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Abstract General clustering deals with weighted objects and fuzzy member-
ships. We investigate the group- or object-aggregation-invariance properties
possessed by the relevant functionals (effective number of groups or objects,
centroids, dispersion, mutual object-group information, etc.). The classical
squared Euclidean case can be generalized to non-Euclidean distances, as well
as to non-linear transformations of the memberships, yielding the c-means
clustering algorithm as well as two presumably new procedures, the convex
and pairwise convex clustering. Cluster stability and aggregation-invariance
of the optimal memberships associated to the various clustering schemes are
examined as well.

Keywords Aggregation invariance · c-means clustering · EM algorithm ·
Fuzzy clustering · Model-based clustering · Mutual information.

Subject classification AMS 34K20, 62P99, 65K10, 82B26, 94A17, 94D05.

1 Introduction

Clustering consists in optimally partitioning objects, whose data vectors or
pairwise distances are known, into groups. The same holds for general cluster-
ing, dealing with weighted objects and fuzzy membership matrices.

This paper deals with the time-honored quest for optimally clustering a con-
figuration (π,X), where X denotes the locations of the objects (matrix of
features vectors) and π their weights (relative mass). Quite simply, each of the
n objects is assigned to one of the m possible groups. This crisp clustering can
be generalized to fuzzy clustering that is described by a matrix Z of degrees
of membership.
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Natural as is might be, the explicit consideration of weighted objects is not
that frequent in the literature; by contrast, this paper emphasizes the weighted,
non-uniform configurations, and addresses the question of their fuzzy cluster-
ing.

Quite pragmatically, practitioners apply various clustering algorithms, and
might face solutions with equivalent fuzzy groups (Definition 2), as in Table 1.
One would like to know if aggregating such equivalent groups is legitimate or
not, and changes or not the value of the relevant quantities associated to the
algorithms.

The same issues arise in the case of an aggregation of objects. Seeking to answer
those questions calls for a deliberately formal set-up that starts by defining four
kinds of group or object equivalences (section 2 and 3). The paper pursues by
investigating the aggregation-invariant properties of a few relevant functionals
(section 4), among which the group centroids, the group dispersions and the
object-group mutual information are the most prominent.

Section 5 investigates investigates various clustering algorithms, which aim at
determining the optimal clusterings as local minima of a few relevant function-
als, whose convexity and local stability are further studied. In particular, the
thermodynamic clustering, resulting from the minimization of the free energy,
is shown to be equivalent to the weighted version of the model-based clus-
tering, under broad conditions. Also, a new clustering scheme, called convex
clustering, is introduced as an attempt to adapt the c-means clustering to the
weighted, aggregation invariant situation.

A few theorems emphasize the main results; the proof of the most straightfor-
ward ones is left to the reader.

2 Formalism and notations

2.1 Weights, membership degrees, group distributions and quotients

A crisp clustering is a partition of n objects i = 1, . . . , n into m disjoint groups
g = 1, . . . ,m. In full generality, a fuzzy clustering f is specified by an asso-
ciation matrix (fig) with non-negative entries normalized to

∑
i

∑
g fig = 1,

whose components formally define a joint distribution p(i, g) (for i = 1, ..., n, g =
1, ...,m). The quantity πi :=

∑
g fig = p(i) is the relative weight of object i,

ρg :=
∑
i fig = p(g) is the relative weight of group g and zig := fig/πi =

p(g|i) is the membership degree of object i in group g, with
∑
g zig = 1 and∑

i πizig = ρg for all i and g. The n×m membership matrix Z = (zig) is crisp
iff zig = 0 or 1 for all i, g.

A group g is specified by the objects it contains, namely by the distribution
πgi := fig/ρg = p(i|g), i = 1, ..., n, with

∑
i π

g
i = 1. The quotient qig is de-

fined as the ratio of the joint probability p(i, g) over its formal value under
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independence p(i)p(g), namely qig := fig/(πiρg) = πgi /πi = zig/ρg = πiρg. By
construction,

∑
i πiqig = 1,

∑
g ρgqig = 1 and

fig = πizig = ρgπ
g
i = πiρgqig .

2.2 Feature-based and dissimilarity-based clustering

The association matrix (fig) records the proportion of occurrences of the var-
ious objects in the various groups and exhibits the kind of formal row-column
duality encountered in Factor Correspondence Analysis (FCA).

However, in Data Analysis, only the configuration (π,X), given by the
weights πi of the objects i = 1, . . . , n and their p-dimensional feature or location
vectors xi = (xi1, ..., xip)′ ∈ Rp, collected together in the location matrix
X := (x1, . . . xn)′, is known.

Feature-based clustering consists in determining an optimal association ma-
trix f from the given (π,X). In dissimilarity-driven clustering, coordinates do
not show up, but a p×p pairwise dissimilarity matrix d = (dij) among objects
is known (see e.g. Runkler 2007 and references therein). One assumes (dij)
to be proper, that is obeying, for all i, j = 1, . . . , n: dij ≥ 0, dij = dij and
dij = 0 ⇒ [dik = djk for all k] (and hence dii = 0).

In this paper, optimal clusterings f are defined as solutions to minimization
problems of the form minf A[f ], for a given (π,X) or (π, d), where A[f ] is an
objective functional (clustering criterion; see sections 4 and 5).

The distinction between feature- and dissimilarity-based clustering be-
comes irrelevant for the squared Euclidean dissimilarity noted by Dij :=
(xi − xj)′(xi − xj) = ‖xi − xj‖2: by multidimensional scaling (see the ap-
pendix), the object locations can indeed be recovered (up to a translation and
rotation) from a squared Euclidean dissimilarity matrix.

In feature-based clustering, each group g is furthermore characterized by a
prototypical location or centroid yg ∈ Rp, defined as the location y minimizing
a certain dispersion functional depending upon πg and X: see sections 4.4, 4.6,
5.3, 5.4.1 and 5.6.

