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Abstract: Palmprint recognition and palm vein recognition are two emerging biometrics technologies. In the past two decades, many
traditional methods have been proposed for palmprint recognition and palm vein recognition and have achieved impressive results. In re-
cent years, in the field of artificial intelligence, deep learning has gradually become the mainstream recognition technology because of its
excellent recognition performance. Some researchers have tried to use convolutional neural networks (CNNs) for palmprint recognition
and palm vein recognition. However, the architectures of these CNNs have mostly been developed manually by human experts, which is
a time-consuming and error-prone process. In order to overcome some shortcomings of manually designed CNN, neural architecture
search (NAS) technology has become an important research direction of deep learning. The significance of NAS is to solve the deep
learning model’s parameter adjustment problem, which is a cross-study combining optimization and machine learning. NAS technology
represents the future development direction of deep learning. However, up to now, NAS technology has not been well studied for
palmprint recognition and palm vein recognition. In this paper, in order to investigate the problem of NAS-based 2D and 3D palmprint
recognition and palm vein recognition in-depth, we conduct a performance evaluation of twenty representative NAS methods on five 2D
palmprint databases, two palm vein databases, and one 3D palmprint database. Experimental results show that some NAS methods can
achieve promising recognition results. Remarkably, among different evaluated NAS methods, ProxylessNAS achieves the best recogni-
tion performance.
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1 Introduction metric technologies to meet the application requirements

of different scenarios.
In the digital and intelligent society, more and more In recent years, palmprint recognition and palm vein

application scenarios need to authenticate people’s iden- recognition have become two new biometric recognition

tity effectively. Biometric technology is considered to be
one of the most effective solutions for personal authentic-
ation. The so-called biometrics refers to the technology
that uses the human body’s physical or behavioral charac-
teristics to identify individuals through image processing,
computer vision, pattern recognition and other tech-
niques. Generally speaking, face recognition, fingerprint
recognition and iris recognition are the three most suc-
cessful biometric technologies and have been widely used.
However, different biometric technologies have their ad-
vantages and disadvantages. In other words, there is no
one biometric technology that can meet the needs of all
applications of personal authentication. Therefore, aca-
demic and industrial circles are developing different bio-
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technologies, which have attracted great attention[4l.
Palmprint recognition refers to the technology conduct-
ing personal authentication based on the palm skin im-
ages of human hands. According to the resolution and
data type of palmprint image, palmprint recognition tech-
nology can be divided into 2D palmprint recognition and
3D palmprint recognition. Furthermore, 2D palmprint re-
cognition can be further divided into low-resolution
palmprint recognition and high-resolution palmprint re-
cognition. High-resolution palmprint recognition is gener-
ally used for forensics purposes, while low-resolution
palmprint recognition and 3D palmprint recognition are
mainly used for civilian purposes. Palm vein recognition
refers to the technology using the palm vein images cap-
tured under near-infrared light for personal authentica-
tion. Palm vein recognition is also mainly used for civil-
ian purposes. Since palmprint and palm vein are both col-
lected from the palm, and their recognition methods are
similar to some extent, some researchers study them sim-
ultaneously. In this paper, we only pay attention to civil-
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ian use of biometrics technology, so we mainly study 2D
low-resolution palmprint recognition, 3D palmprint recog-
nition, and palm vein recognition. In the rest of this pa-
per, for the sake of convenience, we will write 2D low-res-
olution palmprint recognition as 2D palmprint recogni-
tion.

Researchers have proposed many effective methods for
2D and 3D palmprint recognition and palm vein recogni-
tion, which can be divided into two groups, i.e., tradition-
al methods and deep learning-based methods. Generally,
traditional methods are based on hand-crafted features
and traditional machine learning techniques. Different
from traditional methods, deep learning can automatic-
ally learn features from images, videos or texts. The
highly flexible architecture of deep learning can learn dir-
ectly from the original data, and the prediction accuracy
will be improved after more data are obtained.
Nowadays, deep learning has become one of the most im-
portant technologies in the field of artificial intelligence.
In recent years, the explosive progress made in computer
vision, speech recognition, natural language processing,
robotics and other fields almost all depend on deep learn-
ing technology®8.

In the field of biometrics, especially in face recogni-
tion, deep learning has become the most mainstream
technologyl®. Convolutional neural network (CNN) is one
of the most important branches in deep learning. For im-
age-based biometrics technologies, CNN is the most com-
monly used deep learning techniquel®. Until now, a lot of
classic CNNs have been proposed, and have achieved im-
pressive results for many recognition tasks. The success of
these CNNs is mainly attributed to the automation of the
feature engineering process: A layered feature extractor
learns from data in an end-to-end manner. With this suc-
cess, there is a growing demand for architecture engineer-
ing, and more and more complex neural architectures are
designed in a manual manner. That is, currently em-
ployed architectures have mostly been developed manu-
ally by human experts, which is a time-consuming and er-
ror-prone process. In order to overcome some shortcom-
ings of manually designed CNN, neural architecture
search (NAS) technology has become an important re-
search direction of deep learning(l914. The core idea of
NAS is to use a search algorithm to find the neural net-
work structure needed to solve the problems. The signific-
ance of NAS is to solve the parameter adjustment prob-
lem of the deep learning model, which is a cross-study
combining optimization and machine learning. The
concept of NAS was first proposed by Zoph and Lel!5! at
International Conference on Machine Learning (ICML) in
2017, and has become a fundamental and active research
direction of deep learning.

With the continuous improvement of deep learning
network architecture and the increasing amount of data,
the recognition accuracy of deep learning in different bio-
metrics tasks is also increasing. For example, in the field
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of face recognition, the recognition accuracy of deep
learning has far exceeded the traditional hand-crafted al-
gorithms; thus, deep learning has successfully promoted
the large-scale application of face recognition technology.
However, in the fields of 2D and 3D palmprint recogni-
tion and palm vein recognition, the related research based
on deep learning is still preliminary. A lot of researchers
have used some classic CNNs or manually designed CNNs
for 2D and 3D palmprint recognition and palm vein re-
cognition. Nevertheless, up to now, NAS technology has
not been well studied for 2D and 3D palmprint recogni-
tion and palm vein recognition. Because NAS technology
represents the future development direction of deep learn-
ing, it is vital to systematically investigate the recogni-
tion performance of NAS methods for 2D and 3D
palmprint recognition and palm vein recognition. To this
end, we conduct the performance evaluation of NAS
methods on 2D and 3D palmprint recognition and palm
vein recognition in this paper. Particularly, twenty rep-
resentative NAS methods are selected and exploited for
performance evaluation.

The selected NAS methods are evaluated on five 2D
palmprint databases, one 3D palmprint database and two
palm vein databases. They are all representative data-
bases in 2D and 3D palmprint recognition and palm vein
recognition. Five 2D palmprint databases include Hong
Kong Polytechnic University palmprint database II
(PolyU 1II)[6], the blue band of the Hong Kong Polytech-
nic University Multispectral (PolyU M_B) palmprint
databasel!”l, Hefei University of Technology (HFUT)
palmprint databasell8], Hefei University of Technology
Cross Sensor (HFUT CS) palmprint databasell¥), and
Tongji University palmprint (TJU-P) databasel20). The
3D palmprint database is Hong Kong Polytechnic Uni-
versity 3D palmprint database (PolyU 3D)[2l. Two palm
vein databases include the near-infrared band of Hong
Kong Polytechnic University Multispectral palmprint
database (PolyU M N)[I7 and Tongji University palm
vein (TJU-PV) databasel22.

It should be noted that the samples within the above
databases are captured in two different sessions at cer-
tain time intervals. If the training samples are only from
the first session, and the test samples are from the second
session, we call this experimental mode the “separate
data mode”. If the training samples are from both ses-
sions, we call this experimental mode the “mixed data
mode”. In traditional recognition methods, some samples
captured in the first session are usually used as training
sets, while all the samples captured in the second session
are used as the test set. Therefore, the experiments of
those traditional recognition methods were usually con-
ducted in the “separate data mode”. However, in exist-
ing deep learning-based palmprint recognition and palm
vein recognition methods, the experiments were usually
conducted in the “mixed data mode”. Thus, it is easy to
obtain a high recognition accuracy. In this paper, we will
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conduct experiments in both “separate data mode” and
“mixed data mode” to observe the recognition perform-
ance of representative NAS methods in these two differ-
ent modes.

The main contributions of our work are as follows.

1) We briefly summarize some important NAS meth-
ods, which can help the readers to better understand the
development history of NAS technology.

2) We conduct a performance evaluation of represent-
ative NAS methods for 2D and 3D palmprint and palm
vein recognition. To the best of our knowledge, it is the
first time such an evaluation has been conducted. Partic-
ularly in the field of biometrics, this is also the first work
to evaluate the recognition performance of representative
NAS methods.

3) We evaluated the performance of representative
NAS methods on Hefei University of Technology cross
sensor palmprint database. It is the first time that the
problem of palmprint recognition across different devices
using NAS technology has been investigated.

4) We investigate the problem of the recognition per-
formance of NAS methods on both “separate data mode”
and “mixed data mode”.

The rest of this paper is organized as follows. Section 2
presents the related work. Section 3 briefly introduces
NAS technology. Section 4 introduces the selected NAS
methods in detail. Section 5 introduces the 2D and 3D
palmprint and palm vein databases used for evaluation.
Extensive experiments are conducted and reported in Sec-
tion 6. Section 7 offers the concluding remarks.

2 Related work

2.1 Traditional 2D palmprint recognition
methods

For 2D palmprint recognition, researchers have pro-
posed many traditional methods. Kong et al.lll, Zhang et
al.ll, Fei et al.Bl, Zhong et al.l! have published several
survey papers on the traditional palmprint recognition
methods. As shown in Fig.1, these traditional methods
can be classified into different subcategories, such as palm
line-based, texture-based, orientation coding-based, cor-
relation filter-based, and subspace learning-based. The
palm line is the primary feature of the palmprint. There-
fore, some researchers tried to extract the palm lines for
palmprint recognition. However, due to the complexity of
palmprint images, it is still difficult to extract palm lines

accurately. Palmprint images contain obvious texture fea-
tures. Therefore, researchers have proposed many texture-
based palmprint recognition methods. Texture-based
methods usually exploited sparse descriptor, dense
descriptor, or other texture representations, such as the
Gabor feature and wavelet feature, for palmprint recogni-
tion. Thus, texture-based methods can be further divided
into three subtypes, i.e., Gabor and wavelet-based meth-
ods, dense texture descriptor-based methods, and sparse
texture descriptor-based methods. Notably, some dense
texture descriptors have achieved promising recognition
results. As we know, palmprint contains many palm lines,
and these lines have their orientations. Orientation fea-
tures are insensitive to some variations such as illumina-
tion changes; thus, orientation is a robust feature of
palmprint. A lot of orientation coding-based methods
have been proposed, which have high accuracy and fast
matching speed. Generally, orientation coding-based
methods first detect the orientation of each pixel and
then encode the orientation number to a bit string, at
last, exploited Hamming distance for matching. Recently,
correlation methods have been successfully used for bio-
metrics, which also has high accuracy and fast matching
speed. Subspace learning has been one of the important
techniques for pattern recognition. Some subspace learn-
ing-based methods have been used for palmprint recogni-
tion. However, the recognition performance of subspace
learning-based methods is sensitive to illumination
changes and other image variations.

2.2 Traditional 3D palmprint recognition
methods

Fei et al.l?3l surveyed the papers on traditional 3D
palmprint recognition methods. Generally, 3D palmprint
data preserves the depth information of a palm surface.
The original captured 3D palmprint data is a small posit-
ive or negative float. For practical feature extraction, the
original 3D palmprint data is usually transformed into
the grey-level value. To this end, the original 3D
palmprint data is usually transformed into a curvature-
based data to facilitate the design of recognition al-
gorithms. The two most important curvatures include the
mean curvature (MC) and Gaussian curvature (GC), and
their corresponding images are mean curvature image
(MCI) and Gaussian curvature image (GCI). Based on
GC and MC, two new grey-level image representations
have been proposed, including surface type (ST) and
compact ST (CST). Since the representations of MCI,
GCI, ST and CST depict a 3D palmprint as a 2D grey-

Subcategories of traditional 2D palmprint recognition methods

A

Texture-based
methods

Palm line-based
methods

Orientation coding-
based methods

Correlation filter-
based methods

Subspace learning-
based methods

Fig.1 Subcategories of traditional 2D palmprint recognition methods
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level palmprint image, those 2D palmprint recognition
methods can be used for 3D palmprint recognition. Fig.2
shows the examples of original 3D palmprint, 3D
palmprint region of interest (ROI), and four 2D repres-
entations, including MCI, GCI, ST and CST.

