Skip to main content
Log in

Designing an Intelligent Control Philosophy in Reservoirs of Water Transfer Networks in Supervisory Control and Data Acquisition System Stations

  • Research Article
  • Published:
International Journal of Automation and Computing Aims and scope Submit manuscript

Abstract

In this paper, a hybrid neural-genetic fuzzy system is proposed to control the flow and height of water in the reservoirs of water transfer networks. These controls will avoid probable water wastes in the reservoirs and pressure drops in water distribution networks. The proposed approach combines the artificial neural network, genetic algorithm, and fuzzy inference system to improve the performance of the supervisory control and data acquisition stations through a new control philosophy for instruments and control valves in the reservoirs of the water transfer networks. First, a multi-core artificial neural network model, including a multi-layer perceptron and radial based function, is proposed to forecast the daily consumption of the water in a reservoir. A genetic algorithm is proposed to optimize the parameters of the artificial neural networks. Then, the online height of water in the reservoir and the output of artificial neural networks are used as inputs of a fuzzy inference system to estimate the flow rate of the reservoir inlet. Finally, the estimated inlet flow is translated into the input valve position using a transform control unit supported by a nonlinear autoregressive exogenous model. The proposed approach is applied in the Tehran water transfer network. The results of this study show that the usage of the proposed approach significantly reduces the deviation of the reservoir height from the desired levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Dolatshahi-Zand, K. Khalili-Damghani. Design of SCADA water resource management control center by a bi-objective redundancy allocation problem and particle swarm optimization. Reliability Engineering & System Safety, vol. 133, pp. 11–21, 2015. DOI: https://doi.org/10.1016/j.ress.2014.07.020.

    Article  Google Scholar 

  2. S. Huda, J. Yearwood, M. M. Hassan, A. Almogren. Securing the operations in SCADA-IoT platform based industrial control system using ensemble of deep belief networks. Applied Soft Computing, vol. 71, pp. 66–77, 2018. DOI: https://doi.org/10.1016/j.asoc.2018.06.017.

    Article  Google Scholar 

  3. V. S. Ediger, S. Akar. ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy, vol. 35, no. 3, pp. 1701–1708, 2007. DOI: https://doi.org/10.1016/j.enpol.2006.05.009.

    Article  Google Scholar 

  4. R. Jammazi, C. Aloui. Crude oil price forecasting: Experimental evidence from wavelet decomposition and neural network modeling. Energy Economics, vol. 34, no. 3, pp. 828–841, 2012. DOI: https://doi.org/10.1016/j.eneco.2011.07.018.

    Article  Google Scholar 

  5. J. D. Wu, J. C. Liu. A forecasting system for car fuel consumption using a radial basis function neural network. Expert Systems with Applications, vol. 39, no. 2, pp. 1883–1888, 2012. DOI: https://doi.org/10.1016/j.eswa.2011.07.139.

    Article  Google Scholar 

  6. A. S. Khwaja, M. Naeem, M. Anpalagan, A. Venetsanopoulos, B. Venkatesh. Improved short-term load forecasting using bagged neural networks. Electric Power Systems Research, vol. 125, pp. 109–115, 2015. DOI: https://doi.org/10.1016/j.epsr.2015.03.027.

    Article  Google Scholar 

  7. S. J. Nizami, A. Z. Al-Garni. Forecasting electric energy consumption using neural networks. Energy Policy, vol. 23, no. 12, pp. 1097–1104, 1995. DOI: https://doi.org/10.1016/0301-4215(95)00116-6.

    Article  Google Scholar 

  8. T. Al-Saba, I. El-Amin. Artificial neural networks as applied to long-term demand forecasting. Artificial Intelligence in Engineering, vol. 13, no. 2, pp. 189–197, 1999. DOI: https://doi.org/10.1016/S0954-1810(98)00018-1.

    Article  Google Scholar 

  9. B. Kermanshahi, H. Iwamiya. Up to year 2020 load forecasting using neural nets. International Journal of Electrical Power & Energy Systems, vol. 24, no. 9, pp. 789–797, 2002. DOI: https://doi.org/10.1016/S0142-0615(01)00086-2.