3 Definitions: aggregation and equivalences

Definition 1 (Object and group aggregation)
a) Two distinct objects i and j from {1, . . . , n} with given locations xi, xj ∈ Rp
can be aggregated, resulting in an object [i ∪ j] that has by definition

i) weight π[i∪j] = πi +πj , membership degrees z[i∪j]g = (πizig +πjzjg)/(πi +
πj), quotients q[i∪j]g = (πiqig + πjqjg)/(πi + πj) and group distributions
πg[i∪j] = πgi + πgj for g = 1, . . . ,m

ii) location x[i∪j] = (πixi + πjxj)/(πi + πj).
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b) Two distinct groups g and h from {1, . . . ,m} can be aggregated, creating a
group [g ∪h] that has weight ρ[g∪h] = ρg + ρh, membership zi[g∪h] = zig + zih,
quotient qi[g∪h] = (ρgqig + ρhqjg)/(ρg + ρh) and distribution π[g∪h]

i = (ρgπ
g
i +

ρhπ
h
i )/(ρg + ρh).

Under group aggregation g, h → [g ∪ h], the n × m membership matrix Z
transforms into a n × (m − 1) matrix Z̃, whose columns other than g or h
remain unchanged. Under object aggregation i, j → [i ∪ j], Z updates into a
(n− 1)×m matrix Z̃, whose rows other than i or j remain unchanged.

Definition 2 (Equivalences)

• Group equivalence : two groups g and h are said to be group-equivalent,
noted g

g∼ h (tolerating some notational collision), if their distributions
coincide, that is if πgi = πhi or equivalently if qig = qih for all objects
i = 1, . . . , n.

• Centroid equivalence : given their centroids yg and yh, two groups g and h
are said to be centroid-equivalent, noted g

c∼ h, if yg = yh.
• Membership equivalence : two objects i and j are said to be membership-

equivalent, noted i
m∼ j, if their membership degrees coincide, that is if

zig = zjg or equivalently if qig = qjg for all groups g = 1, . . . ,m.
• Dissimilarity equivalence : given a proper dissimilarity d, two objects i and
j are said to be dissimilarity-equivalent, noted i

d∼ j, if dij = 0.

3.1 An illustration

Table 1 displays a few rows (14 out of n = 55 Swiss towns) of a membership
matrix Z = (zig) with m = 10 groups, resulting from thermodynamic cluster-
ing (see section 5.2) applied to a matrix of Euclidean “inter-town commuter
distances” (Bavaud 2006).

Thun 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.96 0.00 0.01
Luzern 0.00 0.30 0.06 0.13 0.20 0.00 0.00 0.01 0.00 0.30
Einsiedeln 0.00 0.30 0.06 0.13 0.20 0.00 0.00 0.00 0.00 0.30
Lachen 0.00 0.30 0.06 0.13 0.20 0.00 0.00 0.00 0.00 0.30
Schwyz 0.00 0.30 0.07 0.13 0.20 0.00 0.00 0.00 0.00 0.30
Stans 0.00 0.30 0.06 0.13 0.20 0.00 0.00 0.00 0.00 0.30
Zug 0.00 0.30 0.06 0.13 0.20 0.00 0.00 0.01 0.00 0.30
Bulle 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.91 0.06 0.01
Fribourg 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.97 0.00 0.01
Grenchen 0.00 0.03 0.01 0.01 0.02 0.00 0.00 0.88 0.00 0.03
Olten-Zofingen 0.00 0.29 0.06 0.12 0.19 0.02 0.00 0.03 0.00 0.29
Solothurn 0.00 0.07 0.02 0.03 0.05 0.01 0.00 0.75 0.00 0.07
Basel 0.00 0.03 0.01 0.01 0.02 0.91 0.00 0.00 0.00 0.03
Schaffhausen 0.00 0.30 0.07 0.13 0.20 0.00 0.00 0.00 0.00 0.30

Table 1: 14 rows of a 55× 10 membership matrix Z = (zig). Columns
associated to groups g = 2, 3, 4, 5, 10 are (exactly or nearly) proportional

(group equivalence). Rows associated to objects i = 2, 7 (and also i = 3, 4 and
i = 5, 14) are identical (membership equivalence).
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Table 1 illustrates a familiar situation in fuzzy clustering, where many groups
(m = 10) have been provided for the starting step of a general clustering
algorithm, but few non-equivalent groups (M = 5) persist in the final solution.
Intuitively, such equivalent groups could and should be aggregated, without
changing the value of the relevant quantities of interest.

Similarly, one would expect that joining objects with identical membership
degrees should change neither the clustering problem nor its solution:

Definition 3 (Aggregation invariance (AI): gAI, cAI, mAI, dAI)
Let A[f ] be an arbitrary functional depending upon the n × m association
matrix f = (fig). Then

• A is group-aggregation invariant (gAI) if A is unchanged under the aggre-
gation of any two group-equivalent groups g, h, i.e. with g

g∼ h
• A is centroid-aggregation invariant (cAI) if A is unchanged under the ag-

gregation of any two centroid-equivalent groups g, h, i.e. with g
c∼ h

• A is membership-aggregation invariant (mAI) if A is unchanged under the
aggregation of any two m-equivalent objects i, j, i.e. with i

m∼ j
• A is dissimilarity-aggregation invariant (dAI) if A is unchanged under the

aggregation of any two d-equivalent objects i, j, i.e. with i
d∼ j.

4 Clustering functionals and their aggregation invariance

In sections 4 and 5 we define the main functionals involved in clustering prob-
lems and check their aggregation invariance properties. Strictly speaking, those
functionals should we written as A[f ], but since the weights and locations of
objects (or their dissimilarities) are known and fixed, they will be written,
with a slight notational abuse, as A[Z], in view of the identity fig = πizig.

4.1 Effective number of groups

Determining the “right” number of groups m is a pervasive issue in clustering.
Actually, the number m[Z] of rows of Z is not gAI : m decreases under the
aggregation of groups that are equivalent in the sense of Definition 2. (Note:
here and in the sequel, we use the term “decrease” and “increase” in the weak
sense.)