2.3 Traditional
methods

palm vein recognition

As shown in Fig. 3, the traditional palm vein recogni-
tion methods can be divided into the following subcat-
egories: structure-based, texture-based, orientation cod-
ing-based, and subspace learning-based. Structure-based
methods usually first perform an image segmentation al-
gorithm or line detection algorithm, and then extract the
structure features of palm vein for recognition such as
lines, skeletons, points, minutiae and graph. Thus, struc-
ture-based methods can be further divided into three sub-
types, i.e., line/skeleton-based methods, points/minutiae-
based methods, and graph-based methods. Texture-based
methods, orientation coding-based methods, and sub-
space learning-based methods used for palm vein recogni-
tion are similar to those used for palmprint recognition.

2.4 2D and 3D palmprint recognition and
palm vein recognition methods based
on deep learning

Many researchers have studied 2D and 3D palmprint
recognition and palm vein recognition based on deep
learning.

Original 3D palmprint data

MCI GCI

Fig. 2 Samples of original 3D palmprint, 3D palmprint ROI,
and four 2D representations including MCI, GCI, ST and CST

Some representative 2D palmprint recognition meth-
ods based on deep learning are as follows. Zhang et al.[22]
proposed the method of PalmRCNN for palmprint recog-
nition, which is a modified version of Inception-ResNet-
V1. Genovese et al.24 proposed the method of PalmNet,
a CNN that uses a method to tune palmprint specific fil-
ters through an unsupervised procedure based on Gabor
responses and principal component analysis (PCA).
Zhong and Zhul?’l proposed an end-to-end method for
open-set 2D palmprint recognition by applying CNN with
a novel loss function, i.e., centralized large margin cosine
loss (C-LMCL). In order to solve the problem of
palmprint recognition in an uncontrolled and uncooperat-
ive environment, Matkowski et al.[28] proposed end-to-end
palmprint recognition network (EE-PRnet) consisting of
two main networks, i.e., ROI localization and alignment
network (ROI-LAnet) and feature extraction and recogni-
tion network (FERnet). Zhao and Zhangl” proposed a
deep discriminative representation (DDR) for palmprint
recognition. DDR uses several CNNs similar to VGG-F to
extract deep features from global and local palmprint im-
ages, and uses the collaborative representation-based clas-
sifier (CRC) for recognition. Zhao and Zhang?® presen-
ted a joint constrained least-square regression (JCLSR)
model with a deep local convolution feature for palmprint
recognition. Zhao et al.[ also proposed a joint deep con-
volutional feature representation (JDCFR) methodology
for hyperspectral palmprint recognition. Liu and
KumarB% proposed a generalizable deep learning-based
framework for the contactless palmprint recognition, in
which the network is based on a fully convolutional net-
work that generates deeply learned residual features.

Some representative palm vein recognition algorithms
based on deep learning are as follows. Zhang et al.l?2] re-
leased a new touchless palm vein database and used the
method of PalmRCNN for palm vein recognition. Le-
fkovits et al.3! applied four CNNs for palm vein identific-
ation, including AlexNet, VGG-16, ResNet-50, and
SqueezeNet. Thapar et al.32 proposed the method of
PVSNet, where a Siamese network was trained using
triplet loss. Chantaf et al.33 applied Inception-V3 and
SmallerVGGNet for palm vein recognition. Stanuch et
al.B4 proposed a contact-free multispectral palm vein re-
cognition system using a designed CNN, whose architec-
ture comprises of ten different layers, including five con-
volutional, four max pooling, and one dense layers.

In our previous workB35] we systematically investig-
ated the recognition performance of classic CNNs for 2D
and 3D palmprint recognition and palm vein recognition.
Seventeen representative and classic CNNs were ex-

Subcategories of traditional palm vein recognition methods

L N

Texture-based
methods

Structure-based
methods

Orientation coding-based
methods

Subspace learning-based
methods

Fig. 3 Subcategories of traditional 2D palm vein recognition methods
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ploited for performance evaluation including AlexNet,
VGG, Inception-V3, Inception-V4, ResNet, ResNeXt, In-
ception-ResNet-V2, DenseNet, Xception, MobileNet-V2,
MobliNet-V3, ShunffleNet-V2, SENet, EfficientNet,
GhostNet, RegNet and ResNeSt. We have also conduc-
ted experiments on both separate data mode and mixed
data mode. Among different classic CNNs, EfficientNet
achieves the best recognition accuracy.

3 A brief introduction of NAS techno-
logy

NAS is the sub-field of automated machine learning
(AutoML). The goal of NAS is to design a network archi-
tecture with the best performance with the least human
intervention and limited computing resources. The pa-
pers of [15] and [36] are considered as the pioneering work
of NAS. In [15], the network structure obtained by the re-
inforcement learning (RL) achieves very promising accur-
acy in image classification tasks, which shows the idea of
automation network architecture design is feasible. The
development of NAS technology is very rapid. At the
same time, NAS technology is being widely used in vari-
ous tasks, such as classification, object detection, semant-
ic segmentation, language modeling, and data augmenta-
tion, etc.

Despite the short development history of NAS, there
have been many papers published, including five survey
papersi10-14], In 2019, Elsken et al.l9 provided an over-
view of existing NAS methods and categorized them ac-
cording to three dimensions: search space, search
strategy, and performance estimation strategy. Wistuba
et al.l!l provided a formalism that unifies the landscape
of existing NAS methods. This formalism can be used to
critically examine the different approaches and under-
stand the benefits of the different components that con-
tribute to the design and success of NAS. Wistuba et
al.ll1 also highlighted some popular misconception pit-
falls in the current trends of NAS technology. Ren et
al.l'2l provided a new perspective of NAS technology:
Starting with an overview of the characteristics of the

oy Searching |
 ——
I

Optimization

learning
Evolutionary method

Bayesian

Others
| ———

I
I
I
: Weight-sharing
|
I
|

earliest NAS algorithms, a summary of the problems in
these early NAS algorithms, and then giving solutions for
subsequent related research work. Ren et al.l'2] also con-
ducted a detailed and comprehensive analysis, comparis-
on and summary of existing NAS works and gave pos-
sible future research directions. Hu and Yul!3l surveyed
NAS technology from a technical view. By summarizing
the previous NAS approaches, Hu and Yul!3 drew a pic-
ture of NAS from different aspects, including problem
definition, search approaches, progress towards practical
applications and possible future directions. He et al.[4]
compared the performance and efficiency of existing NAS
algorithms on the CIFAR-10 and ImageNet datasets and
provided an in-depth discussion of different research dir-
ections on NAS, including one/two-stage NAS, one-shot
NAS, and joint hyperparameter and architecture optimiz-
ation.

Almost all NAS methods are organized around three
components: search space, optimization method, and eval-
uation method. Fig.4 shows an abstract illustration of the
NAS methods.

1) Search space. Search space is a set of possible neur-
al network architectures. It adopts different design con-
cepts according to different application scenarios, includ-
ing computer vision tasks and language modeling tasks.
From the above point of view, NAS is not completely out
of artificial design; instead, it is more based on the design
of the network structure of the search and reconstruction,
and the number of architectures searched will usually
reach a very large order of magnitude.

2) Optimization method. The optimization method
teaches the search space how to search better. A good op-
timization method often plays a key role. Although there
are many optimization methods, the starting point of
their research is to obtain a better network architecture.
In addition, most optimization methods are introduced on
the basis of traditional optimization methods, such as re-
inforcement learning, evolutionary search, gradient-based
optimization, Bayesian optimization, etc.

3) Evaluation method. The evaluation method espe-
cially evaluates the network structure. The general evalu-

Architecture

Full training

Partial training

Network morphism

Hypernetworks

Fig. 4 Abstract illustration of neural architecture search methods
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ation methods include a full training mode, partial train-
ing mode and NAS specific evaluation method. The full
training mode is a time-consuming method, which usu-
ally requires thorough training for all the searched mod-
els, while partial training mode usually stops the training
process early, saving cost and time. Among the specific
evaluation methods of NAS, network morphism, weight
sharing and hypernetworks are often used as heuristic
quality assessment methods. In general, partial training
mode is typically an order-of-magnitude cheaper than full
training mode, while NAS specific evaluation methods are
2-3 orders-of-magnitude cheaper than full training mode.

Many NAS methods have been proposed. According to
the survey papers of NAS and the new development of
NAS, we selected a lot of important NAS methods and
listed them in Tables 1-3 according to the publishing
year. It can be seen that most NAS papers have been
published after 2017 and at some top conferences of artifi-
cial intelligence such as CVPR, ICML, ICCV, ECCV,
ICLR, and NeurIPS. In fact, the number of papers on
NAS is increasing rapidly. More comprehensive and new-
est NAS papers can be found on the websites https://git-
hub.com/D-X-Y/Awesome-AutoDL and https://www.
automl.org.

4 Selected representative NAS methods
for performance evaluation

The classification task is one of the important applica-
tions of NAS technology. As can be seen from Tables 1-3,
most NAS methods are dedicated to finding a robust clas-
sification model. Fig.5 shows the chronology of represent-
ative NAS methods for the classification task. These
methods play an important role in the development his-
tory of NAS. Here, we briefly introduce them by year of

In 2017, Zoph and Lel'®l published the first paper that
proposed the concept of NAS. Their work expresses the
network structure as a variable-length string. They learn
a good network structure through reinforcement learning
(RL), specifically generate a description of the neural net-
work model by using recurrent neural network (RNN),
and train the RNN to maximize the accuracy of the gen-
erated neural network model.

In 2018, Zoph et al.44 proposed the method of NAS-
Net. NASNet improves the search space from searching
hyperparameters to searching block cell structure, and its
accuracy can reach state of the art (SOTA). Moreover, in
this method, Zoph et al.l44 proposed to search on the
proxy dataset, the small datasets (such as CIFAR-10),
and then migrated to large datasets (such as ImageNet).
Brock et al.*l proposed the method of SMASH. SMASH
uses an auxiliary network to initialize parameters of dif-
ferent networks and avoid retraining again, which greatly
reduces the training time. Liu et al.3% proposed the
method of PNASNet to learn the structure of the CNN,
which is more effective than the NAS methods based on
reinforcement learning and evolutionary algorithm. Par-
ticularly, a sequential model-based optimization strategy
is used in PNANet. Luo et al.l9 proposed the method of
NAONet, which is a new method for optimizing network
architecture, mapping the architecture to a continuous
vector space. NAONet uses performance predictors and
encoders to perform gradient optimization in continuous
space to find a new coding structure with higher accur-
acy and decode it into a network by decoder.