    Article  Google Scholar 

  10. E. Gonzalez-Romera, M. A. Jaramillo-Moran, D. Carmona-Fernandez. Monthly electric energy demand forecasting based on trend extraction. IEEE Transactions on Power Systems, vol. 21, no. 4, pp. 1946–1953, 2006. DOI: https://doi.org/10.1109/TPWRS.2006.883666.

    Article  Google Scholar 

  11. M. A. Jaramillo-Moran, E. Gonzalez-Romera, D. Carmona-Fernandez. Monthly electric demand forecasting with neural filters. International Journal of Electrical Power & Energy Systems, vol. 49, pp. 253–263, 2013. DOI: https://doi.org/10.1016/j.ijepes.2013.01.019.

    Article  Google Scholar 

  12. J. Szoplik. Forecasting of natural gas consumption with artificial neural networks. Energy, vol. 85, pp. 208–220, 2015. DOI: https://doi.org/10.1016/j.energy.2015.03.084.

    Article  Google Scholar 

  13. K. G. Xie, H. Zhang, C. Singh. Reliability forecasting models for electrical distribution systems considering component failures and planned outages. International Journal of Electrical Power & Energy Systems, vol. 79, pp. 228–234, 2016. DOI: https://doi.org/10.1016/j.ijepes.2016.01.020.

    Article  Google Scholar 

  14. M. Aljanabi, M. Shkoukani, M. Hijjawi. Ground-level ozone prediction using machine learning techniques: A case study in Amman, Jordan. International Journal of Automation and Computing, vol. 17, no. 5, pp. 667–677, 2020. DOI: https://doi.org/10.1007/s11633-020-1233-4.

    Article  Google Scholar 

  15. S. A. Moezi, M. Rafeeyan, E. Zakeri, A. Zare. Simulation and experimental control of a 3-RPR parallel robot using optimal fuzzy controller and fast on/off solenoid valves based on the PWM wave. ISA Transactions, vol. 61, pp. 265–286, 2016. DOI: https://doi.org/10.1016/j.isatra.2015.12.005.

    Article  Google Scholar 

  16. S. Rajan, S. Sahadev. Performance improvement of fuzzy logic controller using neural network. Procedia Technology, vol. 24, pp. 704–714, 2016. DOI: https://doi.org/10.1016/j.protcy.2016.05.197.

    Article  Google Scholar 

  17. H. Sathishkumar, S. S. Parthasarathy. A novel neurofuzzy controller for vector controlled induction motor drive. Energy Procedia, vol. 138, pp. 698–703, 2017. DOI: https://doi.org/10.1016/j.egypro.2017.10.203.

    Article  Google Scholar 

  18. P. C. Sahu, S. Mishra, R. C. Prusty, S. Panda. Improvedsalp swarm optimized type-II fuzzy controller in load frequency control of multi area islanded AC microgrid. Sustainable Energy, Grids and Networks, vol. 16, pp. 380–392, 2018. DOI: https://doi.org/10.1016/j.segan.2018.10.003.

    Article  Google Scholar 

  19. A. A. Khater, A. M. El-Nagar, M. El-Bardini, N. M. El-Rabaie. Adaptive T-S fuzzy controller using reinforcement learning based on Lyapunov stability. Journal of the Franklin Institute, vol. 355, no. 14, pp. 6390–6415, 2018. DOI: https://doi.org/10.1016/j.jfranklin.2018.06.031.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. M. Zaki, M. El-Bardini, F. A. S. Soliman, M. M. Sharaf. Embedded two level direct adaptive fuzzy controller for DC motor speed control. Ain Shams Engineering Journal, vol. 9, no. 1, pp. 65–75, 2018. DOI: https://doi.org/10.1016/j.asej.2015.10.003.