However, the effective number of groups defined by M [Z] := rank(Z) ≤
min(n,m) is gAI as well as mAI. Also and by construction, M [Z] decreases
under aggregation of groups or objects in general. Furthermore, M [Z] = m[Z]
for crisp clusterings involving non-empty groups.
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4.2 Number of distinct objects

The number ND[X] ≤ n of objects with distinct feature vectors from {x1, . . . , xn}
is gAI and dAI by construction. In general, ND[X] can decrease but also increase
under object aggregation: think of four points i, j, k, l, with xi = xk 6= xj = xl
(two distinct locations); under aggregation [i ∪ j], the location x[i∪j] might
well differ from xk and xl, thus increasing ND[X] (three distinct locations).

4.3 Cohesiveness

Let O = {1, ..., n} denote the set of objects and G = {1, ...,m} the set of
groups, with corresponding entropies and joint entropy:

H(O) = −
∑
i

πi lnπi H(G) := −
∑
g

ρg ln ρg H(O,G) = −
∑
ij

fig ln fig

The mutual object-group information

I[Z] : = I(O : G) = H(O) +H(G)−H(O,G) ≡ HO[Z] +HG[Z]−HO,G[Z]

=
∑
ig

fig ln
fig
πi ρg

=
∑
ig

πi zig ln
zig
ρg

=
∑
ig

πi ρg qig ln qig (1)

is a measure of object-group dependence or cohesiveness. I[Z] is readily seen
to be gAI and mA, and generally decreases under the aggregation of objects
or groups - unless the latter ones are equivalent.

The same can be said of the chi-square criterion that is a cohesiveness measure
as well:

χ2[Z] :=
∑
ig

(fig − πi ρg)2

πi ρg
=

∑
ig

πi ρg (qig − 1)2 .

The group entropy H(G) is not gAI: it decreases under the aggregation of
equivalent groups. Identity I(O : G) = H(G) is readily seen to characterize
crisp clusterings.

4.4 Dispersion and centroids (feature-based clustering)

In case the data have the form of an n× p feature matrix X = (x1, . . . , xn)′ ∈
Rnp, dissimilarities dij are typically computed by means of formulas such as
dij := d(xi, xj) = (

∑p
k=1 |xik − xjk|a)b for a suitable choice of a and b. Let

y ∈ Rp be an arbitrary location and consider the functional

γg[Z, y] :=
∑
i

πgi d(xi, y) .



7

The group centroid yg is defined as the location minimizing the latter criterion;
the value of the minimum defines the group dispersion γg[Z]:

yg[Z] := arg min
y
γg[Z, y] γg[Z] := min

y
γg[Z, y] = γg[Z, yg] . (2)

Also, the within-group dispersion γW [Z] and the overall dispersion γ[Z] are
defined as

γW [Z] :=
∑
g

ρgγg[Z] γ[Z] := min
y

n∑
i=1

πid(xi, y) =:
n∑
i=1

πid(xi, y0)

(3)
where y0 := arg miny

∑n
i=1 πid(xi, y) is the overall centroid of all n data points.

Theorem 1 (Aggregation invariance of dispersions and centroids)
a) The group centroid yg[Z] is gAI, dAI and cAI.
b) The within-group dispersion γW [Z] and the overall dispersion γ[Z] are gAI,
dAI and cAI.
c) The within-group dispersion γW [Z] increases under group aggregation. In
particular, γ[Z] ≥ γW [Z].
d) If d(x, y) is of the form h(x − y) with a convex and even function h(·),
the group dispersion γg[Z], the within-group dispersion γW [Z] and the overall
dispersion γ[Z] decrease under object aggregation.

Proof a) The first two assertions follow readily from definitions. To prove the
cAI property, define λ := ρg/(ρg + ρh) ∈ [0, 1]. Then, assuming yg = yh,

γ[g∪h][Z, y[g∪h]] = min
y
γ[g∪h][Z, y] ≥ λmin

y
γg[Z, y] + (1− λ) min

y
γh[Z, y]

= λγg[Z, yg] + (1− λ)γh[Z, yg] = γ[g∪h][Z, yg] . (4)

b) Again, the first two assertions are readily proved; the cAI property follows
from the identity (ρg + ρh)γ[g∪h][Z] = ρgyg[Z] + ρhyh[Z] found in (4).
c) Let γW [Z̃] denote the within-group dispersion after groups g and h have
been aggregated. Then γW [Z̃] ≥ γW [Z] iff γ[g∪h][Z] ≥ λγg[Z] + (1 − λ)γh[Z]
(first line in 4).
d) Let γ[Z̃] denote the overall dispersion after objects i and j have been
aggregated. Define u(y) :=

∑
k 6=i,j πkd(xk, y) and x[i∪j] := (πixi+πjxj)/(πi+

πj). By convexity of h

πid(xi, y) + πjd(xj , y) + u(y) ≥ (πi + πj)d(x[i∪j], y) + u(y) .

Applying miny on both sides demonstrates γ[Z] ≥ γ[Z̃]. The other claims are
proved analogously. 2
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4.5 Pairwise dispersion (dissimilarity-driven clustering)

If the data consist of pairwise dissimilarities dij between objects, the dispersion
in group g can be measured by the average pair dissimilarity:

δg[Z] :=
1
2

∑
ij

πgi π
g
j dij =

1
2

∑
ij

πiπjqigqjgdij

which is dAI. The within-group pair dispersion

δW [Z] :=
∑
g

ρgδg[Z] =
1
2

∑
ij

∑
g

ρgπ
g
i π

g
j dij (5)

can be checked to be both gIA and dAI, as is the overall dispersion

δ[Z] :=
1
2

∑
ij

∑
g

ρgπiπjdij =
1
2

∑
ij

πiπjdij .

δ[Z] is trivially not affected by group aggregation, and one would expect δW [Z]
to generally increase under group aggregation. This is, however, not the case,
with the notable exception of squared Euclidean dissimilarities:

Theorem 2 (A new characterization of Euclidean distances)
The within-group pair dispersion δW [Z] increases under group aggregation for
every Z iff dij is the squared Euclidean distance, noted Dij := ‖xi − xj‖2.

