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Abstract We present a clustering method for collections of graphs based on the 
assumptions that graphs in the same cluster have a similar role structure and that the 
respective roles can be founded on implicit vertex types. Given a network ensemble 
(a collection of attributed graphs with some substantive commonality), we start by 
partitioning the set of all vertices based on attribute similarity. Projection of each 
graph onto the resulting vertex types yields feature vectors of equal dimensionality, 
irrespective of the original graph sizes. These feature vectors are then subjected to 
standard clustering methods. This approach is motivated by social network concepts, 
and we demonstrate its utility on an ensemble of personal networks of migrants, where 
we extract structurally similar groups and show their resemblance to predicted accul­
turation strategies. 
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1 Introduction 

Clustering and classification of graphs have wide-spread applications in diverse fields 
such as pattern recognition, drug discovery, or biometrics. Clustering of graphs is of 

U. Brandes . J .  Lerner· U. Nagel (0) 
Department of Computer and Information Science, University of Konstanz, Konstanz, Germany 
e-mail: Uwe.Nagel@uni-konstanz.de 

U. Brandes 
e-mail: Ulrik.Brandes@uni-konstanz.de 

J .  Lerner 
e-mail: lerner@inf.uni-konstanz.de 

http://www.springerlink.com/content/1862-5355/
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-127869


82 

course very different from graph clustering, sometimes also referred to as commu­
nity detection, because it is not about decomposing a single graph (Schaeffer 2007; 
Fortunato 2010), but about detecting groups of similar graphs in a set of graphs. Our 
specific interest in and approach to this problem is motivated by the following scenario. 

In the social sciences, subjects are often divided into social categories based on 
numerical or categorical personal attributes such as age, gender, race, job position, or 
income. Additional meaningful information, however, is given by an individual's per­
sonal network, i. e., his or her social contacts and the relations among them. In social 
network analysis, associations between attributes and social structure are of particular 
interest. For instance, it has been shown that the structure of personal networks cor­
relates with psychological indicators (Kalish and Robins 2006). Likewise, personal 
networks have been used to define user roles in Usenet newsgroups (Welser et al. 
2007) or to characterize the acculturation of migrants (Brandes et al. 2008; Molina 
et al. 2008). Note that in these applications one has to analyze and compare a set of 
networks rather than a single instance (see, e. g., Faust and Skvoretz 2002; Butts and 
Carley 2005; Faust 2006). Following Brandes et al. (2009), we refer to a set of net­
works that originate from the same underlying process, such as sampling or repeated 
measurement, as a network ensemble. 

Clearly, networks in a given ensemble could be compared or characterized based on 
any one network characteristic or graph invariant such as density, clustering coefficient, 
or degree distribution. In this paper we compare attributed graphs using normalized 
projections onto vertex types, which simplify and standardize individual networks 
by exploiting an assumed relationship between vertex attributes and structural posi­
tions. Our comparisons are thus based on two aspects simultaneously: ( 1 )  "who is in 
the network", i. e., which individual characteristics do neighbors in the network have 
and (2) "how are they connected", i. e., what is the overall structure of ties among 
neighbors. 

The remainder of this paper is organized as follows. Our method is described in 
detail in Sect. 2, followed by an illustrative application in Sect. 3. The decisions and 
assumptions leading to our method, as well as connections with random graph models 
and other clustering approaches are discussed in Sect. 4. We conclude with a brief 
outlook in Sect. 5. 

2 Method 

Assume we are given a collection of attributed graphs 9 = {G I = (VI, E d, . . .  , G N = 

(V N, EN)} where Vi = {vi, . . .  , V;l;) is the set of vertices of the i th graph and 

Ei s; en, i.e., edges are unordered pairs of distinct vertices so that the graphs are 
simple and undirected. Vertex sets need not be disjoint. For convenience we assume 
that each vertex v E V = U;':,I Vi is characterized by a real-valued attribute vector 
a(v) E IRd and we are given an attribute dissimilarity 0 : IRd x IRd -+ IR:o:o. Our 
approach generalizes, however, to arbitrary graphs and attribute spaces. 