    Article  Google Scholar 

  21. E. B. Priyanka, C. Maheswari, S. Thangavel. Online monitoring and control of flow rate in oil pipelines transportation system by using PLC based fuzzy-PID controller. Flow Measurement and Instrumentation, vol. 62, pp. 144–151, 2018. DOI: https://doi.org/10.1016/j.flowmeasinst.2018.02.010.

    Article  Google Scholar 

  22. R. Goswami, D. Joshi. Performance review of fuzzy logic based controllers employed in brushless DC motor. Procedia Computer Science, vol. 132, pp. 623–631, 2018. DOI: https://doi.org/10.1016/j.procs.2018.05.061.

    Article  Google Scholar 

  23. M. A. C. Fernandes. Fuzzy controller applied to electric vehicles with continuously variable transmission. Neurocomputing, vol. 214, pp. 684–691, 2016. DOI: https://doi.org/10.1016/j.neucom.2016.06.051.

    Article  Google Scholar 

  24. Y. K. Kang, H. Kim, G. Heo, S. Y. Song. Diagnosis of feed-water heater performance degradation using fuzzy inference system. Expert Systems with Applications, vol. 69, pp. 239–246, 2017. DOI: https://doi.org/10.1016/j.eswa.2016.10.052.

    Article  Google Scholar 

  25. A. H. Attia, S. F. Rezeka, A. M. Saleh. Fuzzy logic control of air-conditioning system in residential buildings. Alexandria Engineering Journal, vol. 54, no. 3, pp. 395–403, 2015. DOI: https://doi.org/10.1016/j.aej.2015.03.023.

    Article  Google Scholar 

  26. M. M. Algazar, H. AL-monier, H. Abd EL-halim, M. E. El Kotb Salem. Maximum power point tracking using fuzzy logic control. International Journal of Electrical Power & Energy Systems, vol. 39, no. 1, pp. 21–28, 2012. DOI: https://doi.org/10.1016/j.ijepes.2011.12.006.

    Article  Google Scholar 

  27. L. Suganthi, S. Iniyan, A. A. Samuel. Applications of fuzzy logic in renewable energy systems — A review. Renewable and Sustainable Energy Reviews, vol. 48, pp. 585–607, 2015. DOI: https://doi.org/10.1016/j.rser.2015.04.037.

    Article  Google Scholar 

  28. A. M. Eltamaly, H. M. Farh. Maximum power extraction from wind energy system based on fuzzy logic control. Electric Power Systems Research, vol. 97, pp. 144–150, 2013. DOI: https://doi.org/10.1016/j.epsr.2013.01.001.

    Article  Google Scholar 

  29. A. S. Koshiyama, M. M. B. R. Vellasco, R. Tanscheit. GP-FIS-CLASS: A genetic fuzzy system based on genetic programming for classification problems. Applied Soft Computing, vol. 37, pp. 561–571, 2015. DOI: https://doi.org/10.1016/j.asoc.2015.08.055.

    Article  Google Scholar 

  30. W. Caesarendra, T. Wijaya, T. Tjahjowidodo, B. K. Pappachan, A. Wee, M. I. Roslan. Adaptive neuro-fuzzy inference system for deburring stage classification and prediction for indirect quality monitoring. Applied Soft Computing, vol. 72, pp. 565–578, 2018. DOI: https://doi.org/10.1016/j.asoc.2018.01.008.

    Article  Google Scholar 

  31. M. Errouha, A. Derouich, S. Motahhir, O. Zamzoum, N. El Ouanjli, A. El Ghzizal. Optimization and control of water pumping PV systems using fuzzy logic controller. Energy Reports, vol. 5, pp. 853–865, 2019. DOI: https://doi.org/10.1016/j.egyr.2019.07.001.

    Article  Google Scholar 

  32. M. Al-Fetyani, M. Hayajneh, A. Alsharkawi. Design of an executable ANFIS-based control system to improve the attitude and altitude performances of a quadcopter drone. International Journal of Automation and Computing, vol. 18, no. 1–2, pp. 124–140, 2021. DOI: https://doi.org/10.1007/s11633-020-1251-2.