In 2019, Xie et al.l%2 proposed the method of SNAS.
SNAS directly optimizes the objective function of the
NAS task, and puts forward the expectation of optimiz-
ing the network loss function and network forward delay,

publication. so as to automatically generate hardware-friendly sparse
Table 1 List of important NAS papers published in 2017 and 2018
Reference Full name Abbreviation Year Source Optimization method Application
Zoph and Lel3] Neural architecture search NAS 2017 ICML Reinforcement learning  Classification
Baker et al.[36] MetaQNN MetaQNN 2017 ICML Reinforcement learning  Classification
Shin et al. 37 Differentiable neural network DAS 2018 ICLR Gradient based Classification
architecture Search
Kandasamy et al.[38] Neural architecture search NASBOT 2018 NeurIPS Other Classification
Liu et al.[39] izix:sswe neural architecture PNASNet 2018 ECCV Performance prediction Classification
Luo et al.[40] Neural architecture optimization =~ NAONet 2018 NeurIPS Gradient based Classification
Brock et al.[41] One-shot model architecture search SMASH 2018 ICLR Gradient based Classification
. i i lifyi
Bender et al.[42] Understandmg and simplifying One-shot 2018 ICML Gradient based Classification
one-shot architecture search
. Block-wi 1 net k
Zhong et al.[43] OC-wWise neuralnetwor Block-QNN 2018 CVPR Reinforcement learning  Classification
architecture
Zoph et al.[44] NASNet architecture NASNet 2018 CVPR Reinforcement learning  Classification
- Platf - 1 net k
Yang et al.45) avlorm-aware neurai networ NetAdapt 2018 ECCV Other Classification

adaptation
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Table 2 List of important NAS papers published in 2019

383

Reference Full name of methods Abbreviation Year Source Optimization method Application

Ying et al.l46] NAS-Bench-101 NAS-Bench-101 2019 ICML Other Classification

Tan and Lel47] EfficientNet EfficientNet 2019 ICML Reinforcement learning  Classification

Chu et al.l48] Fairness of .wmght sharing FairNAS 2019 arXiv Evolutionary algorithm Classification
neural architecture search

Ho et al.l49] Population based augmentation PBA 2019 ICML Evolutionary algorithm Augmentation

Cubuk et al.[50] AutoAugment AutoAugment 2019 CVPR Reinforcement learning ~Augmentation

Real et al.l51] AmoebaNet AmoebaNet 2019 AAAI Evolutionary algorithm  Classification

Nekrasov et al.[52] - - 2019 CVPR Reinforcement learning Semantic .

segmentation

Bridging the gap between stability

Chu et al.[33] and scalability in weight-sharing ScarletNAS 2019 arXiv Evolutionary algorithm Classification
neural architecture search
Multimodal fusi hitect

Pérez-Rua et al.[54] Se:rclﬁno ' tusion architecture MFAS 2019 CVPR Evolutionary algorithm  Classification

Tan et al.[5] Mobile neural architecture search  MNASNet 2019 CVPR Reinforcement learning  Classification

i
Liu et al.l56] Auto-Deeplab Auto-Deeplab 2019 CVPR Gradient based Semantic .
segmentation

Chen et al.l57] Reinforced evolutionary RENAS 2019 CVPR  Gradient based Classification
neural architecture search

Wu et al.[58] Facebook-Berkeley-Nets FBNet-V1 2019 CVPR Gradient based Classification

Li et al.[59] Dongfeng networks DF 2019 CVPR Evolutionary algorithm Classification

Dong and Yangl60] Differentiable architecture sampler GDAS 2019 CVPR Gradient based Classification

Pham et al.[61] Efficient neural architecture search ENAS 2019 CVPR Reinforcement learning  Classification

Xie et al.[o2] Stochastic neural architecture SNAS 2019 ICLR  Gradient based Classification

Elsken et al.[63] LEMONADE LEMONADE 2019 ICLR Evolutionary algorithm Classification

Ghiasi et al.[64] F(.eature pyramld. architecture NAS-FPN 2019 CVPR Reinforcement learning  Object detection
with neural architecture search

Zhang et al.[63] Graph hypernetworks for GHN 2019 ICLR Gradient based Classification
neural architecture search

Cai et al.[66] Direct neural architecture search ~ ProxylesNAS 2019 ICLR Rcmfgrccmcnt learning Classification

Gradient based

Liu et al-[67] Differentiable architecture search  DARTS 2019 ICLR Gradient based Classification

Nayman et al.l68] N.eural archltectvure search XNAS 2019 NeurIPS  Gradient based Classification
with expert advice

Peng et al.[69 Neural architecture transformation NATS 2019 NeurIPS  Gradient based Object detection

Hu et al.[70] Petridish Petridish 2019 NeurIPS Gradient based Classification

Dong and Yangl™  Transformable architecture search TAS 2019 NeurIPS Gradient based Classification

Chen et al.[72 Neural architecture search DetNAS 2019 NeurIPS  Other Object detection
on object detection

Wortsman et al.[”3l  Discovering neural wirings DNW 2019 NeurIPS  Gradient based Classification

Dong and Yangl[™ Neural iarchltecture.search for AutoGAN 2019 iccv Reinforcement learning GAN
generative adversarial networks

Dong and Yangl™  Self-evaluated template network ~ SETN 2019 ICCV Gradient based Classification

Xiong et al.l7¢] Resource con§tramed neural RCNet 2019 ICCcv Evolutionary algorithm Classification
network architecture search

Howard et al.[77] MobileNet-V3 MobileNet-V3 2019 ICCV Evolutionary algorithm  Classification
Multinomial distribution

Zheng et al.[78] learning for effective MdeNAS 2019 ICCvV Other Classification
neural architecture search

EZZZZR%]I and Continual architecture search CAS 2019 ACL Reinforcement learning  Video captioning

Jiang et al.[s0] Improved differentiable I-DARTS 2019 EMNLP  Gradient based NLP
architecture search

Li and Talwalkar(81] Random search and reproducibility Random search WS 2019 UAI Gradient based Classification

for neural architecture search

network. Real et al.5!l proposed the method of Amoe-

baNet. The search space of AmoebaNet adopts the search

space of NASNet[44, and its network structure is similar
to the structure of Inceptionl10l. In SNAS, the algorithm

of ageing evolution is used to achieve better results.
Pham et al.[61] proposed the method of ENAS, which is an
economical and automatic model design method. By for-

cing all sub-models to share weights, the shortcomings of
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Table 3 List of important NAS papers published in 2020

Reference Full name Abbreviation Year Source Optimization method Application

Chu et al.[82] Mobile GPI.J—aware MoGA 2020 ICASSP  Evolutionary algorithm Classification
neural architecture search

Chen et al.[83] Searchl.ng for faster .real-tlme FasterSeg 2020 ICLR Gradient based Semantic .
semantic segmentation segmentation

Xu et al.[34] Partially-connected PC-DARTS 2020 ICLR  Gradient based Classification
differentiable architecture search

Mei et al.[s%] Atomic blocks for neural AtomNAS 2020 ICLR Other Classification
architecture search

Dong and Yangl®  NAS-Bench-201 NAS-Bench-201 2020 ICLR Other Classification

Tan et al.[87] EfficientDet EfficientDet 2020 CVPR Reinforcement learning  Object detection
Densely connected search space for

Fang et al.[88] more flexible neural architecture DenseNAS 2020 CVPR Gradient based Classification
search

Zhang et al. 15 Gradient-based sampling NAS- 1) g ngAS 2020 CVPR  Gradient based Classification
random sampling NAS

Li et al.[?0] Distill neural architecture DNA 2020 CVPR Gradient based Classification

Guo et al.[l] Robust architectures network RobNet 2020 CVPR Gradient based Classification

Gao et al.[92] Adversarial neural architecture AdversarialNAS 2020 CVPR Gradient based GAN
search for GANs
Differentiable neural

Wan et al.[93] architecture search for FBNet-V2 2020 CVPR Gradient based Classification
spatial and channel dimensions

Bender et al.[%4] TuNAS TuNAS 2020 CVPR Reinforcement learning  Classification

Li et al.193] Sequential greedy SGAS 2020 CVPR  Gradient based Classification
architecture search

Zheng et al.[96] Budgeted performance estimation BPE 2020 CVPR Other Classification

Phan et al.l97] Binary neural network BNN 2020 CVPR Evolutionary algorithm  Classification
Efficient neural architecture

He et al.[98] search via mixed-level MiLeNAS 2020 CVPR Gradient based Classification
reformulation

Dai et al.%% Data adapted pruning for efficient , , g 2020 ECCV  Gradient based Classification
neural architecture search
Efficient and effective .

i [100] 2 . .

Tian et al. GAN architecture search E2GAN 2020 ECCV Reinforcement learning GAN

Chu et al.[101] Falridlfferentlable FairDARTS 2020 ECCV Gradient based Classification
architecture search

Hu et al.[102] Three-freedom neural TF-NAS 2020 ECCV  Gradient based Classification
architecture search

Hu et al.[103] Angle-based search space shrinking ABS 2020 ECCV Other Classification

Yu et al.[104 Barrier penalty neural BP-NAS 2020 ECCV  Other Classification
architecture search

Wang et al,[103] Attention cell search for AttentionNAS 2020 ECCV  Other Video
video classification classification

Bulat et al.[106] Binary architecTure search BATS 2020 ECCV Other Classification

Yu et al.[107] NfeuraIA arthtecture search BigNAS 2020 ECCV Gradient based Classification
with big single-stage models
Single path one-shot neural Sinele-Path

Guo et al.[108] architecture search with Slng el_\I : - 2020 ECCV Evolutionary algorithm  Classification
uniform sampling uperie

Liu et al.[109) Unsupervised neural UnNAS 2020 ECCV  Gradient based Classification

architecture search

more than 1000 times. Cai et al.l’6l proposed a NAS
method without proxy tasks called ProxylessNAS. Proxy-

huge and time-consuming NAS computing power are
overcome, and the GPU computing time is reduced by
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Fig.5 Chronology of representative NAS methods for the classification task

lessNAS can directly search structures of large-scale tar-
get tasks, which can solve large GPU memory consump-
tion problems and long computation time of the NAS
method. Liu et al.l7 proposed the method of DARTS for
effective structure search. Instead of searching in the dis-
crete set of candidate structures, the search space of
DARTS is relaxed to the continuous domain. The optim-
ization can be carried out with the effect of verification
set by means of gradient descent. The method of
FairNAS is proposed by Chu et al.48] FairNAS is the in-
heritance and development of the one-shot in the NAS
community. FairNAS thinks that fair sampling and train-
ing methods can exert the potential of each module.
Therefore, FairNAS proposes to meet the strict fairness.
This constraint is that every single iteration of the hyper-
network makes the parameters of each optional operation
module of each layer be trained. Dong and Yangl® pro-
posed the method of GDAS, which uses the gradient des-
cent method to realize the effective network structure
search. GDAS treats the search space as a directed acyc-
lic graph, uses a differentiable sampler to test the sample
structure, and optimizes the sampler by training the veri-
fication loss of the sampled structure. Howard et al.[7"]
proposed the method of MobileNet-V3, a new light-
weight network structure based on MobileNet-V2[111]. Tt is
searched by MNASNet®] and NetAdaptl43l. MobileNet-
V3 contains the MobileNet-V3-large version and the Mo-
bilenet-V3-small version to cope with resource consump-
tion scenarios. Moreover, MobileNet-V3 has been success-
fully used in target detection and semantic segmentation
tasks. Wu et al.l58] proposed a search framework for dif-
ferentiable neural structures called DNAS, which uses a
gradient-based method to optimize the convolution net-
work structure and avoids exhaustive and independent
training structure. FBNets are the family of network
structures generated by the DNAS search framework, sur-
passes the manually designed and automatically gener-
ated state of the art model. Tan et al.l®sl proposed an
automatic mobile NAS method called MNASNet, which
explicitly incorporated model delay into the main target.
The search can identify a model that achieves a good
trade-off between precision and delay. Chu et al.’3] pro-

posed the method of ScarletNAS with scalability func-
tion and solved the fairness problem of scalable hypernet-
work training in one-shot routes through linear equival-
ent transformation. Tan and Lel” proposed the method
of EfficientNet. They used NAS to search a baseline net-
work with accuracy and flops simultaneously, and do the
balance of depth, width and resolution, and get a group
of better EfficientNets.

In 2020, Chu et al.2 designed the mobile terminal
GPU sensitive model from a practical standpoint, which
is called MoGA. The method of PC-DARTS was pro-
posed by Xu et al.lB4 PC-DARTS is an extension of
DARTS, which reduces the memory consumption of com-
puting time in the process of network search through par-
tial channel connection. Guo et al.[198] constructed a sim-
plified hypernetwork called Single-Path- SuperNet, which
was trained according to the uniform path sampling
method. All substructures (and their weights) are fully
and equally trained. Based on the trained hypernetwork,
the optimal substructure can be quickly searched by an
evolutionary algorithm, in which no fine-tuning of any
substructure is required. Based on the idea of knowledge
distillation, Li et al.%0 proposed the distill neural archi-
tecture (DNA), which introduces a teacher model to
guide the direction of the network structure search. Us-
ing the supervision information from different depths of
teacher model, the original end-to-end network search
space is divided into blocks in-depth to realize the weight
sharing training of independent blocks of network search
space, which significantly reduces the interference caused
by weight sharing. Wan et al.l%] proposed FBNet-V2,
which takes both memory and efficiency into account.
FBNet-V2 uses a masking mechanism for feature graph
reuse and effective shape propagation to obtain better ac-
curacy. Guo et al.’!l studied the model of neural network
structure and then proposed the method of RobNet,
which can resist the attack from the perspective of neur-
al network structure. To obtain a large number of net-
works needed for research, they used a one-shot neural
network structure search to train a super-net and then
fine-tuned the sub-networks sampled from it.
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For 2D and 3D palmprint recognition and palm vein
recognition, we select twenty representative NAS meth-
ods for performance evaluation including NASNet[44],
SMASHI, PNASNetB9, NAONetl40] SNAS62  Amoe-
baNet?l,  ENASIU,  ProxylessNSAI6¢,  DARTSI6,
FairNASH48] GDASI60, FBNet-V158], MNASNet[53], Scar-
letNASPB3], MoGAR2, PC-DARTSB4, Single-Path-Super-
Netl108, DNAI], FBNet-V29] and RobNetl®l. There are
two main reasons for choosing these NAS methods. One
reason is that these NAS methods are often used as refer-
ence methods for performance comparison in many liter-
ature pieces. The second reason is that the results of
these NAS approaches are outstanding. It's worth noting
that MobileNet-V3[77 and EfficientNet[4” are network ar-
chitectures based on the existing NAS methods and then
elaborately designed manually. Therefore, MobileNet-V3
and EfficientNet can be viewed as semi-NAS methods;
thus, they are not included in our selection. In our previ-
ous work®] we have classified MobileNet-V3 and Effi-
cientNet as traditional classic CNNs, and we have evalu-
ated their recognition performance.