The fundamental assumption underlying our method is that graphs from the same 
class are characterized by similar patterns of connectivity among similar types of 
vertices, and that there is variation in these patterns between classes. 



Fig. 1 Role structure resulting 
from the projection of a graph to 
four given types. Types are 
depicted as large circles. 
whereas vertices of the original 
graph are depicted as black dots 
and placed inside their type 
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Vertex types are represented as a partition T = {TJ, ... , TM} of the overall vertex 
set V, i.e., U k Tk = U Vi and Tk n T/ = 0 if k 1:: I. By contracting the vertices of each 
G i E 9 into at most M nodes representing their type, we obtain N simplified struc­
tures defined on a common vertex set T. These so-called role structures are described 
by feature vectors with a joint signature and can therefore be clustered using common 
approaches. This yields a clustering of the ensemble 9 into groups of structurally 
similar graphs. As a byproduct, groups can be represented by their summarizing role 
structure. 

We begin with a description of how a given partition of the overall vertex set can be 
used to embed the graphs in a feature space in Sect. 2.1. Clustering of an ensemble is 
described in Sect. 2.3 and only in Sect. 2.4 we address the partition of vertices defining 
their types. 

2.1 Projections 

Given a partition of the overall vertex set V into types T, a projection maps each graph 
G; = (Vi, Ei) of an ensemble 9 to the complete (multi)graph defined on T. Every 
vertex v E Vi is mapped to its corresponding type T E T with v E T, and every edge 
e = {v, w} E E; to the edge {T, T'} with v E T  and w E T'. For both vertices and 
edges of the image graph, multiplicities are counted. 

While any partition of vertices into types induces such a projection, our central 
assumption is that the partition is such that-across an entire class of networks-ver­
tices of the same type are connected are connected to other vertices in similar ways with 
respect to their neighbors' types. In other words, vertices of the same type are expected 
to assume the same role in the graph. The image of a projection is therefore referred to as 
a role structure. An example is shown in Fig. 1, where a graph is mapped to a role struc­
ture on four types using the projection that is induced by a partition into these types. 
Note that our use of the term 'role structure' is motivated more strongly by the theo­
retical concepts in Nadel (1957) than by the formal notions reviewed in Lemer (2005). 

2.2 Features 

To derive a fixed-length feature vector from a given projection of each graph Gi E 9 

we suggest to use properties such as the number of vertices of each type, the degree of 



connectedness between and within types, and the total number of vertices in G i. Prop­
erties thus fall into three categories: they are characteristics of types, of connections 
between types, or of the entire graph G i. In each category, the number of attributes 
obtained is independent of the graph size, and fully determined by the role structure. 
That is, given a vertex partition, our feature vectors embed all graphs in a common 
feature space. 

While the exemplary features discussed below have some plausibility, we note that 
others may be more useful in a given application context. 

2.2.1 Cardinalities 

The distribution of types among vertices in Gi is an important structural aspect for 
graph comparison, especially since types are induced by vertex attributes and therefore 
provide a specific substantive interpretation. To turn the distributions of vertex types 
into a feature, we add the relative frequency of occurrence of each type in the vertex 
set of graph as a component to the feature vector. Other size-related features that may 
be of interest are the numbers of vertices and edges in each Gi. 