    Article  Google Scholar 

  33. D. H. Al-Janan, H. C. Chang, Y. P. Chen, T. K. Liu. Optimizing the double inverted pendulum’s performance via the uniform neuro multiobjective genetic algorithm. International Journal of Automation and Computing, vol. 14, no. 6, pp. 686–695, 2017. DOI: https://doi.org/10.1007/s11633-017-1069-8.

    Article  Google Scholar 

  34. D. J. Li, Y. Y. Li, J. X. Li, Y. Fu. Gesture recognition based on BP neural network improved by chaotic genetic algorithm. International Journal of Automation and Computing, vol. 15, no. 3, pp. 267–276, 2018. DOI: https://doi.org/10.1007/s11633-017-1107-6.

    Article  Google Scholar 

  35. K. Rajarathinam, J. B. Gomm, D. L. Yu, A. S. Abdelhadi. PID controller tuning for a multivariable glass furnace process by genetic algorithm. International Journal of Automation and Computing, vol. 13, pp. 64–72, 2016. DOI: https://doi.org/10.1007/s11633-015-0910-l.

    Article  Google Scholar 

  36. J. Y. Long, S. H. Zhang, C. Li. Evolving deep echo state networks for intelligent fault diagnosis. IEEE Transactions on Industrial Informatics, vol. 16, no. 7, pp. 4928–4937, 2020. DOI: https://doi.org/10.1109/TII.2019.2938884.

    Article  Google Scholar 

  37. A. A. Shojaie, A. D. Zand, S. Vafaie. Calculating production by using short term demand forecasting models: A case study of fuel supply system. Evolving Systems, vol. 8, no. 4, pp. 271–285, 2017. DOI: https://doi.org/10.1007/s12530-016-9173-5.

    Article  Google Scholar 

  38. M. Firat, M. A. Yurdusev, M. E. Turan. Evaluation of artificial neural network techniques for municipal water consumption modeling. Water Resources Management, vol. 23, no. 4, pp. 617–632, 2009. DOI: https://doi.org/10.1007/s11269-008-9291-3.

    Article  Google Scholar 

  39. M. N. Nawi, W. H. Atomi, M. Z. Rehman. The effect of data pre-processing on optimized training of artificial neural networks. Procedia Technology, vol. 11, pp. 32–39, 2013. DOI: https://doi.org/10.1016/j.protcy.2013.12.159.

    Article  Google Scholar 

  40. N. Siddique, H. Adeli. Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing, Chichester, USA: John Wiley & Sons, 2013.

    Book  Google Scholar 

  41. J. Heaton. Introduction to Neural Networks for Java, 2nd ed., Chesterfield, USA: Heaton Research, Inc, 2008.

    Google Scholar 

  42. H. Rouhparvar, A. Panahi. A new definition for defuzzification of generalized fuzzy numbers and its application. Applied Soft Computing, vol. 30, pp. 577–584, 2015. DOI: https://doi.org/10.1016/j.asoc.2015.01.053.

    Article  Google Scholar 

  43. M. V. Bobyr, N. A. Milostnaya, S. A. Kulabuhov. A method of defuzzification based on the approach of areas’ ratio. Applied Soft Computing, vol. 59, pp. 19–32, 2017. DOI: https://doi.org/10.1016/j.asoc.2017.05.040.

    Article  Google Scholar 

  44. L. X. Wang. A Course in Fuzzy Systems and Control, Englewood Cliffs, USA: Prentice-Hall, 1997.

    MATH  Google Scholar 

  45. E. W. McAllister. Pipeline Rules of Thumb Handbook: A Manual of Quick, Accurate Solutions to Everyday Pipeline Engineering Problems, 8th ed., Amsterdam, Netherlands: Elsevier, 2014.

