Skip to main content
Log in

On critical sets of a finite Moore family

  • Regular Article
  • Published:
Advances in Data Analysis and Classification Aims and scope Submit manuscript

Abstract

Cluster collections obtained within the framework of most cluster structures studied in data analysis and classification are essentially Moore families. In this paper, we propose a simple intuitive necessary and sufficient condition for some subset of objects to be a critical set of a finite Moore family. This condition is based on a new characterization of quasi-closed sets. Moreover, we provide a necessary condition for a subset containing more than k objects (k ≥ 2) to be a critical set of a k-weakly hierarchical Moore family. Finally, as a consequence of this result, we identify critical sets of some k-weakly hierarchical Moore families and thereby generalize a result earlier obtained by Domenach and Leclerc in the particular case of weak hierarchies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong WW (1974) Dependency structures of data base relationships. Inf Process 74: 580–583

    MathSciNet  Google Scholar 

  • Bandelt HJ (1992) Four point characterization of the dissimilarity functions obtained from indexed closed weak hierarchies Mathematisches Seminar. Universität Hamburg, Germany

    Google Scholar 

  • Bandelt HJ, Dress AWM (1989) Weak hierarchies associated with similarity measures: an additive clustering technique. Bull Math Biol 51: 113–166

    MathSciNet  Google Scholar 

  • Bandelt HJ, Dress AWM (1994) An order theoretic framework for overlapping clustering. Discrete Math 136: 21–37

    Article  MATH  MathSciNet  Google Scholar 

  • Barbut M, Monjardet B (1970) Ordre et classification. Hachette, Paris

    MATH  Google Scholar 

  • Barthélemy JP, Brucker F (2001) NP-hard approximation problems in overlapping clustering. J Classif 18: 159–183

    MATH  Google Scholar 

  • Benayade M, Diatta J (2008) Cluster structures and collections of galois closed entity sets. Discrete Appl Math 156: 1295–1307

    Article  MATH  MathSciNet  Google Scholar 

  • Bertrand P (2008) Set systems for which each set properly intersects at most one other set - Application to cluster analysis. Discrete Appl Math 156(8): 1220–1236

    Article  MATH  MathSciNet  Google Scholar 

  • Bertrand P, Janowitz MF (2003) The k-weak hierarchical representations: an extension of the indexed closed weak hierarchies. Discrete Appl Math 127: 199–220

    Article  MATH  MathSciNet  Google Scholar 

  • Birkhoff G (1967) Lattice theory, 3rd edn. Coll Publ., XXV, American Mathematical Society, Providence, RI

  • Caspard N (1999) A characterization theorem for the canonical basis of a closure operator. Order 16: 227–230

    Article  MATH  MathSciNet  Google Scholar 

  • Caspard N, Monjardet B (2003) The lattices of closure systems, closure operators, and implicational systems on a finite set: a survey. Discrete Appl Math 127: 241–269

    Article  MATH  MathSciNet  Google Scholar 

  • Day A (1992) The lattice theory of functional dependencies and normal decompositions. Int J Algebra Comput 2: 409–431

    Article  MATH  Google Scholar 

  • Demetrovics J, Libkin L, Muchnik I (1992) Functional dependencies in relational databases: a lattice point of view. Discrete Appl Math 40: 155–185

    Article  MATH  MathSciNet  Google Scholar 

  • Diatta J (1997) Dissimilarités multivoies et généralisations d’hypergraphes sans triangles. Math Inf Sci hum 138: 57–73

    MATH  MathSciNet  Google Scholar 

  • Diatta J, Fichet B (1994) From Apresjan hierarchies and Bandelt-Dress weak hierarchies to quasi-hierarchies. In: Diday E, Lechevalier Y, Schader M, Bertrand P, Burtschy B (eds) New approaches in classification and data analysis. Springer, New York, pp 111–118

    Google Scholar 

  • Diday E (1984) Une représentation visuelle des classes empiétantes: les pyramides. Tech. Rep. 291, INRIA, France

  • Domenach F, Leclerc B (2004) Closure systems, implicational systems, overhanging relations and the case of hierarchical classification. Math Soc Sci 47: 349–366

    Article  MATH  MathSciNet  Google Scholar 

  • Fichet B (1986) Data analysis: geometric and algebraic structures. In: Prohorov YA, Sazonov VV (eds) Proceedings of the first world congress of the BERNOULLI SOCIETY, Tachkent, 1987, vol 2. V.N.U. Science, pp 123–132

  • Guigues JL, Duquenne V (1986) Famille non redondante d’implications informatives résultant d’un tableau de données binaires. Mathématiques et Sciences humaines 95: 5–18

    MathSciNet  Google Scholar 

  • Koshevoy GA (1999) Choice functions and abstract convex geometries. Math Soc Sci 38: 35–44

    Article  MATH  MathSciNet  Google Scholar 

  • Maier D (1983) The theory of relational databases. Computer Science Press, Rockville, MD

    MATH  Google Scholar 

  • Morgado J (1962) A characterization of the closure operators by means of one axiom. Port Math 21: 155–156

    MATH  MathSciNet  Google Scholar 

  • Plott CR (1973) Path independence, rationality and social choice. Econometrica 41: 1075–1091

    Article  MATH  MathSciNet  Google Scholar 

  • Stumme G, Taouil R, Bastide Y, Pasquier N, Lakhal L (2001) Intelligent structuring and reducing of association rules with formal concept analysis. In: Baader F, Brewka G, Eiter T (eds) Advances in artificial intelligence, Springer, San Jose, California, KI 2001, LNAI 2174, pp 335–350

  • Wille R (1982) Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival I (eds) Ordered sets. Reidel, Dordrecht-Boston, pp 445–470

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Diatta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diatta, J. On critical sets of a finite Moore family. Adv Data Anal Classif 3, 291–304 (2009). https://doi.org/10.1007/s11634-009-0053-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11634-009-0053-8

Keywords

Mathematics Subject Classification (2000)

Navigation