In this section, we introduce the selected NAS meth-
ods in detail as follows.

1) NASNet

NASNetl# was designed to make the training struc-
ture transferable. The best structure of NASNet is found
on CIFAR-10 dataset, and then stacked several times and
then applied to the ImageNet dataset. In addition, a new
regularization technique called schedule drop path is pro-
posed in this method. Fig.6(a) shows the controller mod-
el architecture for recursively constructing one block of a
convolutional cell. Each block requires selecting 5 dis-
crete parameters, each of which corresponds to the out-
put of a softmax layer. Fig.6(b) shows the architecture of
the best convolutional cells with B = 5 blocks identified
with CIFAR-10. NASNet has different versions including
NASNet-A, NASNet-B, NASNet-C and NASNet-mobile.
The recognition performance of NASNet-A is the best,
and the NASNet-mobile is light-weight network. In this
paper, NASNet-A and NASNet-mobile are used for per-
formance evaluation.

2) SMASH

SMASHM! trains an auxiliary model-hypernet to train
the candidate models in the search process, which dynam-
ically generates the weights of the main model with vari-
able structure. Although the weights generated are worse
than those obtained by free learning of fixed network
structure, the relative performance of different networks
in early training provides meaningful guidance for the
performance under an optimal state. At the same time, a
network representation mechanism based on memory
back is developed to define various network structures.

3) PNASNet

PNASNetB9 can learn a CNN, which matches the pre-
vious SOTA, and requires five times less model evalu-
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ation during architecture search. The starting point of
this work is the structured search space proposed by
NASNet, in which the task of the search algorithm is to
search for a suitable convolution cell rather than a com-
plete CNN. A cell contains B blocks, one of which is a
combination operator (such as addition) applied to two
inputs (tensors), each of which can be transformed (e.g.,
using convolution) before combining. Then, according to
the size of the training set and the running time of the
CNN, the cell structure is stacked for a certain number of
times. This modular design also allows us to migrate the
architecture from one dataset to another easily. Fig.7(a)
shows the best cell structure found by PNASNet, consist-
ing of 5 blocks, and Fig.7(b) shows the construction of
CNNs from cells on CIFAR-10 and ImageNet.

4) NAONet

Fig.8 shows the general framework of NAONet[40].
NAONet consists of three parts: encoder, predictor and
decoder. Experimental results showed that the architec-
ture found by NAONet performs well in both CIFAR-10
image classification task and penn treebank (PTB) lan-
guage modeling task, and is better than or equal to the
best previous architecture search methods with signific-
antly reduced computing resources.

5) SNAS

Compared with ENAS, the search optimization of
SNAS is differentiable and the search efficiency is
higher62l. Compared with other differentiable methods
such as DARTS and so on, SNAS directly optimizes the
objective function of NAS tasks, and the search structure
is more robust and efficient for multitasking. In addition,
based on the advantage that SNAS keeps the advantage
of stochasticity, Xie et al.[2 further proposed to optim-
ize both the expectation of network loss function and the
expectation of network forward delay to generate hard-
ware friendly sparse network automatically.

6) AmoebaNet

AmoebaNetP!l improves the tournament selection
method in genetic algorithm. This method is changed in-
to an age-based selection method, namely the ageing evol-
ution algorithm, which makes the genetic algorithm
prefer young individuals. Experiments show that the al-
gorithm has a faster search speed than reinforcement
learning and random search on the same hardware condi-
tions. The ageing evolution algorithm has the following
six steps: i) P neural network structures are randomly ini-
tialized and added to the queue to form a population for
training; ii) The population was sampled, and S neural
networks were selected; iii) S neural networks are ob-
tained by sampling, and the neural network with the
highest accuracy is selected as the parent; iv) The net-
work is trained and added to the population, i.e., the
rightmost side of the queue; v) Removing the “oldest”
neural network in the population is actually the leftmost
element of the queue; vi) Go back to Step ii) and cycle a
certain number of times.
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10.

7) ENAS

ENAS! is an economical and automatic model design
method beyond NASNetl44. By forcing all sub-models to
share weights, the efficiency of NAS is improved, and the
shortcomings of huge computing cost and time-consum-
ing of NAS are overcome. The computing time of GPU is
reduced by more than 1000 times. On the CIFAR-10
dataset, the test error reaches 2.89%, which is similar to

NASNet (2.65% test error). Fig.9 shows the network ar-
chitecture of ENAS.

8) ProxylessNSA

ProxylessNASIO6] is the first NAS algorithm to search
large design space directly on large-scale ImageNet data-
sets without any proxy and customize CNN architecture
for hardware for the first time. Cai et al.l[6! combine the
idea of model compression (pruning and quantifying) with
NAS, reduce the computing cost (GPU time, GPU
memory) of NAS to the same scale as the conventional
training, and reserve rich search space, and directly incor-
porate the hardware performance (delay, energy con-
sumption) of neural network structure into the optimiza-
tion objective. Fig.10 shows the efficient models optim-
ized for different hardware. Figs.10(a)-10(c) show the

GPU model, the CPU model and the mobile model found
by ProxylessNAS. GPU prefers shallow and wide model
with early pooling, while CPU prefers deep and narrow
model with late pooling. Pooling layers prefer large and
wide kernel while early layers prefer small kernel, late
layers prefer large kernel. In this paper, the GPU model

and mobile model of ProxylessNAS are used for evalu-
ation.

9) DARTS

Most network search algorithms use enhanced learn-
ing or evolutionary algorithms to search for structures.
The search space of such algorithms is discrete, and the
search time is too time consuming. The search space of
DARTS is continuous, and the search process is com-
pleted by using a gradient descent algorithm on the veri-
fication set. The computational cost of DARTS is several
orders of magnitude smaller than that of ordinary net-
work search algorithms, but the result obtained by
searching can still be equal to that of the previous SOTA
algorithm. Meanwhile, its generalization ability is also
very good. It can be used not only for searching CNN

structure, but also for searching RNN structure. Fig.11
shows an overview of DARTS.

@ Springer



388 International Journal of Automation and Computing 18(3), June 2021

Softmax

Cell, stride 1 xN
Softmax Cell, stride 2

[ Cell, :tride 1xv [Cell, stride 1 xN
| Cell, stride 2| | Cell, stride 2 |

[Cell, stride 1[xN | Cell, stride 1 <N
[Cell, stride 2] | Cell, stride 2 |x2

[Cell, stride 1[xN 3x3 Cony, stride 2|

CIFAR-10 ImageNet
architecture architecture
(b)
Fig. 7 Cell structure of PNASNetl3: (a) The best cell structure found by PNASNet; (b) Employing a similar strategy as [44] when
constructing CNNs from cells on CIFAR-10 and ImageNet.
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Fig.8 General framework of NAONet[40]

Fig. 9 ENAS's discovered network from the macro search space for image classification(61]

10) FairNAS time-consuming training for each model to know its rep-

FairNASH8l is a one-shot method in the field of NAS, resentation ability. Therefore, it is famous for greatly im-
and it advocates that weights can be shared. It trains a proving the efficiency of NAS and has become the main-
super-net from the beginning to the end (only one HY- stream of NAS. Nevertheless, the premise of one-shot is
PERNET is trained completely, which is also the mean- that weight sharing is effective, and the model ability can
ing of one-shot). Each model is a sampling model of HY- be verified quickly and accurately in this way. This kind
PERNET. The advantage of this is that it does not need of situation is a little like the Matthew effect. If the con-
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Fig. 10 Efficient models optimized for different hardware of the ProxylessNAS method [66]: (a) GPU model found by ProxylessNAS;
(b) CPU model found by ProxylessNAS; (c) Mobile model found by ProxylessNAS.
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(b)
An overview of DARTSI67]: (a) Operations on the edges are initially unknown; (b) Continuous relaxation of the search space by
placing a mixture of candidate operations on each edge; (c) Joint optimization of the mixing probabilities and the network weights by
solving a bilevel optimization problem; (d) Inducing the final architecture from the learned mixing probabilities.

Fig. 11

ditions are not good, they will fall into a circular di-
lemma. FairNAS believes that fair sampling and training
methods can give full play to the potential of each mod-
ule. Finally, after completing the training, the sampling
model can quickly use the weights in the hypernet to get
a relatively stable performance index on the verification
set. This fair algorithm can almost completely maintain
the ranking of the models, and the models sampled from
the super-net and the models trained separately will even-
tually have almost the same ranking. FairNAS has three
versions, including FairNAS-A, FairNAS-B and FairNAS-
C, which have different search architectures by different
search space. Fig. 12 shows architectures of FairNAS-A, B
and C.

(d)

11) GDAS

GDASI60 uses the gradient descent to search the net-
work structure effectively, and the search space is repres-
ented by a directed acyclic graph (DAG). This DAG may
have millions of sub-graphs, each of which is a neural net-
work structure. In order to avoid traversing so many sub-
graphs, Dong and Yangl® use a differentiable sampler to
sample the sample structure and optimizes the sampler
by training the verification loss of the sampled structure.
GDAS can search a robust neural network structure in 4
hours on a V100GPU. GDAS is similar to DARTS, but
there are two differences between them: i) How to make
the search space differentiable? DARTS transforms the
weight softmax of operations into a probability after joint
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Fig. 12

optimization and takes the operation with the maximum
probability of connection between nodes. Dong and
Yangl® used the Gumbel max trick to select the trans-
formation function between nodes with argmax function
in forward propagation, and use softmax function to dif-
ferentiate one hot vector in backward propagation and
use gradient backpropagation. ii) DARTS jointly searches
all operations, which will lead to antagonism between op-
erations, and the weight that may be generated will off-
set each other, which makes the optimization difficult.
Besides, the joint search of normal cell and reduction cell
greatly increases the search space. In [60], the reduction
cell is fixed, and the normal cell is searched. It only takes
4 hours on a V100GPU, and only the function between
the sampled nodes is updated each time. Fig.13 shows
the search space of a neural cell using DAG. Different op-
erations (colored arrows) transform one node (square) to
its intermediate features (little circles). Meanwhile, each
node is the sum of the intermediate features transformed
from the previous nodes. As indicated by the solid con-
nections, the neural cell in the proposed GDAS is a
sampled sub-graph of this DAG. Specifically, among the
intermediate features between every two nodes, GDAS
samples one feature in a differentiable way.

12) FBNet-V1

In the method of FBNet-V18] a differentiable neural
architecture search (DNAS) is used to find the hardware
related light-weight convolution network. The DNAS
method represents the whole search space as a hypernet-
work, transforms the search for the optimal network
structure into finding the optimal candidate block distri-
bution, trains the block distribution by gradient descent,
and can select different blocks for each layer of the net-
work. In order to better estimate the network delay, the
actual delay of each candidate block is measured and re-
corded in advance, which can be accumulated directly ac-
cording to the network structure and the corresponding
delay. Fig.14 shows the visualization of some of the
searched architectures.

13) MNASNet

MNASNetb3 is an automatic mobile neural network
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search method. MNASNet explicitly takes the model op-
eration delay time as one of the main optimization object-
ives to search for a network model structure that can bal-
ance the latency and accuracy. In the previous work, the
latency was measured indirectly by an inaccurate method,
such as flops (floating-point operations per second).
MNASNet can implement models on mobile devices to
directly measure the inference delay in the real world. In
addition, a hierarchical search space method is proposed
to determine the network structure. The first inspiration
of [55] comes from the fact that although there are simil-
ar flops (575M VS. 564M) in MobileNet and NASNet,
the delay time is quite different (113ms VS. 183ms).
Secondly, Tan et al.53l observed that the previous auto-
mation methods mainly search for several types of units
and then stack the same units repeatedly through the
network. This simple search mechanism will limit the di-
versity of layers. The first inspiration gave birth to the
idea of multi-objective optimization of operation delay
time and precision; the second inspiration gave birth to
the method of hierarchical decomposition of search space.
Allow layers to be architecturally different but still strike
the right balance between flexibility and search space
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size. Fig. 15 shows an overview of MNASNet.