    Google Scholar 

  46. P. L. Skousen. Valve Handbook, 3rd ed., New York, USA: McGraw-Hill, 2011.

    Google Scholar 

  47. H. Asgari, X. Q. Chen, M. Morini, M. Pinelli, R. Sainudiin, P. R Spina, M. Venturini. NARX models for simulation of the start-up operation of a single-shaft gas turbine. Applied Thermal Engineering, vol. 93, pp. 368–376, 2016. DOI: https://doi.org/10.1016/j.applthermaleng.2015.09.074.

    Article  Google Scholar 

  48. E. Heidari, A. Daeichian, M. A. Sobati, S. Movahedirad. Prediction of the droplet spreading dynamics on a solid substrate at irregular sampling intervals: Nonlinear Auto-Regressive exogenous Artificial Neural Network approach (NARX-ANN). Chemical Engineering Research and Design, vol. 156, pp. 263–272, 2020. DOI: https://doi.org/10.1016/j.cherd.2020.01.033.

    Article  Google Scholar 

  49. Z. Xu, J. Yang, H. Q. Cai, Y. G. Kong, B. S. He. Water distribution network modeling based on NARX. IFAC-PapersOnLine, vol. 48, no. 11, pp. 72–77, 2015. DOI: https://doi.org/10.1016/j.ifacol.2015.09.162.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaveh Khalili-Damghani.

Additional information

Colored figures are available in the online version at https://link.springer.com/journal/11633

Ali Dolatshahi Zand received the B.Sc. degree in electrical engineering from Shahed University, Iran in 2003, and received the M. Sc. degree in industrial engineering from Islamic Azad University, South Tehran Branch, Iran in 2014. He is a Ph. D. degree candidate in industrial engineering at the Islamic Azad University, South Tehran Branch, Iran. He has been working in designing SCADA, system and industrial automation for more than 16 years.

His research interests include SCADA systems, industrial automation, soft computing, meta-heuristic methods, artificial neural network, reliability engineering and demand forecasting.

Kaveh Khalili-Damghani received the M.Sc. degree from Islamic Azad University, South Tehran Branch, Iran in 2005, received the Ph. D. degree in industrial engineering from Islamic Azad University, South Tehran Branch, Iran in 2008, and received the Ph. D. degree in industrial management from Allameh Tabatabei University, Iran in 2012. He has published more than 200 papers in high quality journals such as Information Sciences, Quality and Reliability Engineering International, Annals of Operations Research, Expert Systems with Applications, Computers and Industrial Engineering, International Journal of Advanced Manufacturing Technology, Applied Soft Computing, Reliability Engineering and System Safety, Measurement, Journal of Industrial Engineering International, Journal of Industrial Engineering: Theory, Application, and Practice, Project Management Journal, TOP, and Applied Mathematics and Computations. He is associate editor of six international journals indexed by Scopus.

His research interests include soft computing, fuzzy sets and systems, meta-heuristic methods, multi-criteria decision making, data envelopment analysis, reliability optimization, quantitative modelling of supply chain, and applied operations research.

Sadigh Raissi received the B. Sc, M. Sc and Ph. D. degrees in industrial engineering from Islamic Azad University, Science and Research Branch, Iran in 2002. He is an associate professor at School of Industrial Engineering, Islamic Azad University, South Tehran Branch (IAU-STB), Iran. He has been engaged in industrial systems engineering technology development and the technical consultant from 1988 up to the present. He has worked in different management positions, both in the private and public sectors; the last one was deputy of research and planning at IAU-STB. By his attempts, more than 10 scientific journals initiated and research activities facilitated. Currently, he is also acts as Editor-in- Chief of the Journal of Industrial Engineering International. He has published more than 180 research papers.

His research interests include quality & reliability engineering, system simulation, and statistical methods in engineering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zand, A.D., Khalili-Damghani, K. & Raissi, S. Designing an Intelligent Control Philosophy in Reservoirs of Water Transfer Networks in Supervisory Control and Data Acquisition System Stations. Int. J. Autom. Comput. 18, 694–717 (2021). https://doi.org/10.1007/s11633-021-1284-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11633-021-1284-1

Keywords

Navigation