2.2.2 Connectivity 

A second group of features reflects the importance of the distribution of edges between 
the vertices of specific types in G i. For normalization purposes we do not simply count 
the number of edges between and within types, but we normalize them with the geo­
metric mean of the involved type set cardinalities. Note that for equal-sized classes the 
geometric mean is proportional to the number of edges. In the case typical for social 
networks the average degree is constant and the number of edges thus linear in the 
number of vertices. For a graph G i = (Vi, Ei) and vertex types Tr and Ts this feature 
is defined as 

er,s = 

I{{u, v} E Ei : u E T,. and v E Ts l l 
.JlVi n T,·I·lVi n Ts l 

i.e., we count the number of edges between vertices of types T,. and Ts in this graph and 
reweight them in such a way that the ratio of edge weights scales with average degrees. 
This scaling behavior is considered advantageous over that of standard density, and we 
will refer to it in the following as average degree. The upper triangle (er,s)l:s:rss:S:M, 
including the diagonal (M = ITI), of scaled multiplicities yields ! M(M + 1) addi­
tional components of the feature vector encoding parts of the role structures of each 
graph. Comparability is ensured by fixing the ordering of vertex types. 

The two feature groups sketched above are meant as examples only, since many 
others are conceivable. These feature vectors provide an embedding of the ensemble 
into a common space, consisting of subspaces for each group of property. Moreover, 
feature vectors can be utilized as signatures of graphs, and, because of their compat­
ibility, prototypical signatures representing subsets of graphs can be derived as well. 
This is illustrated in our example application in Sect. 3. 
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One caveat is in place, however. When using the raw feature vectors as constructed 
in the last section, we face the problem that groups of features form subspaces of vastly 
different dimensionality and extent. A Euclidean distance on the combined space is 
therefore prone to be dominated by one or several of the subspaces. It may also be 
desirable to use individual distances on the subspaces or to emphasize the influence 
of certain features in a subsequent clustering of the ensemble. 

Network ensemble clustering using feature vectors from role structures is therefore 
no different from other approaches based on vectors with inhomogeneous compo­
nents. In a generic approach to moderate the effects of inhomogeneity, we propose to 
start by allowing arbitrary distances for each subspace. Further, distances are normal­
ized such that the there is an expected unit-distance between two networks in every 
subs pace, and finally we introduce weights when combining the subspace distances. 
More formally, let f(i) be the feature vector of graph Gi, 1 :S i :S N, and let P be 
the set of feature groups pEP. Then let fpU) denote the components of the feature 
vector corresponding to features in p. The normalized, weighted distance between 
two graphs (Vi, Ei) and (Vj' Ej) is then defined as follows: 

where a p is a weight for this feature group, 0 p the distance used in the subspace defined 
by p, and (op) is the average distance in this subspace over all pairs of graphs. 

2.3 Clustering 

Given feature vectors for the graphs in an ensemble, the identification of groups of 
structurally similar graphs can be solved as a standard clustering problem on this set 
of vectors. 

In previous work we showed that graphs drawn from different planted partition 
models are separated well by their spectra (Brandes et al. 2009). Note that planted 
partition models essentially consist of an expected role structure. In the present situ­
ation, the existence of variation in role structures is only an assumption grounded on 
theoretical considerations, but since roles are actually defined by vertex types, we can 
make use of the role structures directly rather than indirectly via its showing in the 
spectrum. 

For the speci fic features discussed in Sect. 2.2 it is expected indeed that in an ensem­
ble of well-separable graphs we can find cluster representatives such that cardinalities 
and edge multiplicities of cluster members match well with their representatives, but 
display differences with other role structures. 

While the actual choice of clustering method ultimately depends on hypothesized 
role structures and features chosen accordingly, one general requirement is implied by 
the underlying assumption of representative role structures. The selected clustering 
method should have a tendency towards compact, spherical clusters, for otherwise there 
is no feature vector that represents the core trends of all cluster members sufficiently 
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well. Since we are interested in relating categorical traits of persons and corresponding 
personal networks, there is no need for hierarchical clustering. 

Clustering approaches such as k-means or the estimation of mixtures of Gaussian 
distributions as described in Fraley and Raftery (2002) generally seem appropriate in 
this scenario. Even if clusters are not well-separated, such methods yield reference 
points relative to which the individual personal networks can be interpreted. 