Proof Let δW [Z̃] denote the within-group pair dispersion after groups g and h
have been aggregated. One readily finds δW [Z]− δW [Z̃] = 1

2
ρgρh

ρg+ρh

∑
ij sisjdij ,

where si := πgi −πhi . Hence δW [Z̃] ≥ δW [Z] for all Z iff
∑
ij sisjdij ≤ 0 for any

s with
∑
i si = 0 (such a vector can indeed always be written as si = a(πgi −πhi )

where πgi and πhi are well-defined distributions and a is large enough). But the
latter inequality, the conditionally negative semi-definite condition, is well-
known to hold iff dij is a squared Euclidean distance Dij (Schoenberg 1935;
Blumenthal 1953). 2

Theorem 3 (Huygens) The within-group dispersion and pair dispersion co-
incide (γW [Z] = δW [Z]) iff the given dissimilarity is a squared Euclidean
distance (dij = Dij).

Proof Actually, Huygens’ theorem traditionally covers the “if” part only; the
“only if” part follows from Theorems (1) and (2). 2
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4.6 Gravity center and inertia (squared Euclidean dissimilarities)

Squared Euclidean dissimilarities, highlighted by Theorem 2, enjoy unique and
well-known properties. First, the group dispersion γg[Z] and the group pair
dissimilarity δg[Z] coincide for all groups g and all clusterings Z, and define
the group inertia ∆g[Z] obeying Huygens weak principle (Bavaud 2002):

∆g[Z] :=
∑
i

πgiD
g
i =

1
2

∑
ij

πgi π
g
jDij where Dg

i := ‖xi − yg‖2 .

Also, the group centroid in (2) can be explicitly written as the group gravity
center

yg[Z] = x̄g :=
∑
i

πgi xi =
∑
i

πiqigxi (6)

which is easily shown to be both mAI and dAI. The overall gravity center

y0[Z] := x̄ :=
∑
g

ρgx̄
g =

∑
ig

ρgπiqigxi =
∑
i

πixi

does not depend on Z, and is thus completely aggregation-invariant, that is
gAI, cAI, mAI and dAI.

Define D0
i := ‖xi − y0‖2 and Dg0 := ‖yg − y0‖2, as well as ∆B [Z] :=∑

g ρgD
g0. Then the overall or total inertia exactly decomposes as:

∆[Z] :=
∑
i

πiD
0
i =

∑
g

ρgD
g0 +

∑
g

ρg∆g[Z] = ∆B [Z] +∆W [Z] .

The following results can be proven by repeated use of the Huygens principle,
or by explicit manipulation of the coordinates in the Euclidean distance:

Theorem 4 (Behavior of the inertia under aggregation)
a) Under object aggregation Z → Z̃ with i, j → [i ∪ j], the between inertia
∆B [Z] remains constant; the total inertia and group inertias decrease as

∆[Z̃] = ∆[Z]− πiπj
πi + πj

Dij ∆g[Z̃] = ∆g[Z]−
πgi π

g
j

πgi + πgj
Dij

b) Under group aggregation Z → Z̃ with g, h → [g ∪ h], the total inertia
∆[Z̃] remains constant; the within inertia increases, and the between inertia
decreases as

∆W [Z̃] = ∆W [Z] +
ρgρh
ρg + ρh

Dgh ∆B [Z̃] = ∆B [Z]− ρgρh
ρg + ρh

Dgh

where Dgh := ‖yg − yh‖2.
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5 Optimum clustering algorithms: the functional approach

Given n objects together with their weights and locations or dissimilarities,
a fuzzy clustering is determined by a membership matrix Z (see section 2.1).
We shall investigate the aggregation invariance properties of a few functional
clustering schemes that are aiming at determining an optimal clustering, i.e.,
that minimizes a given objective functional A[Z] (clustering criterion). The
group labels being arbitrary, we assume A[Z] to be symmetric, i.e., invariant
w.r.t. permutations of the columns of Z.

A necessary condition for Z to be a local minimum is that the first deriva-
tives of A[Z] with respect to all zig are vanishing where the constraints zig ≥ 0
(for all i, g) and

∑
g zig = 1 (for all i) are to be taken into account by suit-

able Lagrange multipliers λi. Another necessary condition is the local stability
condition requiring the non-negativity of the quadratic form (ε,F [Z]ε) where
F [Z] is the matrix of second derivatives of A[Z] and ε any admissible variation
satisfying the constraints.

5.1 Optimum clustering for convex functionals

Before examining specific clustering schemes, let us derive simple results based
upon the convex or concave nature of clustering functionals. Consider two n×m
membership matrices Za and Zb as well as their mixture λZa+(1−λ)Zb where
0 ≤ λ ≤ 1. A functional A[Z] is said to be convex if

A[λZa + (1− λ)Zb] ≤ λA[Za] + (1− λ)A[Zb]

for all Za, Zb and 0 ≤ λ ≤ 1. Equivalently, convex functionals decrease un-
der mixing (and concave functionals increase under mixing). When smooth
enough, the functional is convex if its Hessian matrix with components

A[Z]ig,jh :=
∂2A[Z]
∂zig∂zjh

is semi-positive definite. Straightforward differentiation shows this to be the
case for the mutual information with

I[Z]ig,jh = δgh[
πiδij
zig
− πiπj

ρg
] = δgh

ρg
zigzjg

[δijπ
g
i − π

g
i π

g
j ] (7)

By contrast, the Hessian of the within-group inertia turns out to be

∆W [Z]ig,jh = δgh
πiπj
ρg

[Dij −Dg
i −D

g
j ] = −2δgh

πiπj
ρg

Bgij (8)

which is negative semi-definite (Bgij is a matrix of scalar products that is
explained in the appendix). In summary, the mutual information is convex,
while the inertia is concave.
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Theorem 5 (Fuzziness and convexity)
A convex functional A[Z] takes its minimum value on fuzzy memberships and
its maximum on crisp memberships. The opposite holds for a concave func-
tional.

