to the inter-
pretability of deep learning mechanisms mostly focus on

@ Springer

the image classification task, which only concentrates on
modeling the spatial relationships between different
pixels. In contrast, these existing deep trackers not only
take the deep learning mechanisms to extract the spatial
information of the object, but also use them to estimate
the motion patterns and update the target template.
Therefore, it is easy to find why the deep learning mech-
anisms can be used to form the motion estimation mod-
ule is still unknown. From this perspective, there is also a
possible research point to enhance existing deep trackers.
Last but not least, compared with modeling the spatial
relationships between the pixels in the same frame, cap-
turing the temporal relationships additionally considers
relationships of pixels in different frames. This indicates
that exploring the mechanisms and interpretability of the
motion estimation module is also important for deep
trackers.

7 Conclusions

In this work, we review several recently proposed
single object tracking algorithms based on deep learning
mechanisms. We also review traditional static convolu-
tion neural networks, recurrent neural networks, and the
graph neural networks. Based on these static networks,
we introduce several data-adaptive methods such as at-
tention mechanisms and dynamic networks. After that,
we detail the general components of deep trackers and
present their experimental details. Finally, by systematic-
ally analyzing the experimental results, we provide three
different research directions for exploring the mechan-
isms of deep-learning-based trackers.
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