2.4 Vertex types 

A crucial building block of our approach is the plausible assignment of vertices to types, 
reflecting the way vertices connect to others in different classes of graphs (which are 
to be discovered in the ensemble). 

For empirical studies, however, it seems reasonable to expect that the observed attri­
bute data sufficiently discriminate the vertices (for otherwise we would be working 
with the implicit assumption that individuals can be distinguished from their relations 
alone), and at the same time display enough regularity to allow for the assignment 
of more general types (for otherwise there would be no association between personal 
attributes and relations). 

Our approach is therefore to cluster all vertices based on their attributes. Since the 
attributes comprise all that we know about the entities represented by vertices, except 
for their relations, two vertices are indistinguishable, if they have identical attributes, 
and moderately different behavior is expected if attributes are similar. Because of this 
assumption, clusters of vertices should have small maximum distance between any 
pair of cluster members. In metric spaces, this implies that all members are near a 
common center of the cluster. 

Since these requirements are similar to those discussed above, an estimation pro­
cess for Gaussian mixture models as described in Fraley and Raftery (2002) may be 
appropriate. In general, of course, any suitable clustering method could be used for 
the determination of types as long as it yields compact clusters in the above sense. 

3 An empirical real-case example 

In the following we will describe the data set that will be the object of an example 
analysis. The example analysis starts with a vertex partition based on expert knowl­
edge that will be described after the description of the data set. In Sect. 3.2 we show 
an analysis of this ensemble using our method and discuss the results in the context of 
acculturation strategies. A more detailed description of this specific application was 
previously given in Brandes et al. (201 0). 

3.l Data 

The collected data consists of a number of personal networks collected from migrants 
in Spain and the USA with the help of the EgoNetl software. Each of the 504 networks 

I see http://www.egoredes.net for a description of the project and http://www.mdlogix.com/egonet.htm for 
a description of the software. 
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describes the social surrounding of a migrant to Spain or the USA, originating from 
a South-American, Middle-American, African or East-European country. Since the 
underlying data is equal to the data set used in Brandes et al. (2008), we reproduce 
that data description. Each respondent was asked to provide the following four types 
of information: 

1. (questions about ego) 70 questions about the respondent herself, including age, 
skin color, years of residence, questions from traditional acculturation scales and 
health related questions. 

2. (name generator) A list of 45 persons (referred to as alters) personally known to 
the respondent. The alters are represented as vertices in the respondent's personal 
network. 

3. (questions about alters) 12 questions about each of the 45 alters, including country 
of origin, country of residence, skin color, and type of relation to ego. 

4. (ties between alters) For each of the 990 undirected pairs of alters, the evaluation 
whether they know each other. The three possible choices were "very likely", 
"maybe" or "unlikely" and we introduced an edge in the network only if the 
respondent chose "very likely". 

From a statistical point of view this seems to be a very small data set for the individual 
respondents. For our method it offers the opportunity to show the applicability on this 
kind of data. Through the combined analysis of the complete ensemble of networks we 
are able to identify classes of structurally similar networks thereby yielding a compact, 
abstracted description of the whole ensemble. 

In the present example the only attribute data we will use are the countries of ori­
gin and residence of the alters and the same information about ego. By combination, 
vertex attributes describe the immigration situation of each alter (the vertices in each 
personal network) relative to the ego defining the network as in Brandes et al. (2008). 
hence, the alters of all networks are partitioned into four types: 

- origin the alter stems from the the same country as the ego and still lives there. 
- fellows the alter stems from and immigrated to the same country as the ego. 

host the alter lives in and stems from the country the ego immigrated to. 
- transnationals all other. 

In the following we will use these assignments of the vertices to types for the deri­
vation of a structural description of the ensemble. When compared to the results of 
Brandes et al. (2008) for individual networks, the outcome of this process is a simple, 
unifying structural description of all networks in the ensemble. 