Proof The result essentially follows from the observation that any fuzzy mem-
bership can be written as a mixture of crisp memberships (partitions), and
that the set of admissible membership matrices Z := {Z |zig ≥ 0 ,

∑
g zig = 1}

is convex. The situation where the minimizer Z0 of the convex functional A[Z]
lies on the boundary of Z (containing the partitions) cannot be ruled out at
first thought, but the symmetry of A[Z] implies that membership matrices Ż0,
obtained from Z0 by an arbitrary permutation of the columns, constitue also
minimizers, whose mixing with Z0 ultimately yields truly fuzzy membership
matrices, lowering the value of the functional by convexity. 2

Mixing is a binary operation, associating to two n ×m membership matrices
a membership matrix of the same type, and must be distinguished from the
aggregation of groups, which is an unary operation yielding a n × (m − 1)
membership matrix Z̃ from an n×m membership matrix Z. The two concepts
are, however, closely related:

Theorem 6 (Aggregation of groups and convexity)
Any convex gAI functional A[Z] decreases under group aggregation. Any con-
cave gAI functional A[Z] increases under group aggregation.

Proof Consider two columns g and h of Z. Let Ż be the membership obtained
from Z by permuting columns g and h, and let Z̃ result from the aggregation of
g and h. Abbreviate A[Z] as a(zg, zh) and A[Z̃] as a(z[g∪h]), the other columns
being fixed.Then

A[Z̃] = a(z[g∪h]) = a(zg + zh)
(a)
= a(

1
2

(zg + zh),
1
2

(zg + zh))

(b)

≤ 1
2
a(zg, zh) +

1
2
a(zh, zg))

(c)
= a(zg, zh) = A[Z]

where (a) follows from gAI of A, (b) from the convexity and (c) from the
symmetry A[Ż] = A[Z]. 2

The mutual information I[Z] (1) is gAI and convex: it decreases under aggre-
gation of groups, a well-known result in Information Theory (see e.g. Cover
and Thomas 1991).

The within-group inertia ∆W [Z] (3) is concave and gAI: it takes on its min-
imum on crisp memberships (Theorem 6) and increases under aggregation of
groups (Theorem 2).

The within-group pair dispersion δW [Z] (5) is gIA; since it does not increase
under aggregation of groups in general (Theorem 2), it cannot be concave.
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5.2 Thermodynamic clustering

5.2.1 Free energy

In statistical mechanics, equilibrium distributions emerge as a compromise
between the opposite objectives of minimizing the energy (producing distribu-
tions concentrated in a ground state) and maximizing the entropy (producing
uniform distributions). The conflict is arbitrated by the temperature T ≥ 0,
assessing the importance of the entropy term.

Transposed into the clustering context, those considerations lead to the func-
tional scheme aiming at minimizing, w.r.t. Z, the gAI functional (see Rose et
al. 1990; Rose 1998)

F [Z] := I[Z] + β γW [Z] (9)

which is proportional to the so-called free energy in thermodynamics. I[Z] is
the mutual information (1), γW [Z] the within-group dispersion (3) and β :=
1/T is the inverse temperature. Minimizing γW [Z] with a large enough initial
number of clusters m tends to produce numerous crisp clusters tightly linked to
objects, while minimizing I[Z] favors a small number of fuzzy clusters scattered
all over the objects. By contrast, both quantities (hence F [Z]) decrease under
object aggregation.

The free energy is made out of a mAI component and a dAI component, both
gAI. Consequently, F [Z] is gAI only.

In the squared Euclidean case (see section 4.6), the minimizing conditions can
be made explicit. Taking derivatives of (9) under the constraints

∑
g zig = 1

for all i yields, with Lagrange parameters λi,

πi(ln
zig
ρg

+ βDg
i ) = λi for all g, i.e. zig =

ρg exp(−βDg
i )∑

h ρh exp(−βDh
i )

(10)

satisfying the constraints zig ≥ 0 for all i, g. Let Z(β) be the (supposed unique)
membership matrix solution to (9), and define R(β) := I[Z(β)] and D(β) :=
∆W [Z(β)]. The parametric curve (R(β), D(β)) for β = 1/T ≥ 0 is the rate-
distortion function R(D) of engineers and information theoreticians (see e.g.
Cover and Thomas 1991 p. 362; Gray and Neuhoff 1998), which can also be
written as:

R(D) := min
Z ;∆W [Z]≤D

I[Z]

R(D) is decreasing, with R(D) ≡ 0 for D ≥ ∆ and R(0) = H(O) (if all
objects are distinct). In the usual information theoretical set-up, the centroids
yg (called reproduction values ; see e.g. Gray and Neuhoff 1998) are fixed,
making ∆W [Z] a linear function of the the memberships Z and thus ensuring
the convexity of R(D); the latter property cannot be guaranteed anymore in
the present framework, due to the concavity of ∆W [Z].
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Fig. 1 Rate-distortion function R(D), whose gap betrays a phase transition at critical
inverse temperature βc, equal to the slope −(R1−R2)/(D2−D1). The limit β = 1/T →∞
creates as many groups as (distinct) objects, while β small enough yields a single group
M = 1.

The existence of two minima Z1(β) and Z2(β) for (9) for some critical
inverse temperature β = βc, such that R1 > R2, D1 < D2 (and R1 + βcD1 =
R2 + βcD2) characterizes a clustering phase transition, and leads to a gap in
the rate distortion function (see Fig. 1 and section 5.2.2).

5.2.2 Phase transition

When the temperature T decreases, i.e. for an increasing β = 1/T , it may
happen that formerly locally stable clusters cease to be so, and split into
smaller clusters, thus increasing the effective number of groups. In the squared
Euclidean case, this phase transition is controlled by λg1, the projection of the
group inertia ∆g onto the first principal factor (see the appendix), as made
explicit by the following Theorem:

Theorem 7 (Locally stable membership matrices) A sufficient condi-
tion for local stability in thermodynamic clustering is maxg λ

g
1 ≤ T/2. Beyond

this limit, clusters may become unstable and fragment into smaller groups.

Proof For a fixed temperature T , the membership matrix Z attains a local
minimum iff it is stable with respect to perturbations of the form zig → zig+εig
(with admissibility conditions

∑
g εig = 0 and εig ≥ −zig), that is iff the

Hessian of the free energy F [Z] satisfies (in view of (7) and (8))

1
2

∑
ig,jh

Fig,jh[Z]εigεjh =
1
2

∑
ijg

(
πiδij
zig
− πiπj

ρg
− 2β

πiπj
ρg

Bgij)εigεjg ≥ 0 .