14) ScarletNAS

In the method of ScarletNASI], an automatic neural
network search with a scalability function is proposed.
The problem of the fairness of scalable hypernetwork
training in one shot route is solved by a linear equivalent
ScarletNAS uses convlx1l (without
bias/relu) + conv to replace identity + conv in training

transformation.

super net, which solves the problem of convergence in
training scalable network. The introduction of convlx1
(without bias/relu) + conv is a linear transformation,
which is equivalent to identity + conv. In ImageNet 1K
classification task, it achieves 76.9% top-1 accuracy and is
currently SOTA of < 390M flops level. ScaletNAS has
three different versions, including ScaletNAS-A, Scalet-
NAS-B and ScaletNAS-C, and their network complexity
is gradually reduced. ScaletNAS-A usually gets the bet-
ter result. Fig.16 shows architectures of ScaletNAS-A, B
and C.

15) MoGA

MoGAB?2 considers the use of mobile GPU in real
scenes, and the model can directly serve mobile visual
products. The first novel point of MoGA is mobile GPU
aware (MoGA), which is to design the mobile GPU sens-
itive model from the perspective of practical use. The
second point of view of MoGA comes from the analysis of
MobileNet trilogy. From MobileNet-V1 to MobileNet-V3,
the accuracy is constantly improving, but the number of
model parameters is increasing. Therefore, the optimiza-
tion of the model parameters is an aspect worth studying.
In addition to the business indicator top-1 accuracy, the

K=
K=3 K 3 k=3 K=5 g K=5
IE 6 . = E=1 I E=6 E=3. - -f;
G=2

running time of the model at the device side is regarded
as the key indicator to measure the model, not the multi-
plier and adder, so the multiplier and adder are elimin-
ated from the target. Also, the previous methods tried to
compress the parameters, which is very disadvantageous
to multi-objective optimization. On the Pareto boundary,
which does not harm others but benefits oneself, one
must give up to get something. It is considered that the
parameter quantity is the representation of the model
capability, so the model with high parameters but with
low delay can be obtained by encouraging the increase of
parameter quantity instead of increasing the search
range. MoGA has three versions including MoGA-A,
MoGA-B and MoGA-C, which have different search lay-
ers. Fig. 17 shows architectures of MoGA-A, B and C.

16) PC-DARTS

PC-DARTSEY is an effective channel sampling meth-
od in which only a part of the channel is sampled into the
core of the multi-choice operation. Channel sampling can
alleviate the “overfitting” phenomenon of hypernetwork,
and greatly reduce its memory consumption so that the
speed and stability of structure search can be improved
by increasing the batch size in the training process.
However, channel sampling will lead to the inconsistency
of the edge selection of the hypernetwork, which in-
creases the disturbance caused by random approximation.
In order to solve this problem, an edge regularization
method is proposed, which uses a set of additional edge
weight parameters to reduce the uncertainty in search.
After these two improvements, the search speed of the
method is faster, the performance is more stable, and the
5
1 D Skip

2

SRS e Ilrtll-li-i=1lﬂ+
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Fig. 14 Visualization of some of the searched architectures of FBNet-V 1[5
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Fig. 15  An overview of MNASNet
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accuracy is higher. Fig. 18 shows the general framework of
PC-DARTS.

17) Single-Path-SuperNet

One-shot is a powerful neural architecture search
framework, but its training is relatively complex, and it
isn't easy to obtain competitive results on large data sets
(such as ImageNet). Guo et al.l'%% proposed a single path
one-shot model called Single-Path-SuperNet to solve the
main challenges in the training process. The core idea of
Single-Path-SuperNet is to construct a simplified super
network, which is trained according to the uniform path
sampling method. All substructures (and their weights)
are fully and equally trained. Based on the trained hyper-
network, the optimal substructure can be quickly
searched by an evolutionary algorithm, in which no fine-
tuning of any substructure is required.

18) DNA

DNAPY is a method to solve the two problems: effi-
ciency and effectiveness. It differs from the existing neur-
al network search algorithm such as RL, DARTS, One-
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Shot, etc. Based on the idea of knowledge distillation, Li
et al.% introduce a teacher model to guide the direction
of the network structure search. Using the supervision in-
formation from different depths of teacher model, the ori-
ginal end-to-end network search space is divided into
blocks in-depth to realize the weight sharing training of
which
greatly reduces the interference caused by weight sharing.
At the same time, it ensures the accuracy of the evalu-

independent blocks of network search space,

ation of candidate sub-models without sacrificing the effi-
ciency of weight sharing. The algorithm can traverse all
candidate structures in the search space. DNA has four
versions, i.e., DNA-a, DNA-b, DNA-c and DNA-d, which
are searched by different parameters. Fig.19 shows an il-
lustration of DNA. The teacher’s previous feature map is
used as input for both teacher and student block. Each
cell of the super net is trained independently to mimic
the behavior of the corresponding teacher block by min-
imizing the I2-distance between their output feature
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maps. The dotted lines indicate randomly sampled paths
in a cell.

19) FBNet-V2

There have been some classic NAS before the FBNet-
V2 method was proposed, such as DARTS,
lessNAS and so on. However, all of them have their own

Proxy-

defects, such as: i) Memory loss limits the size of search
space; i) Memory loss is linearly related to the number of
operations per layer; iii) ProxylessNAS can effectively re-
duce memory loss by using binary training method, but
in large search space, the memory loss is not limited, and
the convergence rate is very slow. FBNet-V2[] can
greatly expand the search space without increasing
memory loss and can maintain high-speed search in large
search space. The main contributions of FBNet-V2 are as
follows: i) A NAS with both memory and efficiency is
proposed; ii) A masking mechanism and an effective
shape propagation for feature map reuse are proposed; iii)
The precision of the network is very high.
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20) RobNet

In order to improve the robustness of the deep neural
network, the existing work focuses on the study of con-
frontation learning algorithm or loss function to enhance
the network robustness. From the perspective of neural
network structure, RobNet®!] studies the model of neural
network structure, which can resist attack. In order to
obtain a large number of networks needed in this study,
one-shot neural network structure search is used to train
a supernet, and then the sub-networks sampled from it
are adjusted against fine-tuning. The sampling network
structure and its robustness accuracy provide a rich basis
for the research.

5 2D and 3D palmprint and palm vein
databases used for evaluation

In this paper, five 2D palmprint image databases, one
3D palmprint database and two palm vein databases are
exploited for performance evaluation, including PolyU II,
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PolyU M B, HFUT, HFUT CS, TJU-P, PolyU 3D,
PolyU M N and TJU-PV. After preprocessing, the ROI
sub-images were cropped. The ROI size of all databases is
128 x128. The detailed descriptions of the above data-
bases are listed in Table 4. Figs.20—23 depict some ROI
images of four 2D palmprint databases. In Figs.20-23,
the three images depicted in the first row were captured
in the first session. The three images depicted in the
second row were captured in the second session. Fig.24
shows three original palmprints of the HFUT CS data-
base and their corresponding ROI images. Figs.25 and 26
depict some ROI images of two 2D palm vein databases.
In Figs.25 and 26, the three images depicted in the first
row were captured in the first session. The three images
depicted in the second row were captured in the second
session. Fig.1 shows one original 3D palmprint data, and
four different 2D representations from one 3D palmprint,
including MCI, GCI, ST and CST.

PolyU 1II is a challenging palmprint database because
the illumination between the first and second sessions has
a notorious change. HFUT CS is also a challenging
palmprint database. From Fig.24, it can be seen that
there are some differences between the palmprints cap-
tured by different devices.

6 Experimental results

6.1 Experimental configuration

We selected twenty NAS methods for performance
evaluation. As some of the selected methods have differ-
ent versions, we selected various versions for evaluation,
including (NASNet-A, NASNet-mobile), (ProxylessNAS,
ProxylessNAS-mobile), (FairNAS-A, B, and C), (Scalet-
NAS-A, B and C), (MoGA-A, B and C) and (DNA-a, b,
c and d).

Here, we introduce the default configuration of the ex-
periment, including experimental hyperparameters and
hardware configuration. Since different networks need dif-
ferent input sizes, the palmprint and palm vein ROI im-
age need to be up-sampled to a suitable size before input-
ting into the network. In order to enhance the stability of
the network, we also added a random flip operation (only
during the training phase); that is, for a training image,
there is a certain probability that the image is flipped ho-
rizontally and then input into the network. We did not
initialize the model parameters using the random para-
meter initialization method; instead, we initialized it us-

Table 4 Details of 2D palmprint, 3D palmprint and palm vein databases

Database Type Touch? Individual Palm Session .Session Image number Total image
number number number interval of each palm number

PolyU II 2D palmprint Yes 193 386 2 2 months 10X2 7752
PolyUM B 2D palmprint Yes 250 500 2 9 days 6X2 6 000
HFUT 2D palmprint Yes 400 800 2 10 days 10X2 16 000
HFUT CS 2D palmprint No 100 200 2 10 days 10X2X3 12 000
TJU-P 2D palmprint No 300 600 2 61 days 10X2 12 000
PolyU 3D 3D palmprint Yes 200 400 2 1 months 10X2 8 000
PolyUM_N Palm vein Yes 250 500 2 9 days 6X2 6 000
TJU-PV Palm vein No 300 600 2 61 days 10X2 12 000

Fig. 20 Six palmprint ROI images of PolyU II database. The
three images in the first row were captured in the first session.
The three images in the second row were captured in the second
session.
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Fig. 21  Six palmprint ROI images of the PolyU M_B database.
The three images in the first row were captured in the first
session. The three images in the second row were captured in the
second session.
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Fig. 22  Six palmprint ROI images of the HFUT database. The
three images in the first row were captured in the first session.
The three images in the second row were captured in the second
session.

Fig. 23  Six palmprint ROI images of the TJU-P database. The
three images in the first row were captured in the first session.
The three images in the second row were captured in the second
session.

Fig. 24  Three original palmprint and ROI images of the HFUT
CS database. The three images in the first row are original
palmprint images. The three images in the second row are the
corresponding ROI images.

ing the parameters of the pretrained model in the Im-
ageNet or CIFAR dataset. It is worth noting that when
an official model is trained on the ImageNet dataset, we
prefer to use the pre-trained model. If not, we will use the
pre-trained model of the CIFAR dataset. The palmprint

Fig. 25 Six palm vein ROI images of the PolyU M_N database.
The three images in the first row were captured in the first
session. The three images in the second row were captured in the
second session.

Fig. 26 Six palm vein ROI images of the TJU-PV database.
The three images in the first row were captured in the first
session. The three images in the second row were captured in the
second session.

and palm vein ROI image in the database is usually a
grayscale image, which means that the number of image
channels is 1. The input of the model is an RGB image,
so the grayscale channel of the image is copied three
times to form an RGB image with 3 channels.

The system configuration is as follows: Intel CPU i7-
8700 3.20GHz, NVIDIA GPU GTX 2080, 16GB memory
and Windows 10 operating system. All evaluation experi-
ments were performed on Pytorch. The cross-entropy loss
function, Adam optimizer, was used by default. The
batch size was set to 4, and the learning rate to 5x1075.

6.2 Performance measures

In this paper, both identification and verification ex-
periments are conducted.

Identification is a one-to-many comparison, which an-
swers the question of “who the person is?”. In this paper,
the close-set identification is conducted. That is, we know
all enrollments exist in the training set. In order to ob-
tain identification accuracy, the rank 1 identification rate
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is used, in which a test image will be matched with all
templates in the training set, and the label of the most
similar template will be assigned to this test image. For
the sake of simplicity, we define the rank 1 identification
rate as the accuracy recognition rate (ARR).

Verification is a one-to-one comparison, which an-
swers the question of “whether the person is whom they
claim to be”. In the verification experiments, the statist-
ical value of equal error rate (EER) is adopted to evalu-
ate the performance of different methods.

6.3 Recognition performance on separate
data mode

We first conduct evaluation experiments on separate
data mode. That is, in all databases, all samples cap-
tured in the first session are used for training, and all
samples captured in the second session are used for the
test. We conduct the experiments using all selected NAS
methods on all databases. The values of ARR and EER
of the selected NAS methods obtained from 2D palmprint
and palm vein databases are listed in Tables 5 and 6, re-
spectively. The values of ARR and EER obtained from
four 2D representations (CST, ST, MCI and GCI) of 3D
palmprint databases are listed in Table 7.