3.2 Analysis 

The first step of our analysis yields a description of all networks in the ensemble at. 
once. This structural summary is visualized in Fig. 2. In addition to the descriptive 
values of cardinalities and average degree, the figure gives a visual impression of the 
average network structure. Edges are shaded according to the average degree described 
by them, that is the darker an edge is the higher is the average degree between verti­
ces of the these types. Correspondingly, vertex intensity encodes the average degree 
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Fig. 2 Aggregate role structure 
in the ensemble of personal 
networks. Vertex sizes 
correspond to type frequency, 
where the share of vertices of 
each type is given in parenthesis. 
Intensity of edges and vertices 
corresponds to density inter- and 
intra-type connectivity 
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host (28.18%) 

2.175 
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transnationals 
(16.45%) 1.304 

among vertices of the same type, while the average number of vertices of certain type 
is represented in the size of the node. 

This description gives an overview of the ensemble by averaging over all networks. 
Additional measures such as standard deviation or descriptions of outliers could be 
added. Even from this simple representation, some general trends can be read that 
appear to hold throughout the ensemble. The most obvious detail is that the individual 
positions do not seem to differ much in size, except for the category of "transnation­
als". As expected the average degree within a type exceeds that between different types 
of vertices and the links "origin"-"fellows" and "host"-"fellows" are much stronger 
than those between other types. This can obviously be explained by straightforward 
arguments based on geographic distribution and homophily, but the diagram provides 
supporting evidence and quantifications. 

In the following we will divide the ensemble into groups of structural similar net­
works and use this visualization method to give an overview of the characteristic 

features of each part. Together, these visualizations provide insight into the structure 
of the whole ensemble. 

3.2.1 Role structure of individual clusters 

Following the described method, we derived feature vectors for the networks, clustered 
them, and determined the role structure for each cluster. Visualizations of these role 
structures are shown in Fig. 3. These fincr descriptions illustrate differences between 
clusters of networks and thereby trends in the ensemble determined by the clustering 
of the previous step. The feature vectors were constructed using the cardinality-related 
features introduced in Sect. 2.2. For clustering we used the k-means approach with k 
varying between 2 and 20, each repeated 1 ,000 times with different random initializa­
tions. The final partition was determined using the silhouette coefficient. 

3.2.2 Interpretation of structural trends 

As a result of this first examination we can associate the four clusters, corresponding to 
the four structural descriptions in Fig. 3, with the modes of acculturation proposed by 
Berry ( 1997). The networks belonging to Cluster 1 (Fig. 3a) show strong separation, 
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(b) Cluster 2 (177 networks) 
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Fig. 3 Aggregate role structures of different clusters in the ensemble. Internal density of vertices of the 
same type is shown next to the type node, average degrees between types are given as labels on the edges. 
The fraction of actors belonging to a position is given in parenthesis 

both with respect to nationality (most of their alters are born in the country of origin) 
and with respect to place of residence (most of their alters still live in the country of 
origin). The migrants giving rise to the networks in the second cluster (Fig. 3b) know 
many people living in the host country but still show strong separation with respect to 
nationality since most of their contacts are classified as fellow migrants. The persons 
in Cluster 3 can be interpreted to be well integrated; while the considerable number 
of "hosts" (about 22%) shows a good connection to the new society, none of the dis­
tinguished groups but the "transnationals" -type dominates these networks, so at lea�t 

. 

no concentration on a certain culture is observable. Migrants classified into Cluster 4 
are assimilated since they know only few alters from their country of origin but most 
alters stem from the host society. 

4 Discussion 

In addition to other approaches for clustering sets of graphs, our work is also related 
to probabilistic network models that relate structure with vertex characteristics. 
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We discuss this line of research first, because it provides the main rationale of our 
approach. 