Using the eigen-decomposition of Theorem 11, together with
∑n
α=1 u

g
iαu

g
jα =

δij and uginu
g
jn =

√
πgi π

g
j , the condition becomes

0 ≤
∑
ijg

1√
πgi π

g
j

πiπj
ρg

(δij −
√
πgi π

g
j − 2βKg

ij)εigεjg =
∑
g

1
ρg

n−1∑
α=1

(1− 2βλgα)(eαg)2 (11)
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where eαg :=
∑
i

πi√
πg

i

ugiαεig. Hence the condition maxα,g λgα ≤ 1/2β, ensuring

(11), is sufficient for local stability. Whether this condition is necessary or
not depends on the proof of the existence of a matrix (eαg) associated to
an admissible perturbation matrix (εig), such that the inequality in (11) can
be reverted whenever maxg λ

g
1 > T/2 - a question so far unsettled in full

generality. 2.

As a corollary, the 1-group solution is locally stable for T > 2∆.

Theorem 7 appears in the unweighted setting in Rose (1998) (see also Rose et
al. (1990)), whose proof uses a perturbation of the gravity center yg, instead
of a perturbation of the membership matrix.

The variant consisting in minimizing the non-gAI functional −HO,G[Z] +
β∆W [Z], or equivalently−HG|O[Z]+β∆W [Z] (first considered in Rose (1998)),
yields to optimal solutions of the form zig = exp(−βDg

i )/
∑
h exp(−βDh

i ), as-
signing an a priori uniform weight on the groups.

5.3 The weighted mixture model

Fuzzy membership matrices appear naturally in the maximum likelihood (ML)
approach to the mixture model. Let us review this well-known topic (see e.g.
Celeux and Govaert 1992; McLachlan and Krishnan 1997) in the weighted
clustering setting.

Let {f(x|θ)}θ∈Θ be a parametric family of probability density functions nor-
malized by

∫
Rp f(x|θ) dx = 1. Let fg(x) := f(x|θg) denote the density asso-

ciated to group g. Consider m groups with proportions r = (r1, . . . rm) (with
rg ≥ 0 and

∑m
g=1 rg = 1) and parameters θ = (θ1, . . . θm), forming the mixture

density f̄(x|θ, r) :=
∑
g rg fg(x).

Consider N independent observations of a corresponding random vector
X̃ ∈ Rp that may take n distinct values x1, ..., xn ∈ Rp (n ≤ N). Let Ni ≥ 1
be the number of observations located at xi, for i = 1, . . . n, and define πi :=
Ni/N . The probability density of the data (π,X) under the mixture model is
P (π,X, r, θ) =

∏n
i=1 f̄(xi|θ, r)Ni . Up to a factor N , the log-likelihood is

LL(θ, r|π,X) =
∑
i

πi ln f̄(xi|θ, r) .

Maximizing the log-likelihood w.r.t. (r, θ) for a fixedX amounts to determining
the mixture of m distributions that optimally fits the object locations X, given
their weights π.

If the objects were in addition labelled, that is if the counts Nig = “number
of times an object with location xi is attributed to group g” were observable,
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then associations F = (fig) := (Nig/N) = (π, Z) should also be taken into
account and the relevant functional would be the complete log-likelihood

CLL(r, θ|π, Z,X) :=
∑
ig

πizig ln(rgfg(xi)) =

∑
g

ρg ln rg +
∑
g

ρg
∑
i

πgi ln fg(xi) =: φ(r, Z) + ψ(θ, Z) .

Amazingly, determining the optimal mixture (r, θ) amounts to determining an
optimal membership matrix Z:

Theorem 8 (Optimal mixture model and optimal membership)
Consider a a fixed configuration (π,X) and the clustering criterion

M[Z] := I[Z] + ηW [Z]

with

ηW [Z] :=
m∑
g=1

ρgηg[Z], ηg[Z] := min
θ
ηg[Z, θ], ηg[Z, θ] :=

∑
i

πgi (− ln f(xi|θ))

(12)

Then

max
r,θ

LL(r, θ) = −min
Z
M[Z].

Proof Consider the alternative membership matrix T (r, θ) with components
tig := rgfg(xi)/f̄(xi) ≥ 0 obeying

∑
g tig = 1 ∀i, as well as the cross-entropy

CE(Z, T ) = CE(Z, T (r, θ)) := −
∑
ig

πizig ln tig .

Then

LL(r, θ) = CLL(r, θ|Z)+CE(Z, T (r, θ)) = φ(r, Z)+ψ(θ, Z)+CE(Z, T (r, θ)) (13)

Consider two sets of parameters (r(n), θ(n)) and (r(n+1), θ(n+1)) together with
a membership matrix Z(n) := T (n) = T (r(n), θ(n)). By (13)

LL(r(n+1), θ(n+1))− LL(r(n), θ(n)) = [CLL(r(n+1), θ(n+1)|T (n))
− CLL(r(n), θ(n)|T (n))] + [CE(T (n), T (n+1))− CE(T (n), T (n))] .

Choosing (r(n+1), θ(n+1)) := arg maxr,θ CLL(r, θ|T (n)) makes the first differ-
ence in the r.h.s. positive. The second difference in the r.h.s. is positive by
virtue of inequality CE(Z, T ) ≥ CE(Z,Z) = HG|O[Z], valid for all membership
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matrices Z and T . In summary, starting form any initial value (r(0), θ(0)) of
the parameters, the “expectation-maximization” (EM) iteration scheme

z
(n)
ig := tig(r(n), θ(n)) =

r
(n)
g f(xi|θ(n)

g )
f̄ (n)(xi)

E-step

(r(n+1), θ(n+1)) := arg max
r,θ

CLL(r, θ|Z(n)) M-step

increases the value of the log-likelihood, and hence converges towards a lo-
cal maximum (r∗, θ∗). Let Z∗ := T (r∗, θ∗). Then (13) yields r∗g = ρ∗g and
φ(r∗, Z∗) =

∑
g ρ
∗
g ln ρ∗g = −HG[Z∗], and finally, together with (12):

LL(r∗, θ∗) = φ(r∗, Z∗) + ψ(θ∗, Z∗) + CE(Z∗, Z∗)
= −HG[Z]− ηW (Z∗) +HG|O[Z] = −I[Z∗]− ηW [Z∗] . 2

The aggregation invariance properties of the functional ηg[Z, θ] are entirely
similar to those of the functional γg[Z, y], as stated in Theorem 1. In particular,
the properties a), b) and c) hold here as well (after the substitution y → θ).
Also, ηg[Z] decreases under object aggregation if f(x|θ) is log-concave in its
first argument (see Theorem 1d) and its proof).