From Tables 5—7, we have the following observations:

1) ProxylessNAS achieves the best recognition results
on most databases. In the palm vein databases PolyU
M_N and FairNAS-A| it achieves the best recognition res-
ults, whose ARR and EER are 100% and 0.000 1%, re-
spectively.

2) ProxylessNAS was proposed in 2019, but its recog-
nition performance is better than those methods pro-
posed in 2020. This shows that the recognition perform-
ance of the latest NAS recognition methods is not neces-
sarily better than that of the old NAS methods. For ex-
ample, the recognition performance of NASNet proposed
in 2016 is better than that of some methods proposed in
2019 and 2020, such as DARTS, ENAS, and RobNet, etc.

3) PolyU 1II is a challenging database because the
samples captured in the first session and the second ses-
sion have some noticeable variations, such as illumina-
tion change. In this database, the highest ARR is ob-
tained by the proxylessNAS method, which is 98.63%.
However, this is an unsatisfactory recognition result. It
also shows that it is necessary to further study the new
NAS methods to improve the results of 2D palmprint re-
cognition.

4) HFUT CS is a cross-sensors database and is also a
challenging database. In this database, the highest ARR
is obtained by the proxylessNAS method, which is
99.78%. It is a promising result, and it also shows that
cross-sensor palmprint recognition based on NAS techno-
logy is worthy of attention in the future.

5) For 3D palmprint recognition, the method of
ProxylessNAS achieves 100% ARR and 0.0057% EER on

@ Springer

MCI representation, which is a very encouraging result.
This result shows that NAS technology is up-and-coming
in 3D palmprint recognition, which deserves further
study. Among four 2D representations of 3D palmprint,
MCIT is most suitable for 3D palmprint recognition based
on NAS technology.

6.4 Recognition performance on mixed
data mode

In this section, we conduct evaluation experiments on
the mixed data mode. The first image captured in the
second session is added to the training data. That is, the
training set of each palm contains all images captured in
the first session and the first image captured in the
second session. The values of ARR and EER of the selec-
ted NAS methods obtained from 2D palmprint and palm
vein databases are listed in Tables 8 and 9, respectively.
The values of ARR and EER obtained from 3D
palmprint databases are listed in Table 10.

From Tables 8-10, we have the following observa-
tions:

1) The recognition results of all the NAS methods ob-
tained in “mixed data mode” is better than that of “sep-
arate data mode”. Although we only added one image of
the second session to the training set, the recognition res-
ults of all NAS methods are still greatly improved. This
experiment shows that the prediction accuracy of deep
learning-based methods will be improved after more data
are obtained. We can infer that if the network can be
trained by the data collected from multiple stages, the re-
cognition results of all methods can be significantly im-
proved.

2) In the “mixed data mode”, the three methods with
the best recognition performance are ProxylessNAS,
ProxylessNAS-Mobile and Scarlet-A. The ProxylessNAS
method achieves the best recognition results in most
databases. On all databases, the ARR of ProxylessNAS is
100%, and the EER is very low.

3) In the “mixed data mode”, the convergence speed
of the neural network is usually faster, and the number of
epochs trained is reduced by nearly half.

6.5 Performance comparison with other
methods

For 2D and 3D palmprint and palm vein recognition,
we compare the performance between NAS methods and
other methods, including four traditional methods and
four deep learning methods.

For NAS methods, we select ProxylessNAS and
FairNAS-A for performance comparison. Among differ-
ent NAS method, the overall performance of Proxy-
lessNAS is the best, and FairNAS-A achieves the best re-
cognition performance in the PolyU M_N database.

Four traditional and representative palmprint recogni-
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Table 5 ARR (%) of different NAS methods on different 2D palmprint and palm vein databases under the separate data mode

PolyU II PolyUM B HFUTI HFUT CS TJU-P PolyUM N TJU-PV
NASNet 94.46 99.10 94.47 97.73 97.68 99.47 94.25
NASNet-Mobile 93.04 97.97 93.09 99.02 97.77 99.23 94.77
SMASH 87.50 95.68 92.44 81.29 93.16 96.29 91.03
PNASNet 95.62 99.37 97.91 99.48 99.25 99.63 97.58
NAONet 79.99 94.56 88.53 71.21 85.33 92.72 84.07
SNAS 88.77 96.17 90.66 94.03 93.78 95.55 92.12
AmoebaNet 72.58 93.93 81.85 85.17 77.75 95.47 85.33
ENAS 90.77 98.48 90.35 86.75 91.63 97.46 90.28
ProxylessNAS 98.63 100 99.68 99.78 99.75 99.89 99.67
ProxylessNAS-Mobile 98.56 99.86 98.98 99.35 99.30 99.86 99.53
DARTS 91.55 98.75 93.74 92.07 97.47 98.36 96.18
FairNAS-A 96.53 100 98.85 99.39 99.55 100 99.23
FairNAS-B 97.71 99.95 98.59 97.19 99.22 99.90 99.10
FairNAS-C 97.09 99.93 98.86 96.88 99.28 99.97 99.27
GDAS 67.45 87.30 84.00 83.81 87.83 88.58 89.50
FBNet-V1 90.31 97.80 93.34 96.83 90.08 96.45 89.78
MNASNet 94.05 99.87 95.38 98.81 96.07 99.47 95.62
Scarlet-A 98.18 99.70 98.74 98.70 99.69 99.70 99.56
Scarlet-B 98.41 99.93 98.66 98.01 99.58 99.83 99.01
Scarlet-C 97.25 99.95 98.68 97.59 99.42 99.93 98.95
MoGA-A 94.19 99.43 95.85 96.54 97.22 99.83 96.27
MoGA-B 95.33 99.60 95.77 98.29 97.98 99.77 97.03
MoGA-C 94.09 98.83 95.99 97.00 97.28 99.50 96.89
PC-DARTS 76.39 94.30 83.45 67.88 82.48 87.83 86.15
Single-Path-SuperNet 92.39 99.30 91.35 93.55 94.05 99.20 94.68
DNA-a 93.50 98.90 92.20 94.96 94.30 98.33 93.57
DNA-b 94.53 99.33 92.33 98.4 94.47 98.50 96.02
DNA-c 94.76 99.27 92.97 98.55 94.88 98.67 93.58
DNA-d 95.27 99.43 93.41 99.19 95.14 99.37 94.45
FBNet-V2 92.60 99.77 95.04 97.21 98.52 97.53 94.17
RobNet 83.86 95.57 88.89 91.27 90.48 94.71 91.95

tion methods are selected for performance comparison, in-
cluding competitive code (CompC)16l, ordinal code (Or-
dinalC)['2)] robust line orientation code (RLOC)[!3! and
local line directional pattern (LLDP)[114],

Four deep learning methods are selected for perform-
ance comparison including PalmNet[24, ResNet[!!5], Mobi-
leNet-V3, and EfficientNet. PalmNet is a deep learning
method specially designed for palmprint recognition,
which has excellent recognition performance. ResNet is a
very famous CNN and is also a typical representative of
manually designed CNN. As we have mentioned above,
MobileNet-V3 and EfficientNet are two semi-NAS meth-
ods and have excellent recognition performance. The re-
cognition performance of MobileNet-V3 and EfficientNet
has been evaluated in our previous work.

6.5.1 Performance comparison with other methods
in the separate data mode

In the “separate data mode”, for all databases, tradi-
tional methods use four images captured in the first ses-
sion as the training data and uses the images collected in
the second session as the test data. For deep learning-
based methods including PalmNet, ResNet, MobileNet-
V3, EfficientNet. ProxylessNAS and FairNAS-A, all im-
ages collected in the first session are used as the training
data, and the remaining second session images are used as
test data. The comparison results on 2D palmprint and
palm vein databases are listed in Table 11, and the com-
parison results on 3D palmprint database are listed in
Table 12.

From Tables 11 and 12, we have the following obser-
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Table 6 EER (%) of different NAS methods on different 2D palmprint and palm vein databases under the separate data mode

PolyU PolyUM B HFUTI HFUT CS TJU-P PolyUM N TJU-PV
NASNet 2.439 3 0.055 8 2.9329 0.265 7 0.250 5 0.103 8 2.638 6
NASNet-Mobile 2.656 0 0.1431 2.930 8 0.156 3 0.090 7 0.1145 2.650 3
SMASH 6.644 3 1.6573 3.1170 8.5876 2.6291 1.8302 3.1176
PNASNet 1.0746 0.0727 0.4575 0.1080 0.0235 0.020 6 0.1771
NAONet 10.284 4 2.640 6 5.7351 16.776 5 7.8473 3.678 4 7.0421
SNAS 5.159 2 1.305 2 4.398 8 2.590 5 2.536 4 1.4453 3.062 8
AmoebaNet 15.908 2 2.685 0 8.780 4 7.589 4 11.3171 1.896 6 7.5680
ENAS 4.8364 0.105 7 45407 6.3340 3.8721 0.158 2 4.2093
ProxylessNAS 0.1728 3.34X10°5 0.040 7 0.0217 0.018 7 0.001 1 0.070 4
ProxylessNAS-Mobile 0.118 2 0.0110 0.1120 0.075 3 0.059 3 0.001 2 0.069 0
DARTS 3.5745 0.106 9 2.0348 3.448 3 0.246 8 0.1323 1.3347
FairNAS-A 1.454 2 0.000 1 0.105 7 0.048 2 0.013 2 0.000 1 0.0647
FairNAS-B 0.1876 0.000 3 0.215 2 0.469 3 0.040 8 0.022 2 0.1819
FairNAS-C 0.606 5 0.000 8 0.258 4 1.356 7 0.0139 0.0015 0.0720
GDAS 17.5771 6.0725 7.418 6 8.434 4 6.4193 5.364 4 6.478 3
FBNet-V1 47339 0.1951 2.8029 1.378 2 41382 1..789 0 5.343 4
MNASNet 2.499 2 0.000 4 1.506 3 0.203 4 1.2818 0.0195 1.3711
Scarlet-A 0.1323 0.002 7 0.1719 0.129 7 0.0025 0.0211 0.0719
Scarlet-B 0.1146 0.000 9 0.183 8 0.423 8 0.0171 0.019 2 0.102 3
Scarlet-C 0.705 6 0.000 1 0.238 6 0.3518 0.016 6 0.000 8 0.080 9
MoGA-A 2.159 2 0.020 3 1.7924 1.4479 0.2343 0.000 5 1.456 3
MoGA-B 1.106 8 0.0181 1.5810 0.209 3 0.1778 0.0189 0.198 3
MoGA-C 2.565 7 0.1239 1.520 4 0.564 2 0.1846 0.0210 1.2376
PC-DARTS 12.749 0 2.633 4 7.546 1 20.590 4 8.424 2 6.568 2 6.445 8
Single-Path-SuperNet 3.746 5 0.0217 3.2822 2.109 8 2.5289 0.069 7 2.469 7
DNA-a 2.2619 0.068 5 3.130 3 2.4471 2.578 2 0.282 1 2.319 8
DNA-b 2.847 4 0.037 8 3.260 3 0.2131 2.520 3 0.232 2 1.4756
DNA-c 2.304 2 0.039 1 3.0239 0.2200 2.4205 0.176 8 2.2239
DNA-d 1.760 3 0.0529 3.9518 0.1518 1.3457 0.086 1 2.2149
FBNet-V2 3.769 9 0.001 3 1.665 6 0.229 4 0.072 4 0.2929 2.156 0
RobNet 9.879 7 1.396 1 5.943 9 3.690 2 4.0245 2.089 5 3.578 9

vations:

1) In the PolyU II palmprint database, four tradition-
al methods (CompC, OrdinalC, RLOC, and LLDP) and
one manually designed deep learning method (PalmNet)
achieve better recognition performance than the NAS
methods. In the PolyU M B palmprint database, all
methods can achieve 100% ARR, and the method of
ProxylessNAS achieves the lowest EER, which is
3.34%x1075%. In the HFUT I palmprint database, the
method of PalmNet achieves the highest ARR (100%),
and the method of ProxylessNAS achieves the lowest
EER (0.0407%). In the HFUT CS palmprint database,
the method of PalmNet achieves the highest ARR
(100%), and the method of EfficientNet achieves the low-
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est EER (0.0217%). In the PolyU M_N palm vein data-
base, most methods can achieve 100% ARR, and RLOC
and FairNAS-A achieve the lowest EER (0.0001%). In
the TJU-PV palm vein database, the method of RLOC
achieves the highest ARR (100%), and the method of
FairNAS-A achieves the lowest EER (0.0647%).