4.1 Probabilistic network models 

The assumption that vertex attributes determine edge probabilities is closely connected 
to the social space model of Boguii<i et al. (2004). Here, an underlying (social) space 
is assumed in which the individuals corresponding to the vertices of the graph can be 
placed using their attributes. The probability of an edge between two vertices is then 
assumed to be directly related to their proximity in the social space; the smaller the 
distance, the higher is the probability of an edge. Thereby properties such as homoph­
ily and transitivity are inherently enforced. This is a feature that may be desired, but 
may also be limiting. 

By summarizing similar vertex positions in types, we achieve that connection prob­
abilities depend directly on the positions, not only on the distance of two vertices. The 
social distance approaches can thereby be connected with block models as in Holland 
et al. (1983) or planted partition models as defined in McSherry (2001). In these block 
models vertices are also assigned to types - the blocks - and the probability of 
an edge between two vertices depends only on the block memberships of the verti­
ces. Holland et al. (1983) give some properties of block models and show how the 
parameters of such a model can be estimated for a graph with a priori known blocks. 

A loss less transformation can be achieved by using a block for each distinct position 
in social space and derive the connection probabilities from the corresponding dis­
tances. By such a transformation every social space model can be expressed as a block 
model. Additionally, block models permit probabilities that are not embeddable in a 
metric space, thereby allowing to drop the assumptions of homophily and transitivity 
of edges. Finally, the summarization of vertex positions by types reduces noise in the 
data and establishes a natural matching of vertices between different graphs that can 
be used as the basis for a comparison. 

4.2 Unsupervised learning 

Similar graph clustering problems are encountered in areas such as pattern recognition, 
image analysis, or drug discovery. In addition to research on the unsupervised learn­
ing problem we faced here, much attention has been devoted to supervised learning 
or classification problems. In the following we will describe several approaches for 
the unsupervised learning problem which also produce cluster descriptions and addi­
tionally give some references to approaches concentrating on distances or similarities 
between graphs. 

An algorithm to find correspondences from a set of graphs to an image graph is 
given in Heil and White (1976). The image graph consists of blocks and requirements 
on the connections between blocks. The aim is to find simultaneous homomorphisms 
mapping the vertices of the graphs to the image graph, while preserving the struc­
tural requirements of the image. Though no classification of an ensemble is achieved, 
this method is strongly related to ours both in its derivation from questions of social 
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sciences and through the assumption that the coarse-grained structure of a graph can 
be described by groups of similarly connected vertices. 

4.2.1 Clustering based on probabilistic graph models 

A specific notion of an ensemble is that of a sample from a mixture of probabilistic 
graph models. Wong and You (1985) and Wong et at. (1990) propose a probabilistic 
graph model together with a synthesis process that creates such a model to describe a 
group of attributed graphs. Their model consists of an underlying model graph with 
probability distributions for the attributes of its vertices and edges, where a special 
null-attribute encodes the absence of an element. To simplify the fit of such a model 
to an ensembles it is assumed that vertex and edge distributions are independent from 
each other and only the distribution of edges depends on attributes of the adjacent 
vertices (first order random graphs). They define a distance between attributed graphs, 
models and groups of attributed graphs based on entropy changes in the distributions 

described by the corresponding models. Determination of this distance involves find­
ing of an optimal vertex mapping between two graphs. In another line of research it 
is argued that these models are over generalizing and alternative simplifications on 
dependencies between the individual distributions are introduced. Function described 
graphs are defined that have probabilities for vertex and edge attlibutes which are 
completely independent of each other and additional dependencies for realizations are 
introduced. Serratosa (2000) provides a good introduction and a number of references 
describing this approach. 