Model-based and thermodynamic clusterings coincide iff ηg[Z, θ] = γg[Z, y],
that is iff θ ≡ y and fg(x) = f(x|yg) = h(x− yg) where h(x) is symmetric and
maximum at x = 0: in this class of distributions, called location models, the
function d(x, y) := − ln(h(x− y))/h(0)) constitutes a proper dissimilarity.

The class of homogeneous location models contains the distributions of the
form fg(x) = σ−ph((x − yg)/σ), with common adjustable dispersion σ > 0.
Application of the EM clustering algorithm collapses in the over-parameterized
case where the number m of available groups equals (or exceeds) the number
ND[X] of objects possessing distinct features (proof: attach each distinct object
i to its “own private group” g[i], hat is πgi = δg,g[i]. Setting yg[i] = xi yields
minZM[Z] ≤ HO[Z]− ln f(0) + p lnσ → −∞ for σ → 0). The same collapse
occurs for heterogeneous location models of the form fg(x|θg) = σ−pg f((x −
yg)/σg), as soon as m ≥ 2.

5.4 Convex clustering

Before examining the weighted c-means algorithm (section 5.6), we introduce
a presumably new family of convex dispersion functionals whose minimization
defines a convex clustering procedure. Those functionals depend upon a smooth
non-negative strictly convex, strictly increasing function c(q) with derivative
c′(q). We shall make use of the function r(·) obeying r(c′(q)) = q (inverse of
c′(q)) which exists and is unique by construction.
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5.4.1 Aggregation properties and optimal memberships

Let D(x, y) = ‖x− y‖2 denote the squared Euclidean distance and consider a
fixed configuration (π,X). Define the convex dispersion κg[Z] for group g as

κg[Z] := min
y
κg[Z, y] =: κg[Z, yg] κg[Z, y] :=

∑
i

πic(qig)D(xi, y)

where yg[Z] =
∑
i

π̂gi xi with π̂gi :=
πic(qig)∑
j πjc(qjg)

. (14)

Theorem 9 (Aggregation-invariance of convex functionals)
a) The centroid yg[Z] is mAI but not dAI.
b) The convex dispersion κg[Z] is neither dAI nor mAI. It decreases under
aggregation of objects.
c) The within-group convex dispersion κW [Z] :=

∑
g ρgκg[Z] is gAI.

Proof a) Let i m∼ j. Define τg[Z] :=
∑
i πi c(qig). Aggregating i and j leaves

yg[Z] unchanged in view of the identities

π̂g[i∪j]

πg[i∪j]
=
π̂gi
πgi

=
π̂gj
πgj

=
c(q[i∪j]g)
τg[Z]

.

On the other hand, π̂g[i∪j] 6= π̂gi + π̂gj in general, thus proving the second
assertion.
b) Consider a group g and two objects i, j with quotients qig, qjg and locations
xi, xj , the other objects being fixed. Then

κg(qig, qjg, xi, xj)
(a)

≥ κg(qig, qjg, x[i∪j], x[i∪j])
(b)

≥ κg(q[i∪j]g, q[i∪j]g, x[i∪j], x[i∪j])

where (a) follows from the convexity of D(x, y), and (b) follows from the
convexity of c(q).
c) Immediate from the definition. 2

Theorem 10 (Optimal convex membership)
The membership matrix Z minimizing κW [Z] fulfills

c′(qig)D(xi, yg) = bi + ag[Z]− κg[Z]

i.e.,

zig = ρg r(
bi + ag[Z]− κg[Z]

Dig
) (15)

where ag[Z] :=
∑
j πiqigc

′(qjg)D(xj , yg) and bi is determined by the normal-
ization condition

∑
g zig =

∑
g ρgqig = 1.
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Proof Differentiating κW under the above constraint, and taking into account

zig = ρgqig ⇒ ∂

∂zig
=

∑
k

∂qkg
∂zig

∂

∂qkg
=

1
ρg

(
∂

∂qig
− πi

∑
k

qkg
∂

∂qkg
)

as well as
∑
j πjc(qig)(xj − yg)′∂yg/∂qig = 0 (see 14) yields

λi =
∂κW
∂zig

= πi (κg[Z] + c′(qig)D(xi, yg)− ag[Z]) .

Setting bi := λi/πi achieves the proof. The constraint zig ≥ 0 is satisfied due
to the positivity of r(·). 2

5.5 Examples

The case c(q) = q2/2 entails r(q) = q, ag[Z] = 2κg[Z], and bi = (1 −∑
g
ρgκg[Z]
Dig

)/
∑
h
ρh

Dih
. The design of an iterative scheme intended to converge

to (15) is obvious; we will not tackle this question, nor study the stability of
the solution in the present paper.

The choice c(q) = q yields κW [Z] = ∆W [Z], the within-group dispersion,
whose minimum it attained for crisp memberships (section 5.1). The function
r() is not defined, and Theorem 10 does not apply. The same holds for c(q) ≡ 1,
yielding κW [Z] = ∆[Z], the total-group dispersion, which does not depend
upon the membership.

5.6 Weighted c-means

We now turn to the question of generalizing the c-means clustering to the
weighted case. The latter actually obtains by defining

Jg[Z, y] :=
∑
i

πic(zig)D(xi, y) and Jg[Z] := min
y
Jg[Z, y] = Jg[Z, yg]

with solution yg =
∑
i

π̌gi xi with π̌gi =
πic(zig)∑
j πjc(zjg)

.