2) For 2D palmprint and palm vein recognition, the
overall recognition performance of NAS methods is close
to that of the traditional methods. On some databases,
traditional recognition methods have better recognition
performance. On other databases, NAS methods have
better recognition performance.

3) For 2D palmprint and palm vein recognition, the
overall recognition performance of the NAS methods is
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Table 7 ARR (%) and EER (%) of different NAS methods on four 2D representations of 3D
palmprint databases under the separate data mode

CST ST MCI GCI

ARR EER ARR EER ARR EER ARR EER
NASNet 97.62 1.087 6 97.88 1.067 4 97.50 1.569 8 90.76 4.998 0
NASNet-Mobile 97.78 1.003 4 98.40 0.4927 98.98 0.354 5 91.65 4.367 4
SMASH 96.76 1.789 4 97.44 1.566 5 96.36 1.8913 93.28 3.000 1
PNASNet 97.88 1.002 1 99.95 0.001 8 99.25 0.039 3 97.30 1.528 9
NAONet 73.76 15.443 8 68.54 18.4450 79.33 10.775 6 69.38 16.298 0
SNAS 95.67 2.5879 94.78 2.8905 93.25 3.2655 91.55 4.3881
AmoebaNet 88.05 5.689 0 92.70 3.762 0 91.88 4.1978 86.55 6.834 5
ENAS 97.33 1.3357 97.67 1.3025 93.54 3.778 0 92.10 3.018 6
ProxylessNAS 99.90 0.002 8 99.92 0.002 0 100 0.005 7 99.45 0.1193
ProxylessNAS-Mobile 99.08 0.054 4 99.62 0.0158 99.92 0.020 4 98.97 0.1256
DARTS 97.17 1.156 4 96.07 1.870 3 95.73 2.665 4 91.25 4.4035
FairNAS-A 99.58 0.043 6 99.40 0.049 2 99.25 0.058 7 94.05 3.2790
FairNAS-B 99.62 0.033 6 99.90 1.3225 99.52 0.023 4 94.53 2.467 4
FairNAS-C 98.25 0.106 9 98.98 0.063 2 99.75 0.003 7 96.27 1.7345
GDAS 93.12 3.978 8 85.20 7.588 7 83.75 8.665 5 82.02 8.779 8
FBNet-V1 96.03 1.3789 96.60 1.2237 95.40 2.7877 89.76 5.667 8
MNASNet 98.75 0.188 2 99.12 0.0430 97.95 1.209 2 95.23 2.748 9
Scarlet-A 99.30 0.0530 99.78 0.002 3 99.88 0.002 6 97.20 1.2018
Scarlet-B 98.97 0.086 4 99.00 0.045 6 98.90 0.1751 98.47 0.1159
Scarlet-C 97.78 1.0010 99.22 0.0747 98.97 0.1055 93.56 3.276 6
MoGA-A 98.90 0.0720 97.60 0.083 7 99.35 0.1451 94.30 2.9876
MoGA-B 99.12 0.020 8 99.00 0.062 4 98.52 0.701 6 94.15 2.9915
MoGA-C 97.88 1.000 3 98.20 0.108 9 96.70 1.5890 91.67 4.2876
PC-DARTS 91.45 4.865 8 92.48 3.564 4 90.67 4.1717 90.22 4.778 0
Single-Path-SuperNet 94.75 2.8890 94.53 2.906 7 89.55 5.3890 89.85 5.772 3
DNA-a 93.53 3.676 1 94.64 2.2876 92.07 3.8801 86.45 6.899 0
DNA-b 93.88 3.548 8 95.58 2.056 7 93.03 3.3809 87.07 6.786 5
DNA-c 95.50 2.8650 96.47 1.4479 93.53 3.000 2 87.86 6.398 7
DNA-d 94.33 2.9914 96.62 1.3875 94.67 2.8550 88.33 5.686 8
FBNet-V2 97.05 1.7877 98.65 0.1231 97.47 1.010 2 90.33 4.3550
RobNet 91.44 4.356 9 90.46 4.1390 87.35 6.890 3 86.89 6.774 3

close to the deep learning-based method, i.e., PalmNet, a
method specially designed for palmprint recognition. In
the databases of PolyU II, PolyU M B, HFUT I and
TJU-P, PalmNet has better recognition performance than
the NAS methods. However, in the database of HFUT
CS, the recognition performance of PalmNet is very poor.

4) For 2D palmprint and palm vein recognition, the
overall recognition performance of the NAS methods is
notoriously better than that of one representative manu-
ally designed CNN method, i.e., ResNet.

5) For 2D palmprint and palm vein recognition, the
overall recognition performance of one pure NAS method,

i.e., ProxylessNAS, is slightly better than EfficientNet
and MobileNet-V3.

6) For 3D palmprint recognition, the method of
ProxylessNAS achieves 100% ARR on the MCI represent-
ation, which is better than other methods.

6.5.2 Performance comparison with other methods
in the mixed data mode

In the “mixed data mode”, for traditional methods,
four images collected in the first session are used as the
training data, and we add the first image captured in the
second session to the training set. The remaining images
collected in the second session are exploited as the test
data. For ProxylessNAS and FairNAS-A, all the images
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Table 8 ARR (%) of different NAS methods on different 2D palmprint and palm vein databases under the mixed data mode

PolyU PolyUM B HFUTI HFUT CS TJU-P PolyUM N TJU-PV
NASNet 98.26 100 99.13 100 100 100 98.55
NASNet-Mobile 98.11 100 98.11 100 100 100 98.68
SMASH 93.76 99.35 97.77 87.77 98.77 99.93 96.93
PNASNet 99.63 100 100 100 100 100 100
NAONet 86.35 98.78 93.08 78.95 91.22 97.88 89.89
SNAS 94.58 99.76 96.02 99.44 98.37 99.90 97.68
AmoebaNet 78.43 98.56 86.34 90.17 84.50 99.79 90.77
ENAS 96.98 100 96.01 92.37 96.68 100 95.87
ProxylessNAS 100 100 100 100 100 100 100
ProxylessNAS-Mobile 100 100 100 100 100 100 100
DARTS 97.25 100 98.67 97.23 100 100 99.97
FairNAS-A 99.76 100 100 100 100 100 100
FairNAS-B 100 100 100 100 100 100 100
FairNAS-C 100 100 100 99.95 100 100 100
GDAS 74.88 94.21 89.67 89.02 93.32 93.43 94.78
FBNet-V1 96.75 100 98.34 99.33 96.77 99.86 95.49
MNASNet 98.87 100 99.22 100 99.58 100 99.80
Scarlet-A 100 100 100 100 100 100 100
Scarlet-B 100 100 100 100 100 100 100
Scarlet-C 100 100 100 100 100 100 100
MoGA-A 98.66 100 99.45 99.86 100 100 100
MoGA-B 99.41 100 99.76 100 100 100 100
MoGA-C 98.38 100 99.86 100 100 100 99.98
PC-DARTS 83.75 98.80 89.62 73.46 88.40 93.45 92.35
Single-Path-SuperNet 97.60 100 96.47 98.90 99.08 100 98.98
DNA-a 98.22 100 98.36 99.88 99.07 100 98.12
DNA-b 99.26 100 98.55 100 99.14 100 99.85
DNA-c 99.31 100 98.67 100 99.54 100 98.54
DNA-d 99.79 100 98.90 100 99.87 100 98.69
FBNet-V2 97.44 100 99.66 100 100 100 98.72
RobNet 90.25 99.10 94.33 96.94 95.60 98.86 96.80

collected in the first session are used as the training data.
Then we add the first image captured in the second ses-
sion to the training set. The remaining images collected
in the second session are exploited as the test data. The
comparison results on the 2D palmprint and palm vein
databases are listed in Table 13, and the comparison res-
ults on the 3D palmprint database are listed in Table 14.

From Tables 13 and 14, we have the following obser-
vations:

1) In the mixed data mode, all methods have achieved
outstanding recognition performance. Almost all methods
can obtain 100% ARR and very low EER. That is to say,
for various methods, it is very easy to obtain high recog-
nition performance by using the mixed data mode.

2) In the mixed data mode, for 2D palmprint and
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palm vein recognition, the overall recognition perform-
ance of NAS methods is close to that of traditional meth-
ods and other deep learning-based methods.

3) In the mixed data mode, for 3D palmprint recogni-
tion, the method of ProxylessNAS achieves the best per-
formance on the MCI representation.

7 Conclusions

This paper systematically investigated the recognition
performance of representative NAS methods for 2D and
3D palmprint recognition and palm vein recognition.
Twenty representative NAS methods were exploited for
performance evaluation, including NASNet, SMASH,
PNASNet, NAONet, SNAS, AmoebaNet, ENAS, Proxy-
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Table9 EER (%) of different NAS methods on different 2D palmprint and palm vein databases under the mixed data mode

PolyU PolyUM_B HFUT I HFUT CS TJU-P PolyU M_N TJU-PV
NASNet 0.1325 0.001 3 0.857 3 0.0101 0.007 8 0.006 0 0.154 3
NASNet-Mobile 0.1478 0.001 8 0.1476 0.009 6 0.008 4 0.005 4 0.144 8
SMASH 2.6721 0.0479 0.976 0 6.1725 0.1321 0.014 4 1.4550
PNASNet 0.0322 0.002 5 0.008 8 0.004 6 0.003 3 0.0021 0.0077
NAONet 6.643 8 0.578 8 2.4021 12.4452 3.276 8 0.709 4 5.233 6
SNAS 2.2876 0.038 6 1.489 3 0.037 8 0.176 8 0.0177 0.744 6
AmoebaNet 11.654 8 0.723 6 7.487 6 4.5276 9.346 2 0.023 3 4.5573
ENAS 1.368 5 0.002 6 1.587 6 3.542 6 1.376 5 0.003 7 1.663 0
ProxylessNAS 0.0110 2.26 X107 0.006 5 0.000 8 0.0010 0.000 4 0.0020
ProxylessNAS-Mobile 0.0135 0.000 1 0.009 3 0.001 8 0.002 3 0.000 8 0.003 6
DARTS 0.873 4 0.005 2 0.1125 0.8128 0.009 1 0.0077 0.013 3
FairNAS-A 0.045 2 5.58 X107 0.008 6 0.001 2 0.001 6 0.000 1 0.006 4
FairNAS-B 0.0197 0.000 1 0.0103 0.003 5 0.001 9 0.001 8 0.007 8
FairNAS-C 0.0125 0.000 4 0.0122 0.020 2 0.002 8 0.001 4 0.004 5
GDAS 13.2558 2.126 0 5.301 2 5.098 2 2.576 8 2.6510 2.276 5
FBNet-V1 1.422 3 0.000 7 0.1329 0.043 7 1.3425 0.0189 1.7890
MNASNet 0.107 5 0.000 3 0.8170 0.008 8 0.037 6 0.003 4 0.020 8
Scarlet-A 0.009 8 0.001 8 0.008 6 0.003 4 0.006 8 0.002 4 0.005 3
Scarlet-B 0.0102 0.002 3 0.009 1 0.007 8 0.007 3 0.005 6 0.006 4
Scarlet-C 0.009 3 0.003 5 0.009 8 0.006 6 0.0070 0.000 7 0.005 8
MoGA-A 0.176 5 0.003 8 0.042 2 0.023 2 0.002 4 0.000 3 0.009 3
MoGA-B 0.042 2 0.003 3 0.040 8 0.007 5 0.003 7 0.005 5 0.0077
MoGA-C 0.2210 0.0017 0.038 6 0.005 6 0.004 2 0.003 9 0.009 8
PC-DARTS 9.768 3 0.556 4 5.567 3 14.679 2 5.980 6 2.648 1 3.5470
Single-Path-SuperNet 0.746 0 0.004 4 1.4426 0.095 6 0.056 7 0.005 5 0.1386
DNA-a 0.1878 0.007 4 0.1777 0.0110 0.056 4 0.003 5 0.174 5
DNA-b 0.038 5 0.006 5 0.174 4 0.006 4 0.049 8 0.002 8 0.0200
DNA-c 0.0322 0.005 8 0.1659 0.005 1 0.042 2 0.002 4 0.153 7
DNA-d 0.028 0 0.003 4 0.1322 0.004 8 0.0357 0.0016 0.142 2
FBNet-V2 0.8212 0.000 8 0.0376 0.003 5 0.002 5 0.007 4 0.144 4
RobNet 4.5870 0.055 2 2.2554 1.236 9 1.665 4 0.156 5 1.498 7

lessNSA, DARTS, FairNAS, GDAS, FBNet-V1, MNAS-
Net, ScarletNAS, MoGA, PC-DARTS, Single-Path-Super-
Net, DNA, FBNet-V2 and RobNet. Five 2D palmprint
image databases, one 3D palmprint database and two
palm vein databases were exploited for performance eval-
uation, including PolyU II, PolyU M B, HFUT, HFUT
CS, TJU-P, PolyU 3D, PolyU M_B and TJU-PV. These
databases are very representative. For example, PolyU II,
PolyU M_B, PolyU M_N and HFUT databases were col-
lected by the contact manner; HFUT CS, TJU-P and
TJU-PV were captured in a contactless manner. All data-
bases were collected in two different sessions. In particu-
lar, HFUT CS is a rather challenging database because it
was collected in the conditions of two different sessions,
contactless manner and crossing three different sensors.