4.2.2 Graph kernels: similarities between graphs 

A very popular approach often used in supervised learning are kernel methods. In this 
framework it is sufficient to provide a similarity for the objects under examination 
to apply a number of algorithms of which the support vector machines seem to be 
the most popular. Consequently, a number of such similarities (kernels) have been 
defined to compare graphs with each other. Gartner (2003) provides a survey on some 
of the different approaches and some hardness results are established in Gartner et al. 
(2003). Here, additionally a kernel based on random walks is defined that uses walks 
with equal label sequences in both graphs for comparison. The random-walk kernel 
is based on the product graph, which pairs up vertices of both graphs using attributes 
as matching information. Neuhaus and Bunke (2006) propose an improvement of the 
random-walk kernel by pruning the product graph with a vertex matching obtained 
from the calculation of an edit distance. In Horvarh et at. (2004) it is shown that also 
label sequences on cycles in the graphs can be used for comparison. Since the number 
of cycles can grow quite fast, this approach is only applicable for a certain class of 
graphs which is further extended in Horvath (2005). The usage of arbitrary frequent 
subgraphs is examined in Deshpande et al. (2005). Another possibility to define a 
similarity on graphs is given in Jain and Wysotzki (2004) and Jain et al. (2005). Here 
a product on the adjacency matrices is defined, that is the minimal Schur-Hadamard 
product under all pellliutations. The evaluation of this product involves an optimal 
vertex matching which is solved by a Hopfield network. 
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4.2.3 Distances 

Within the different distances on graphs the edit distance as defined by Bunke and 
Allermann (1983) is one of the most popular ideas. Unfortunately the calculation of 
this distance is based on an optimal mapping between the veltices of the involved 
graphs. 

Since methods for graph comparison generally suffer from this vertex permutation 
problem, the use of graph spectra is tempting. Consequently, in Luo et al. (2002, 2003) 
the authors describe experiments on the discriminatory qualities of a number of fea­
tures based on graph spectra. They show that the leading eigenvalues have probably 
the best capabilities for structural comparison. Brandes et al. (2009) gives a possi­
ble explanation for this empirical result by proving that eigenvalues can be used to 
distinguish graphs on the different planted partition models they emerged from. It is 
shown that underlying planted partition models have an influence on the structure of 
the eigenvalues of randomly drawn graphs. Based on this, a distance is defined that 
distinguishes graphs by their underlying planted partition model. Unfortunately, the 
advantage that no attributes or veltex mappings are needed is accompanied by the 
calculation costs for the spectral decompositions and problems posed by small graphs 
and unclean matchings to the underlying models. 

4.2.4 Abstraction using centers 

Medians for sets of graphs are used for the abstraction and summarization of groups as 
in our method, but also in a number of clustering algorithms. To make algorithms based 
on centers such as k-means applicable to graphs, Bunke et al. (2003) constructs a super 
graph as cluster representation, and suggest a nearest neighbor clustering where graphs 
are added to clusters such that the change in entropy within the cluster is minimized. 
Defining the median of a set by an object that has the minimum sum of distances to 
all objects in the set a number of approaches exist that find such a median. Examples 
are Miinger et al. (1999), Jiang et al. (1999, 2001), Hlaoui and Wang (2003, 2006). 
An alternative avoiding the need for medians is shown in Luo et al. (2001) where a 
clustering is found using an embedding of the graphs via multidimensional scaling 
based on arbitrary graph distances. 

5 Conclusion and future work 

We presented a method to cluster an ensemble of attributed graphs according to sim­
ilarity in role structure, and compared it to existing approaches. At the core of our 
method is the definition of feature vectors based on the assumption that graphs differ 
by their role structure, and it can be used with any clustering algorithm respecting this 
assumption. Our approach naturally results in abstractions of individual networks and 
summarizing visualizations of role structures. 

In its current form, our method requires the existence of a meaningful global par­
tition of all vertices into types. It will be interesting to investigate ways to relax or 
even test this assumption without changing the random graph model. Assume, for 
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instance, an ensemble such as the one presented in Sect. 3 and a classification of its 
member networks that can be recovered without vertex attributes, but from connectiv­
ity information alone. Then, in turn, each network class model implies a partition of 
the vertices and can be used to investigate the relation between vertex attributes and 
structural positions, and possibly help identify attributes that align well with structural 
features. 
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