Minimizing further JW [Z] :=
∑
g Jg[Z] with respect to Z yields the solution

(compare with (15)):

zig = r(
bi
Dig

)

where bi is fixed such as
∑
g zig = 1. In particular, the algebraic case c(q) =

CqB with C > 0 and B > 1 yields the celebrated “fuzzy c-means clustering”
(see e.g. Bezdek 1981 or Miyamoto et al. 2008)

zig =
D
− 1

B−1
ig∑

hD
− 1

B−1
ih

=
1∑

h(Dig

Dih
)

1
B−1
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while the exponential case c(q) = C exp(Aq) with C,A > 0 gives

zig =
1
m

+
1
Am

m∑
h=1

ln
Dih

Dig
. (16)

As before, the centroids yg are mAI but not dAI. But JW [Z] is not gAI, con-
trarily to κW [Z]. In other words, aggregating two equivalent groups generally
modifies the value of J [Z], which is certainly posing a difficulty of interpreta-
tion, irrespectively of the algorithmic merits of the c-means.

5.7 Convex pairwise clustering

In the spirit of sections 4.5 and 5.4, define the average convex pairwise dissim-
ilarity

νg[Z] :=
1
2

∑
ij

πiπjc(qig)c(qjg)dij and νW [Z] :=
∑
g

ρgνg[Z] .

Minimizing νW [Z] under the constraint
∑
g zig = 1 yields (see section 5.4)

λi =
∂νW [Z]
∂zig

= πi(νg[Z] + c′(qig)Eig[Z]− ag[Z])

that is zig = ρg r(
bi + ag[Z]− νg[Z]

Eig[Z]
)

with Eig[Z] :=
∑
j πjc(qjg)dij and ag[Z] :=

∑
k πkqkgc

′(qkg)Ekg[Z].

6 Conclusion

Clustering problems are a nice instance of the interplay between the geometric
content and the probabilistic content, typical of Data Analysis. This paper has
underlined four classes of functionals involved in general clustering, namely:

• centroids yg, representing the central, typical location of a group g, or the
optimal model parameter θg associated with group g.

• dispersions γg, ∆g or ηg measuring the average dissimilarity between the
locations of the objects in the group and the centroid (or measuring the
average dissimilarity δg between the pairs of objects of the group g).

• entropies HO, HG, HO,G or IO:G, respectively denoting the object uncer-
tainty, the group uncertainty, the object-group association uncertainty and
the object-group dependence. While the previous classes are of geometric
nature, entropy functionals express the probabilistic aspects of the clus-
tering problem, and measure which groups are made out of which objects,
and conversely.

• “mixed functionals” such as κg, Jg and νg, of twofold nature, interweaving
geometric and probabilistic content.
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Discussing the aggregation-invariance properties of algorithms and function-
als necessitates a general clustering approach: aggregating objects requires the
consideration of weighted objects, and aggregating groups requires the the con-
sideration of fuzzy memberships. This main theme was developped through-
out this paper, whose main results are summarized in eleven theorems, among
which Theorems 1,2,4,5,6,9 and 10 are presumably new, as is the proof of
Theorem 7.

Among open issues, let us mention the question

• of the consequences of aggregating groups which are only nearly equivalent
• of the stability of the convex clustering and other variants
• of the convexity of the associated “mixed functionals”, under various fam-

ilies of functions c(q)
• of the numerical testing of alternative weighted c-means procedures, such

as the “exponential c-means” of equation (16), as well as of the convex
clustering procedure of section 5.4, or its pairwise version of section 5.7.

The last issue is of practical rather than formal nature, and should be given the
highest priority if one wants to determine whether or not convex clustering
can be recommanded to practionners. Although convex clustering possesses
better aggregation-invariance properties than the c-means algorithm, which is
defective in that respect (section 5.6), the question of its numerical behavior
remains so far open.
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Appendix: weighted, group-specific multidimensional scaling

Theorem 7 above makes essential use of the quantity λg1 = maxα λgα, controlling
the local stability of the thermodynamic clustering. Here λgα[Z], measuring the
proportion of the group inertia ∆g[Z] expressed in dimension α, denotes the
α-th eigenvalue associated to the multidimensional scaling problem (MDS)
in its weighted, group-specific version (that is attached to group g), where
α = 1, . . . , n, and λgα = 0 if α ≥ p, where p is the dimensionality of the object
features.

For definition sake, and given the scarcity of expositions of weighted MDS in
the scientific literature, we present the main results of weighted, group-specific
MDS in the following Theorem, whose proof follows the usual (unweighted)
steps (see Bavaud 2006).

Theorem 11 (weighted, group-specific MDS)
a) Consider a fixed group group g of n objects with data points xi, weights πgi ,
and gravity center yg (6). Define Dij := ‖xi−xj‖2 and Dg

i := ‖xi−yg‖2. The
n× n matrix of scalar products with components Bgij := 1

2 (Dg
i +Dg

j −Dij) =
(xi − yg)′(xj − yg) is positive semi-definite, and so is the matrix Kg with

elements Kg
ij :=

√
πgi π

g
j B

g
ij. Let Kg = UgΛg(Ug)′ be its decomposition, where

Ug = (ugiα) is orthogonal and Λg = diag(λgα) is diagonal with decreasingly
ordered eigenvalues λg1 ≥ λg2 ≥ . . . ≥ 0, where λgn = 0 is associated to the
eigenvector ugin =

√
πgi . Then

Dij =
∑
α≥1

(xgiα − x
g
jα)2 where xgiα :=

√
λgα√
πgi

ugiα i, j, α = 1, . . . , n .

Also, ∆g[Z] =
n∑
i=1

πiB
g
ii =

n∑
i=1

Kg
ii =

n∑
α=1

λgα =
n−1∑
α=1

λgα .

b) Replacing the distribution πgi by the overall weights π0
i := πi and repeat-

ing the above construction yields the usual weighted MDS, with spectral de-
composition K0 = U0Λ0(U0)′ providing coordinates x0

iα =
√
λ0
α u

0
iα/
√
πi and

eigenvalues λ0
α such that

∆[Z] =
∑
i

πiB
0
ii =

∑
i

K0
ii =

∑
α

λ0
α ≥

∑
α,g

ρg λ
g
α = ∆W . 2