We conducted evaluation experiments on both separ-
ate data mode and mixed data mode. Experimental res-
ults showed that, among different NAS methods, Proxy-
lessNAS achieved the best recognition accuracy. In other
words, ProxylessNAS is a very suitable NAS method for
2D and 3D palmprint recognition and palm vein recogni-
tion.

In the “separate data mode”, for 2D palmprint recog-
nition and palm vein recognition, the overall recognition
performance of ProxylessNAS is close to that of tradition-
al methods including CompC, OrdinalC, RLOC and
LLDP. It is close to the deep learning-based method, i.e.,
PalmNet, which is a method specially designed for
palmprint recognition. The overall recognition perform-
ance of ProxylessNAS is considerably better than that of
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Table 10 ARR (%) and EER (%) of different NAS methods on four 2D representations of 3D
palmprint databases under the mixed data mode
CST ST MCI GCI
ARR EER ARR EER ARR EER ARR EER
NASNet 99.87 0.024 4 99.93 0.0118 99.46 0.038 6 98.32 0.1221
NASNet-Mobile 99.91 0.0213 100 0.0101 99.58 0.034 9 98.87 0.116 8
SMASH 99.38 0.035 2 99.87 0.013 5 99.14 0.0311 98.25 0.128 8
PNASNet 100 0.1007 100 0.002 2 100 0.008 7 100 0.1018
NAONet 79.46 10.376 5 74.55 12.3320 86.29 6.866 9 76.87 11.000 5
SNAS 98.76 0.155 3 97.42 0.636 0 97.18 0.9114 96.33 1.458 2
AmoebaNet 95.65 1.7621 97.77 0.789 0 97.21 0.827 8 92.46 3.464 0
ENAS 99.55 0.0335 99.93 0.0110 98.67 0.143 2 97.88 0.8126
ProxylessNAS 100 0.000 6 100 0.000 4 100 0.0015 100 0.007 6
ProxylessNAS-Mobile 100 0.001 4 100 0.001 2 100 0.003 2 100 0.008 7
DARTS 99.45 0.034 2 99.11 0.041 2 98.79 0.1225 98.90 0.1155
FairNAS-A 100 0.002 8 100 0.003 0 100 0.004 1 98.75 0.1119
FairNAS-B 100 0.0019 100 0.005 8 100 0.0010 99.00 0.103 4
FairNAS-C 99.98 0.009 7 100 0.008 5 100 0.0050 99.65 0.0108
GDAS 98.33 0.165 0 91.26 3.284 4 90.59 4.344 5 88.43 5.9870
FBNet-V1 99.22 0.0375 99.64 0.032 2 99.69 0.0218 98.19 0.1276
MNASNet 100 0.008 5 100 0.003 4 100 0.0101 99.56 0.018 3
Scarlet-A 100 0.007 4 100 0.001 8 100 0.002 0 99.66 0.009 8
Scarlet-B 100 0.008 3 100 0.006 8 100 0.009 5 100 0.007 6
Scarlet-C 99.87 0.0110 100 0.007 7 100 0.008 5 98.13 0.151 3
MoGA-A 100 0.005 6 99.76 0.016 2 100 0.007 8 98.78 0.1114
MoGA-B 100 0.004 8 100 0.005 5 100 0.009 8 98.44 0.1130
MoGA-C 99.94 0.010 2 100 0.007 3 99.67 0.022 5 97.35 0.755 4
PC-DARTS 96.31 1.544 3 97.44 0.856 4 96.10 1.4122 95.87 1.634 7
Single-Path-SuperNet 99.66 0.0324 99.35 0.023 6 95.87 1.676 0 95.95 1.6220
DNA-a 98.55 0.1590 99.12 0.0320 97.38 0.7326 91.30 3.262 5
DNA-b 98.97 0.1353 99.74 0.0277 98.11 0.173 5 92.33 3.5870
DNA-c 99.54 0.1108 99.90 0.0155 99.62 0.0270 92.98 3.3218
DNA-d 99.02 0.1254 99.99 0.0106 99.15 0.1128 93.47 2.553 8
FBNet-V2 100 0.1014 100 0.009 2 100 0.006 8 95.09 1.794 4
RobNet 97.34 0.8211 96.55 1.4521 93.29 2.5449 93.06 2.5718

one representative manually designed CNN method, i.e.,
ResNet, and is slightly better than EfficientNet and Mo-
bileNet-V3. For 3D palmprint recognition, ProxylessNAS
achieved 100% ARR on the MCI representation, which is
better than other methods.

In the “mixed data mode”, almost all methods can ob-
tain 100% ARR and very low EER. For 2D palmprint
and palm vein recognition, the overall recognition per-
formance of ProxylessNAS is close to that of the tradi-
tional methods and other deep learning-based methods.
For 3D palmprint recognition, ProxylessNAS achieves the
best performance on the MCI representation.
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In this work, it is the first time to conduct a perform-
ance evaluation of representative NAS methods for 2D
and 3D palmprint and palm vein recognition. Experi-
mental results showed the NAS is an up-and-coming tech-
nology for 2D and 3D palmprint and palm vein recogni-
tion. In our future work, based on NAS technology, we
will try to design new methods to further improve the re-
cognition performance of 2D and 3D palmprint recogni-

tion and palm vein recognition.
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Table 11 2D palmprint and palm vein recognition: ARR (%) and EER (%) performance comparison
between NAS and other methods under the separate data mode

PolyU II PolyUM B HFUT I HFUT CS TJU-P PolyUM N TJU-PV
ARR EER ARR EER ARR EER ARR EER ARR EER ARR EER ARR EER
CompC 100 0.0259 100 0.004 4 99.64 0.2874 99.45 0.6016 99.87 0.2500 99.97 0.1000 99.32 0.6500
OrdinalC 100 0.0518 100 0.0059 99.60 0.4255 99.67 0.5851 99.95 0.2671 100 0.0034 99.55 0.5946
RLOC 100 0.0268 100 0.033 4 99.75 0.2541 99.36 0.7027 99.63 0.4529 100 0.000 1 100 0.5814
LLDP 100 0.0521 100 0.0030 99.89 0.5011 99.40 0.1994 99.50 0.5166 100 0.0314 98.93 1.0771
PalmNet 100 0.8380 100 0.004 7 100 0.0655 92.45 4.0974 100 0.0115 99.02 1.4009 99.61 0.3281
ResNet 97.66 0.5333 100 0.000 2 98.51 0.2754 95.20 0.6677 99.25 0.0263 100 0.0007 98.58 0.3147
MobileNet-V3 97.35 0.5741 100 0.0011 98.67 0.1734 96.55 0.4326 99.37 0.0552 100 0.0003 98.67 0.2678
EfficientNet 97.39 0.3552 100 0.000 2 99.41 0.0507 95.31 0.5858 99.89 0.0022 100 0.0002 99.00 0.0774
ProxylessNAS 98.63 0.1728 100 3.34X107% 99.68 0.0407 99.78 0.0217 99.75 0.0187 99.89 0.0011 99.67 0.0704
FairNAS-A 96.53 1.4542 100 0.000 1 98.85 0.1057 99.39 0.0482 99.55 0.0132 100 0.0001 99.23 0.0647
Table 12 3D palmprint recognition: ARR (%) and EER (%) performance comparison between NAS
and other methods under the separate data mode
CST ST MCI GCI
ARR EER ARR EER ARR EER ARR EER
CompC 97.75 1.1335 98.50 0.7759 93.00 4.089 2 71.23 19.044 0
OrdinalC 98.68 0.9201 99.03 0.638 1 91.43 3.7215 97.95 1.554 8
RLOC 96.98 1.373 3 98.60 0.9357 96.45 2.046 9 96.70 1.716 0
LLDP 91.05 3.5177 96.50 1.6173 89.10 4.726 6 93.80 2.9386
PalmNet 97.28 1.1957 98.70 0.8928 96.90 1.8157 96.92 1.690 1
ResNet 97.58 0.548 8 99.12 0.0734 99.35 0.056 6 93.65 1.902 5
MobileNet-V3 97.53 0.602 5 98.47 0.3216 97.32 0.7125 94.16 1.7122
EfficientNet 97.81 0.4418 99.37 0.0510 99.88 0.004 9 99.66 0.0411
ProxylessNAS 99.90 0.002 8 99.92 0.0020 100 0.0057 99.45 0.1193
FairNAS-A 99.58 0.043 6 99.40 0.049 2 99.25 0.058 7 94.05 3.2790
Table 13 2D palmprint and palm vein recognition: ARR (%) and EER (%) performance comparison
between NAS method and other methods under the mixed data mode
PolyU II PolyU M_B HFUTI HFUT CS TJU-P PolyUM_N TJU-PV
ARR EER ARR EER ARR EER ARR EER ARR EER ARR EER ARR EER
CompC 100 0.000 4 100 8.02X10° 99.98 0.0164 99.96 0.5383 100 0.000 9 100 0.0015 99.87 0.1497
OrdinalC 100 0.004 0 100 0.003 1 99.98 0.038 5 100 0.2911 100 1.55X107° 100 0 99.87 0.0406
RLOC 100 7.48X107° 100 0.000 3 100 0.0405 100 0.2708 100 0.0179 100 0 100 0.1314
LLDP 100 0.005 8 100 0 99.93 0.0417 100 0.3324 100 0.018 5 100 0.0010 99.96 0.1671
PalmNet 100 0.006 5 100 5.32X107 100 0.0278 100 0.3330 100 0.018 6 100 0.0012 99.91 0.1668
ResNet 100 0.003 2 100 0.000 1 100 0.0088 99.84 0.0322 100 0.002 5 100 0.0007 99.92 0.0110
MobileNet-V3  99.69 0.053 4 100 0.000 3 100 0.0082 99.49 0.0725 100 0.002 2 100 0.000 2 100 0.0094
EfficientNet 100 0.0130 100 6.34X10° 100 0.0072 99.57 0.068 8 100 0.001 2 100 0.0001 100 0.008 5
ProxylessNAS 100 0.0110 100 2.26X107 100 0.0065 100 0.0008 100 0.001 0 100 0.0004 100 0.0020
FairNAS-A 99.76 0.045 2 100 5.58 X107 100 0.008 6 100 0.0012 100 0.001 6 100 0.0001 100 0.006 4
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Table 14 3D palmprint recognition: ARR (%) and EER (%) performance comparison between NAS
and other methods under the mixed data mode

CST MCI GCI

RR EER ARR EER ARR EER ARR EER
CompC 99.17 0.502 0 99.47 0.3847 97.61 2.156 4 72.64 18.6315
OrdinalC 99.75 0.3388 99.81 0.1659 97.86 1.4220 97.97 1.446 2
RLOC 99.31 0.403 6 99.83 0.2819 99.33 0.7187 96.89 1.718 8
LLDP 95.86 1.952 1 98.14 0.8679 95.84 2.4376 94.58 2.758 8
PalmNet 99.28 0.4349 99.89 0.190 4 99.39 0.5791 97.33 1.4931
ResNet 99.50 0.103 3 99.94 0.002 6 100 0.000 6 98.56 0.2856
MobileNet-V3 98.64 0.2558 99.67 0.032 8 99.67 0.038 5 97.19 0.8335
EfficientNet 98.54 0.3015 99.88 0.004 5 99.94 0.002 3 97.43 0.802 1
ProxylessNAS 100 0.000 6 100 0.000 4 100 0.0015 100 0.007 6
FairNAS-A 100 0.002 8 100 0.0030 100 0.004 1 98.75 0.1119
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